Superdiffusive planar random walks with polynomial space-time drifts

Stochastic Processes and their Applications, Vol. 176 (2024), article 104420 We quantify superdiffusive transience for a two-dimensional random walk in which the vertical coordinate is a martingale and the horizontal coordinate has a positive drift that is a polynomial function of the individual coo...

Full description

Saved in:
Bibliographic Details
Main Authors: da Costa, Conrado, Menshikov, Mikhail, Shcherbakov, Vadim, Wade, Andrew
Format: Journal Article
Language:English
Published: 25-06-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Stochastic Processes and their Applications, Vol. 176 (2024), article 104420 We quantify superdiffusive transience for a two-dimensional random walk in which the vertical coordinate is a martingale and the horizontal coordinate has a positive drift that is a polynomial function of the individual coordinates and of the present time. We describe how the model was motivated through an heuristic connection to a self-interacting, planar random walk which interacts with its own centre of mass via an excluded-volume mechanism, and is conjectured to be superdiffusive with a scale exponent $3/4$. The self-interacting process originated in discussions with Francis Comets.
AbstractList Stochastic Processes and their Applications, Vol. 176 (2024), article 104420 We quantify superdiffusive transience for a two-dimensional random walk in which the vertical coordinate is a martingale and the horizontal coordinate has a positive drift that is a polynomial function of the individual coordinates and of the present time. We describe how the model was motivated through an heuristic connection to a self-interacting, planar random walk which interacts with its own centre of mass via an excluded-volume mechanism, and is conjectured to be superdiffusive with a scale exponent $3/4$. The self-interacting process originated in discussions with Francis Comets.
Author Shcherbakov, Vadim
Menshikov, Mikhail
da Costa, Conrado
Wade, Andrew
Author_xml – sequence: 1
  givenname: Conrado
  surname: da Costa
  fullname: da Costa, Conrado
– sequence: 2
  givenname: Mikhail
  surname: Menshikov
  fullname: Menshikov, Mikhail
– sequence: 3
  givenname: Vadim
  surname: Shcherbakov
  fullname: Shcherbakov, Vadim
– sequence: 4
  givenname: Andrew
  surname: Wade
  fullname: Wade, Andrew
BackLink https://doi.org/10.48550/arXiv.2401.07813$$DView paper in arXiv
https://doi.org/10.1016/j.spa.2024.104420$$DView published paper (Access to full text may be restricted)
BookMark eNotz7tOwzAUgGEPMEDpAzDhF0iwc-LaHlG5SpUY6B6d-iIsHMey05a-PaIw_dsvfdfkIk3JEXLLWdsrIdg9lu9waLue8ZZJxeGKPH7ssys2eL-v4eBojpiw0ILJTiM9Yvyq9BjmT5qneErTGDDSmtG4Zg6jo7YEP9cbcukxVrf874Jsn5-269dm8_7ytn7YNKgFNMjBC8U408i0ssqA8EpKCStUwKyRPXQrK4w2HSIAB62kcNJ2bMectRYW5O5ve2YMuYQRy2n45QxnDvwAWzZHPA
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKZ
GOX
DOI 10.48550/arxiv.2401.07813
DatabaseName arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2401_07813
GroupedDBID AKZ
GOX
ID FETCH-LOGICAL-a953-a13f580109a098d8c35f877736a830dc74326d5c9c2aa33139875e7d20b0eddd3
IEDL.DBID GOX
IngestDate Thu Jul 04 12:20:14 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a953-a13f580109a098d8c35f877736a830dc74326d5c9c2aa33139875e7d20b0eddd3
OpenAccessLink https://arxiv.org/abs/2401.07813
ParticipantIDs arxiv_primary_2401_07813
PublicationCentury 2000
PublicationDate 20240625
PublicationDateYYYYMMDD 2024-06-25
PublicationDate_xml – month: 06
  year: 2024
  text: 20240625
  day: 25
PublicationDecade 2020
PublicationYear 2024
Score 1.926226
SecondaryResourceType preprint
Snippet Stochastic Processes and their Applications, Vol. 176 (2024), article 104420 We quantify superdiffusive transience for a two-dimensional random walk in which...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Mathematics - Probability
Title Superdiffusive planar random walks with polynomial space-time drifts
URI https://arxiv.org/abs/2401.07813
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07TwMxDI5oJxYEAlSeysAauMvjHiOiLZ1gaIdulRPnpIrSnu56FP49zl0RLKyJEym2os9O7M-M3VltUFobC0PGFToziYDEJyLVmhZkxum2SGwyTV_m2XAUaHL4Ty0MVJ_Lj44f2NYPBDfxfaCjUT3WkzKkbD2_zrvPyZaKay__K0c-Zjv0ByTGx-xo793xx84cJ-zAr0_ZcNqUvgqdSJqQK87LFayh4gQSuHnnO1i91Tw8h_Jys_oKVcK0A91z50Vo_M6xWhbb-ozNxqPZ00TsmxcIyI0SEKvCZOHfCaI8w8wpUwTqPZVApiJ0BNwyQeNyJwGUIj-MAgefooxs5BFRnbM-xf9-wDgCkGAsC6NQo43z1FEMVljtIE5Qqws2aI-8KDt-ikXQxqLVxuX_U1fsUBI-h6wnaa5Zf1s1_ob1amxuWyV_A7TPeyE
link.rule.ids 228,230,782,887
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superdiffusive+planar+random+walks+with+polynomial+space-time+drifts&rft.au=da+Costa%2C+Conrado&rft.au=Menshikov%2C+Mikhail&rft.au=Shcherbakov%2C+Vadim&rft.au=Wade%2C+Andrew&rft.date=2024-06-25&rft_id=info:doi/10.48550%2Farxiv.2401.07813&rft.externalDocID=2401_07813