Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high‐frequency gas monitoring

Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by h...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Solid earth Vol. 121; no. 8; pp. 5761 - 5775
Main Authors: Moor, J. Maarten, Aiuppa, A., Avard, G., Wehrmann, H., Dunbar, N., Muller, C., Tamburello, G., Giudice, G., Liuzzo, M., Moretti, R., Conde, V., Galle, B.
Format: Journal Article
Language:English
Published: United States Blackwell Publishing Ltd 01-08-2016
John Wiley and Sons Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high‐frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO2‐rich gas (CO2/Stotal > 4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2 weeks before eruptions, which are accompanied by shallowly derived sulfur‐rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is ~8–10 km deep, whereas the shallow magmatic gas source is at ~3–5 km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H2S/SO2 varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000 T/d SO2 and H2S/SO2 > 1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H2S/SO2 < 0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high‐temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity. Key Points A gas composition precursor to eruptions is identified Changes in gas compositions are associated with transitions in eruptive processes Magma depth and volume are constrained
AbstractList Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high-frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO -rich gas (CO /S  > 4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2 weeks before eruptions, which are accompanied by shallowly derived sulfur-rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is ~8-10 km deep, whereas the shallow magmatic gas source is at ~3-5 km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H S/SO varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000 T/d SO and H S/SO  > 1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H S/SO  < 0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high-temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity.
Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high‐frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO 2 ‐rich gas (CO 2 /S total  > 4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2 weeks before eruptions, which are accompanied by shallowly derived sulfur‐rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is ~8–10 km deep, whereas the shallow magmatic gas source is at ~3–5 km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H 2 S/SO 2 varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000 T/d SO 2 and H 2 S/SO 2  > 1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H 2 S/SO 2  < 0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high‐temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity. A gas composition precursor to eruptions is identified Changes in gas compositions are associated with transitions in eruptive processes Magma depth and volume are constrained
Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high-frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO2-rich gas (CO2/Stotal>4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2weeks before eruptions, which are accompanied by shallowly derived sulfur-rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is ~8-10km deep, whereas the shallow magmatic gas source is at ~3-5km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H2S/SO2 varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000T/d SO2 and H2S/SO2>1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H2S/SO2<0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high-temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity. Key Points A gas composition precursor to eruptions is identified Changes in gas compositions are associated with transitions in eruptive processes Magma depth and volume are constrained
Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San Jose. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high-frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO sub(2)-rich gas (CO sub(2)/S sub(total)>4. 5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2weeks before eruptions, which are accompanied by shallowly derived sulfur-rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is ~8-10km deep, whereas the shallow magmatic gas source is at ~3-5km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H sub(2)S/SO sub(2) varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000T/d SO sub(2) and H sub(2)S/SO sub(2)>1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H sub(2)S/SO sub(2)<0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high-temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity. Key Points * A gas composition precursor to eruptions is identified * Changes in gas compositions are associated with transitions in eruptive processes * Magma depth and volume are constrained
Abstract Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high‐frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO 2 ‐rich gas (CO 2 /S total  > 4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2 weeks before eruptions, which are accompanied by shallowly derived sulfur‐rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is ~8–10 km deep, whereas the shallow magmatic gas source is at ~3–5 km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H 2 S/SO 2 varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000 T/d SO 2 and H 2 S/SO 2  > 1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H 2 S/SO 2  < 0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high‐temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity. Key Points A gas composition precursor to eruptions is identified Changes in gas compositions are associated with transitions in eruptive processes Magma depth and volume are constrained
Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high‐frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO2‐rich gas (CO2/Stotal > 4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2 weeks before eruptions, which are accompanied by shallowly derived sulfur‐rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is ~8–10 km deep, whereas the shallow magmatic gas source is at ~3–5 km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H2S/SO2 varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000 T/d SO2 and H2S/SO2 > 1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H2S/SO2 < 0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high‐temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity. Key Points A gas composition precursor to eruptions is identified Changes in gas compositions are associated with transitions in eruptive processes Magma depth and volume are constrained
Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high‐frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO2‐rich gas (CO2/Stotal > 4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2 weeks before eruptions, which are accompanied by shallowly derived sulfur‐rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is ~8–10 km deep, whereas the shallow magmatic gas source is at ~3–5 km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H2S/SO2 varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000 T/d SO2 and H2S/SO2 > 1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H2S/SO2 < 0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high‐temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity.
