Superdiffusive planar random walks with polynomial space-time drifts
Stochastic Processes and their Applications, Vol. 176 (2024), article 104420 We quantify superdiffusive transience for a two-dimensional random walk in which the vertical coordinate is a martingale and the horizontal coordinate has a positive drift that is a polynomial function of the individual coo...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
25-06-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Stochastic Processes and their Applications, Vol. 176 (2024),
article 104420 We quantify superdiffusive transience for a two-dimensional random walk in
which the vertical coordinate is a martingale and the horizontal coordinate has
a positive drift that is a polynomial function of the individual coordinates
and of the present time. We describe how the model was motivated through an
heuristic connection to a self-interacting, planar random walk which interacts
with its own centre of mass via an excluded-volume mechanism, and is
conjectured to be superdiffusive with a scale exponent $3/4$. The
self-interacting process originated in discussions with Francis Comets. |
---|---|
AbstractList | Stochastic Processes and their Applications, Vol. 176 (2024),
article 104420 We quantify superdiffusive transience for a two-dimensional random walk in
which the vertical coordinate is a martingale and the horizontal coordinate has
a positive drift that is a polynomial function of the individual coordinates
and of the present time. We describe how the model was motivated through an
heuristic connection to a self-interacting, planar random walk which interacts
with its own centre of mass via an excluded-volume mechanism, and is
conjectured to be superdiffusive with a scale exponent $3/4$. The
self-interacting process originated in discussions with Francis Comets. |
Author | Shcherbakov, Vadim Menshikov, Mikhail da Costa, Conrado Wade, Andrew |
Author_xml | – sequence: 1 givenname: Conrado surname: da Costa fullname: da Costa, Conrado – sequence: 2 givenname: Mikhail surname: Menshikov fullname: Menshikov, Mikhail – sequence: 3 givenname: Vadim surname: Shcherbakov fullname: Shcherbakov, Vadim – sequence: 4 givenname: Andrew surname: Wade fullname: Wade, Andrew |
BackLink | https://doi.org/10.48550/arXiv.2401.07813$$DView paper in arXiv https://doi.org/10.1016/j.spa.2024.104420$$DView published paper (Access to full text may be restricted) |
BookMark | eNotz7tOwzAUgGEPMEDpAzDhF0iwc-LaHlG5SpUY6B6d-iIsHMey05a-PaIw_dsvfdfkIk3JEXLLWdsrIdg9lu9waLue8ZZJxeGKPH7ssys2eL-v4eBojpiw0ILJTiM9Yvyq9BjmT5qneErTGDDSmtG4Zg6jo7YEP9cbcukxVrf874Jsn5-269dm8_7ytn7YNKgFNMjBC8U408i0ssqA8EpKCStUwKyRPXQrK4w2HSIAB62kcNJ2bMectRYW5O5ve2YMuYQRy2n45QxnDvwAWzZHPA |
ContentType | Journal Article |
Copyright | http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | AKZ GOX |
DOI | 10.48550/arxiv.2401.07813 |
DatabaseName | arXiv Mathematics arXiv.org |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | 2401_07813 |
GroupedDBID | AKZ GOX |
ID | FETCH-LOGICAL-a953-a13f580109a098d8c35f877736a830dc74326d5c9c2aa33139875e7d20b0eddd3 |
IEDL.DBID | GOX |
IngestDate | Thu Jul 04 12:20:14 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a953-a13f580109a098d8c35f877736a830dc74326d5c9c2aa33139875e7d20b0eddd3 |
OpenAccessLink | https://arxiv.org/abs/2401.07813 |
ParticipantIDs | arxiv_primary_2401_07813 |
PublicationCentury | 2000 |
PublicationDate | 20240625 |
PublicationDateYYYYMMDD | 2024-06-25 |
PublicationDate_xml | – month: 06 year: 2024 text: 20240625 day: 25 |
PublicationDecade | 2020 |
PublicationYear | 2024 |
Score | 1.926226 |
SecondaryResourceType | preprint |
Snippet | Stochastic Processes and their Applications, Vol. 176 (2024),
article 104420 We quantify superdiffusive transience for a two-dimensional random walk in
which... |
SourceID | arxiv |
SourceType | Open Access Repository |
SubjectTerms | Mathematics - Probability |
Title | Superdiffusive planar random walks with polynomial space-time drifts |
URI | https://arxiv.org/abs/2401.07813 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07TwMxDI5oJxYEAlSeysAauMvjHiOiLZ1gaIdulRPnpIrSnu56FP49zl0RLKyJEym2os9O7M-M3VltUFobC0PGFToziYDEJyLVmhZkxum2SGwyTV_m2XAUaHL4Ty0MVJ_Lj44f2NYPBDfxfaCjUT3WkzKkbD2_zrvPyZaKay__K0c-Zjv0ByTGx-xo793xx84cJ-zAr0_ZcNqUvgqdSJqQK87LFayh4gQSuHnnO1i91Tw8h_Jys_oKVcK0A91z50Vo_M6xWhbb-ozNxqPZ00TsmxcIyI0SEKvCZOHfCaI8w8wpUwTqPZVApiJ0BNwyQeNyJwGUIj-MAgefooxs5BFRnbM-xf9-wDgCkGAsC6NQo43z1FEMVljtIE5Qqws2aI-8KDt-ikXQxqLVxuX_U1fsUBI-h6wnaa5Zf1s1_ob1amxuWyV_A7TPeyE |
link.rule.ids | 228,230,782,887 |
linkProvider | Cornell University |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superdiffusive+planar+random+walks+with+polynomial+space-time+drifts&rft.au=da+Costa%2C+Conrado&rft.au=Menshikov%2C+Mikhail&rft.au=Shcherbakov%2C+Vadim&rft.au=Wade%2C+Andrew&rft.date=2024-06-25&rft_id=info:doi/10.48550%2Farxiv.2401.07813&rft.externalDocID=2401_07813 |