Author Aiuppa, A.
Moor, J. Maarten
Muller, C.
Dunbar, N.
Moretti, R.
Galle, B.
Wehrmann, H.
Avard, G.
Liuzzo, M.
Tamburello, G.
Giudice, G.
Conde, V.
AuthorAffiliation 3 Dipartimento DiSTeM Università di Palermo Palermo Italy
1 Observatorio Vulcanológico y Sismológico de Costa Rica Universidad Nacional Heredia Costa Rica
4 Istituto Nazionale di Geofisica e Vulcanologia Sezione di Palermo Palermo Italy
7 School of Earth Sciences University of Bristol Bristol UK
9 Department of Earth and Space Sciences Chalmers University of Technology Göteborg Sweden
6 New Mexico Bureau of Geology & Mineral Resources Earth and Environmental Science Department Socorro New Mexico USA
2 Department of Earth and Planetary Sciences University of New Mexico Albuquerque New Mexico USA
8 Dipartimento di Ingegneria Civile Design Edilizia e Ambiente Seconda Università degli Studi di Napoli Naples Italy
5 GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany
AuthorAffiliation_xml – name: 2 Department of Earth and Planetary Sciences University of New Mexico Albuquerque New Mexico USA
– name: 6 New Mexico Bureau of Geology & Mineral Resources Earth and Environmental Science Department Socorro New Mexico USA
– name: 5 GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany
– name: 8 Dipartimento di Ingegneria Civile Design Edilizia e Ambiente Seconda Università degli Studi di Napoli Naples Italy
– name: 4 Istituto Nazionale di Geofisica e Vulcanologia Sezione di Palermo Palermo Italy
– name: 9 Department of Earth and Space Sciences Chalmers University of Technology Göteborg Sweden
– name: 7 School of Earth Sciences University of Bristol Bristol UK
– name: 1 Observatorio Vulcanológico y Sismológico de Costa Rica Universidad Nacional Heredia Costa Rica
– name: 3 Dipartimento DiSTeM Università di Palermo Palermo Italy
Author_xml – sequence: 1
  givenname: J. Maarten
  surname: Moor
  fullname: Moor, J. Maarten
  email: maartenjdemoor@gmail.com
  organization: Università di Palermo
– sequence: 2
  givenname: A.
  surname: Aiuppa
  fullname: Aiuppa, A.
  organization: Sezione di Palermo
– sequence: 3
  givenname: G.
  surname: Avard
  fullname: Avard, G.
  organization: Universidad Nacional
– sequence: 4
  givenname: H.
  surname: Wehrmann
  fullname: Wehrmann, H.
  organization: GEOMAR Helmholtz Centre for Ocean Research Kiel
– sequence: 5
  givenname: N.
  surname: Dunbar
  fullname: Dunbar, N.
  organization: Earth and Environmental Science Department
– sequence: 6
  givenname: C.
  surname: Muller
  fullname: Muller, C.
  organization: University of Bristol
– sequence: 7
  givenname: G.
  surname: Tamburello
  fullname: Tamburello, G.
  organization: Università di Palermo
– sequence: 8
  givenname: G.
  surname: Giudice
  fullname: Giudice, G.
  organization: Sezione di Palermo
– sequence: 9
  givenname: M.
  surname: Liuzzo
  fullname: Liuzzo, M.
  organization: Sezione di Palermo
– sequence: 10
  givenname: R.
  surname: Moretti
  fullname: Moretti, R.
  organization: Edilizia e Ambiente Seconda Università degli Studi di Napoli
– sequence: 11
  givenname: V.
  surname: Conde
  fullname: Conde, V.
  organization: Chalmers University of Technology
– sequence: 12
  givenname: B.
  surname: Galle
  fullname: Galle, B.
  organization: Chalmers University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27774371$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1rVDEUhoNU7IfduZaAmwqO5js3XQh21GopCKW6DblJ7kzKvcmY3NsyO3-Cv9FfYsrUobooZpPDyZOXc17efbATU_QAPMPoNUaIvCEIi7MThCnm6BHYI1iomaJc7GxrTHfBYSlXqJ6mtjB7AnaJlJJRiffA-nLKQwo9NCOsZQ6mbw38lnprYoJH81RGAy-CNS-P4Xu_MKWEuIAmOujztBrDtYernKwvxRcYYudz9g52OQ1wGRbLXz9-dtl_n3y0a1h_wyHFMKZcRZ6Cx53piz-8uw_A148fLuefZudfTj_P353PjOQNmgnDGHGNa5VsFJXWOd5S3rW85dxaIxqJRIsJI7XnlJOOdZ0XDjWeYCMUpwfg7UZ3NbWDd9bHMZter3IYTF7rZIL--yWGpV6ka80RZw2hVeDoTiCnukkZ9RCK9X1vok9T0biphgvG2P-gRCp0O1VFX_yDXqUpx-qEpkgIgQQl-CEKN1hVQ5QklXq1oWxOpWTfbbfDSN_mRN_PScWf33dkC_9JRQXoBrgJvV8_KKbPTi9OeM0Vor8BozfJfw
CitedBy_id crossref_primary_10_1016_j_jvolgeores_2023_107939
crossref_primary_10_1002_2017GC007141
crossref_primary_10_3389_feart_2023_1088768
crossref_primary_10_1029_2021GL096595
crossref_primary_10_1016_j_jvolgeores_2020_106769
crossref_primary_10_3389_feart_2017_00071
crossref_primary_10_1029_2018GL080301
crossref_primary_10_1029_2022JB024575
crossref_primary_10_1016_j_jvolgeores_2018_02_014
crossref_primary_10_1029_2021GL092879
crossref_primary_10_1016_j_earscirev_2017_03_005
crossref_primary_10_3389_feart_2018_00213
crossref_primary_10_1016_j_jvolgeores_2020_107098
crossref_primary_10_1016_j_jvolgeores_2021_107297
crossref_primary_10_5194_acp_21_3371_2021
crossref_primary_10_1016_j_epsl_2022_117948
crossref_primary_10_3389_feart_2018_00056
crossref_primary_10_1016_j_chemgeo_2018_10_001
crossref_primary_10_1016_j_jvolgeores_2016_09_003
crossref_primary_10_3389_feart_2023_1088056
crossref_primary_10_1126_sciadv_abb9103
crossref_primary_10_1007_s00445_021_01522_8
crossref_primary_10_1029_2019GC008258
crossref_primary_10_1016_j_jvolgeores_2019_01_004
crossref_primary_10_1007_s00445_018_1262_9
crossref_primary_10_1029_2021GC010288
crossref_primary_10_1038_s43247_022_00589_1
crossref_primary_10_1186_s40623_018_0855_z
crossref_primary_10_1002_2017GC007227
crossref_primary_10_1007_s00445_020_1357_y
crossref_primary_10_1016_j_chemgeo_2021_120627
crossref_primary_10_1002_2017GC006892
crossref_primary_10_3389_frobt_2020_549716
crossref_primary_10_3390_app12094241
crossref_primary_10_1007_s00445_017_1142_8
crossref_primary_10_1007_s00445_017_1144_6
crossref_primary_10_1126_science_aam5782
crossref_primary_10_1007_s00445_019_1331_8
crossref_primary_10_1002_2017GC006856
crossref_primary_10_1016_j_earscirev_2018_11_016
crossref_primary_10_1016_j_jvolgeores_2024_108075
crossref_primary_10_1029_2018GH000181
crossref_primary_10_1080_01431161_2017_1401250
crossref_primary_10_1002_2017JB014020
crossref_primary_10_5194_bg_16_1343_2019
crossref_primary_10_1016_j_jvolgeores_2017_03_001
crossref_primary_10_1038_s41467_020_16862_w
crossref_primary_10_1029_2022GC010552
crossref_primary_10_3389_feart_2017_00015
crossref_primary_10_1016_j_jvolgeores_2021_107312
crossref_primary_10_1038_s41586_019_1643_z
crossref_primary_10_1146_annurev_earth_082420_060506
crossref_primary_10_1007_s00445_022_01556_6
crossref_primary_10_1016_j_eng_2019_03_004
crossref_primary_10_1186_s40623_021_01471_8
crossref_primary_10_1038_s43247_023_01103_x
crossref_primary_10_3389_feart_2017_00050
crossref_primary_10_1016_j_chemgeo_2020_119722
crossref_primary_10_1080_10256016_2020_1814277
crossref_primary_10_5194_amt_11_2441_2018
crossref_primary_10_1016_j_jvolgeores_2019_06_011
crossref_primary_10_1126_sciadv_abh0191
crossref_primary_10_1130_G46323_1
crossref_primary_10_5194_amt_15_4373_2022
crossref_primary_10_1002_2016GC006525
crossref_primary_10_1007_s00445_017_1151_7
crossref_primary_10_1016_j_epsl_2017_10_040
crossref_primary_10_1029_2019GC008573
crossref_primary_10_1029_2019GC008494
crossref_primary_10_1029_2019GC008690
crossref_primary_10_1029_2022GC010786
crossref_primary_10_1186_s40623_024_01984_y
crossref_primary_10_1038_s41586_019_1131_5
crossref_primary_10_1130_GES01495_1
crossref_primary_10_3389_feart_2023_1088992
crossref_primary_10_1186_s40623_018_0919_0
crossref_primary_10_1016_j_scitotenv_2021_146274
crossref_primary_10_1016_j_jvolgeores_2021_107347
crossref_primary_10_3389_feart_2022_897267
crossref_primary_10_1029_2018JB015655
crossref_primary_10_3389_feart_2023_1197796
crossref_primary_10_1016_j_jvolgeores_2021_107181
crossref_primary_10_1038_s41467_018_05293_3
crossref_primary_10_3389_feart_2019_00154
crossref_primary_10_1007_s00445_022_01571_7
crossref_primary_10_1029_2021GC009911
crossref_primary_10_1038_s41598_019_41901_y
crossref_primary_10_1029_2018GC007692
crossref_primary_10_1029_2019GC008882
crossref_primary_10_3389_feart_2018_00247
crossref_primary_10_1029_2023GC011064
crossref_primary_10_1016_j_jvolgeores_2021_107383
crossref_primary_10_1093_gji_ggae054
crossref_primary_10_1016_j_gca_2024_01_016
crossref_primary_10_1785_0120230021
crossref_primary_10_1016_j_jvolgeores_2024_108052
Cites_doi 10.5194/sed-6-2293-2014
10.1126/science.233.4767.964
10.1007/978-3-642-80087-0_7
10.1016/j.epsl.2016.1002.1056
10.1016/j.jvolgeores.2008.09.013
10.1016/j.lithos.2015.07.012
10.1016/S0377-0273(00)00292-4
10.1126/science.1141900
10.1007/s00445-012-0631-z
10.2113/gsecongeo.105.1.3
10.1130/G20078.1
10.1002/2015JB012160
10.1016/S0377-0273(99)00158-4
10.1144/SP437.12
10.1130/G31285.1
10.1002/2015JB012537
10.1007/s00531-00013-00958-00535
10.1016/j.epsl.2011.04.005
10.5047/eps.2013.02.004
10.1016/j.epsl.2014.09.041
10.1038/nature12342
10.1016/0377-0273(90)90067-P
10.1029/95GL00002
10.1016/0377-0273(92)90046-G
10.1130/G24149A.1
10.1007/s00445-009-0332-4
10.1029/96GL02061
10.1002/ggge.20255
10.1029/2008GC002246
10.1016/S0012-821X(03)00401-1
10.1515/9781501508370-007
10.1016/j.jvolgeores.2014.05.001
10.1130/0091-7613(2002)030<0671:ERAOBG>2.0.CO;2
10.1007/s00445-010-0444-x
10.1029/2009JD011823
10.1144/GSL.SP.2003.213.01.06
10.1016/j.jvolgeores.2007.08.008
10.1016/j.pepi.2004.08.030
10.1016/j.jvolgeores.2010.09.021
10.1002/2015GC005791
10.1093/petrology/egr027
10.1515/9781501509674-012
10.1016/0883-2927(87)90030-8
10.1130/2006.2412(13)
10.1016/j.jvolgeores.2004.11.034
10.1016/j.jvolgeores.2010.01.008
10.1016/S0377-0273(99)00161-4
10.1130/G36905.36901
10.1515/9781501508370-008
10.1029/2010GC003412
ContentType Journal Article
Copyright 2016. The Authors.
2016. American Geophysical Union. All Rights Reserved.
2016. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2016. The Authors.
– notice: 2016. American Geophysical Union. All Rights Reserved.
– notice: 2016. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
7ST
7TG
8FD
C1K
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
SOI
5PM
DOI 10.1002/2016JB013150
DatabaseName Wiley_OA刊
Wiley-Blackwell Open Access Backfiles
PubMed
CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environment Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Sciences and Pollution Management
DatabaseTitleList PubMed

Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

Aerospace Database
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate TURMOIL AT TURRIALBA VOLCANO
EISSN 2169-9356
EndPage 5775
ExternalDocumentID 4183767621
10_1002_2016JB013150
27774371
JGRB51690
Genre article
Journal Article
GeographicLocations Costa Rica
ASW, Costa Rica
GeographicLocations_xml – name: Costa Rica
– name: ASW, Costa Rica
GrantInformation_xml – fundername: Deep Carbon Observatory
– fundername: German Research Foundation (DFG)
– fundername: Costa Rican Comision Nacional de Emergencias
– fundername: European Research Council
  funderid: 305377
– fundername: European Research Council
  grantid: 305377
GroupedDBID 05W
0R~
1OC
24P
31~
33P
50Y
52M
702
8-1
8FG
A00
AAESR
AAHHS
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABJCF
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACGOD
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARAPS
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BFHJK
BGLVJ
BMXJE
BRXPI
CCPQU
DPXWK
DRFUL
DRSTM
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
L6V
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M7R
M7S
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
P-X
P2W
P62
PATMY
PCBAR
PQQKQ
PROAC
PTHSS
PYCSY
R.K
RJQFR
RNS
ROL
SUPJJ
WBKPD
WIN
WXSBR
WYJ
~OA
NPM
AAYXX
CITATION
7ST
7TG
8FD
AAMNL
C1K
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
SOI
5PM
ID FETCH-LOGICAL-a7580-6a442d8db978937cdd5b35fb5b55cca68706b12425fbd9d7d4ffe6d08e21a6953
IEDL.DBID 33P
ISSN 2169-9313
IngestDate Tue Sep 17 20:51:11 EDT 2024
Wed Jul 17 04:10:30 EDT 2024
Fri Aug 16 00:48:45 EDT 2024
Tue Nov 19 05:31:56 EST 2024
Tue Nov 19 05:04:27 EST 2024
Fri Aug 23 00:40:27 EDT 2024
Sat Sep 28 08:29:38 EDT 2024
Sat Aug 24 00:53:49 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords phreatic eruption
phreatomagmatic eruption
hydrothermal system
explosive eruption
volcano monitoring
volcanic gases
Language English
License Attribution-NonCommercial-NoDerivs
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a7580-6a442d8db978937cdd5b35fb5b55cca68706b12425fbd9d7d4ffe6d08e21a6953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016JB013150
PMID 27774371
PQID 1819937972
PQPubID 54731
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5054823
proquest_miscellaneous_1835664443
proquest_miscellaneous_1827906953
proquest_journals_3066606321
proquest_journals_1819937972
crossref_primary_10_1002_2016JB013150
pubmed_primary_27774371
wiley_primary_10_1002_2016JB013150_JGRB51690
PublicationCentury 2000
PublicationDate August 2016
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: August 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: Hoboken
PublicationTitle Journal of geophysical research. Solid earth
PublicationTitleAlternate J Geophys Res Solid Earth
PublicationYear 2016
Publisher Blackwell Publishing Ltd
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons Inc
References 1987; 2
2013b; 14
2013; 65
2010; 105
2011; 52
2011; 12
2001; 108
2007; 35
1992; 52
2004; 32
1990; 42
2009; 10
2014; 407
1990
2000
2016; 437
2005; 146
2010; 115
2011; 73
1995; 22
2005; 149
2015; 43
2000; 97
2010; 198
2014; 286
2010; 191
2014; 6
1996; 23
2010; 72
2007; 168
2010; 38
2015; 16
2012
2002; 30
2011
2010
1986; 233
2009; 182
2015; 52
2013; 500
2015; 120
2009
2016; 442
1996
2016; 121
2006
1994
1993
2013a
2003
2003; 214
2012; 74
2007; 317
2011; 306
2015; 232
2013
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
Larsen J. F. (e_1_2_9_35_1) 2010
e_1_2_9_54_1
Morrissey M. (e_1_2_9_40_1) 2000
Oppenheimer C. (e_1_2_9_45_1) 2012
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
González G. (e_1_2_9_32_1) 2015; 52
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Carr M. J. (e_1_2_9_13_1) 1990
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
Alvarado G. E. (e_1_2_9_6_1) 2009
e_1_2_9_29_1
References_xml – year: 2011
– volume: 108
  start-page: 303
  year: 2001
  end-page: 341
  article-title: Magmatic gas scrubbing: Implications for volcano monitoring
  publication-title: J. Volcanol. Geotherm. Res.
– year: 2009
– volume: 146
  start-page: 117
  year: 2005
  end-page: 138
  article-title: Degassing at Anatahan Volcano during the May 2003 eruption: Implications from petrology, ash leachates, and SO emissions
  publication-title: J. Volcanol. Geotherm. Res.
– volume: 30
  start-page: 671
  year: 2002
  end-page: 674
  article-title: Experimental rapid alteration of basaltic glass: Implications for the origins of atmospheric particulates
  publication-title: Geology
– volume: 32
  start-page: 141
  year: 2004
  end-page: 144
  article-title: Magmatic precursors to the 18 May 1980 eruption of Mount St. Helens, USA
  publication-title: Geology
– volume: 97
  start-page: 31
  year: 2000
  end-page: 53
  article-title: Geochemistry of the magmatic‐hydrothermal system of Kawah Ijen Volcano, East Java, Indonesia
  publication-title: J. Volcanol. Geotherm. Res.
– volume: 52
  start-page: 129
  year: 2015
  end-page: 149
  article-title: Actividad historica y analisis de la amenaza del volcan Turrialba, Costa Rica
  publication-title: Rev. Geol. Am. Central
– volume: 23
  start-page: 2057
  year: 1996
  end-page: 2060
  article-title: On the role of hydrothermal systems in the transfer of volcanic sulfur to the atmosphere
  publication-title: Geophys. Res. Lett.
– volume: 65
  start-page: 591
  year: 2013
  end-page: 607
  article-title: Precursory activity and evolution of the 2011 eruption of Shinmoe‐dake in Kirishima Volcano—Insights from ash samples
  publication-title: Earth Planets Space
– volume: 168
  start-page: 68
  year: 2007
  end-page: 92
  article-title: High water contents in basaltic magmas from Irazú Volcano, Costa Rica
  publication-title: J. Volcanol. Geotherm. Res.
– start-page: 375
  year: 1990
  end-page: 391
– volume: 52
  start-page: 231
  year: 1992
  end-page: 246
  article-title: A review on phreatic eruptions and their precursors
  publication-title: J. Volcanol. Geotherm. Res.
– volume: 437
  year: 2016
  article-title: HCl degassing from extremely acidic crater lakes: Preliminary results from experimental determinations and implications for geochemical monitoring
  publication-title: Geol. Soc. Lond. Spec. Publ.
– volume: 121
  start-page: 114
  year: 2016
  end-page: 133
  article-title: Tomographic image of a seismically active volcano: Mammoth Mountain, California
  publication-title: J. Geophys. Res. Solid Earth
– volume: 407
  start-page: 134
  year: 2014
  end-page: 147
  article-title: Gas measurements from the Costa Rica‐Nicaragua volcanic segment suggest possible along‐arc variations in volcanic gas chemistry
  publication-title: Earth Planet. Sci. Lett.
– start-page: 111
  year: 2012
  end-page: 179
– start-page: 221
  year: 1996
  end-page: 256
– volume: 73
  start-page: 167
  year: 2011
  end-page: 213
– volume: 198
  start-page: 416
  year: 2010
  end-page: 432
  article-title: Geophysical, geochemical and geodetical signals of reawakening at Turrialba Volcano (Costa Rica) after almost 150 years of quiescence
  publication-title: J. Volcanol. Geotherm. Res.
– volume: 74
  start-page: 1757
  year: 2012
  end-page: 1770
  article-title: Space‐ and ground‐based measurements of sulphur dioxide emissions from Turrialba Volcano (Costa Rica)
  publication-title: Bull. Volcanol.
– volume: 43
  start-page: 767
  year: 2015
  end-page: 770
  article-title: The geological CO degassing history of a long‐lived caldera
  publication-title: Geology
– start-page: 187
  year: 1994
  end-page: 230
– volume: 52
  start-page: 1737
  year: 2011
  end-page: 1762
  article-title: Experimental simulation of closed‐system degassing in the system basalt‐H O‐CO ‐S‐Cl
  publication-title: J. Petrol.
– volume: 73
  start-page: 115
  year: 2011
  end-page: 122
  article-title: Failed magmatic eruptions: Late‐stage cessation of magma ascent
  publication-title: Bull. Volcanol.
– volume: 442
  start-page: 218
  year: 2016
  end-page: 227
  article-title: Short‐period volcanic gas precursors to phreatic eruptions: Insights from Poás Volcano, Costa Rica
  publication-title: Earth Planet. Sci. Lett.
– volume: 10
  year: 2009
  article-title: Galapagos‐OIB signature in southern Central America: Mantle refertilization by arc–hot spot interaction
  publication-title: Geochem. Geophys. Geosyst.
– volume: 2
  start-page: 143
  year: 1987
  end-page: 161
  article-title: Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand
  publication-title: Appl. Geochem.
– start-page: 235
  year: 2006
  end-page: 257
– volume: 12
  year: 2011
  article-title: Volcanic CO output at the Central American subduction zone inferred from melt inclusions in olivine crystals from mafic tephras
  publication-title: Geochem. Geophys. Geosyst.
– volume: 317
  start-page: 227
  year: 2007
  end-page: 230
  article-title: Depth of slug‐driven strombolian explosive activity
  publication-title: Science
– year: 1993
– volume: 35
  start-page: 1115
  year: 2007
  end-page: 1118
  article-title: Forecasting Etna eruptions by real‐time observation of volcanic gas composition
  publication-title: Geology
– start-page: 81
  year: 2003
  end-page: 101
– volume: 105
  start-page: 3
  year: 2010
  end-page: 41
  article-title: Porphyry Copper Systems
  publication-title: Econ. Geol.
– volume: 42
  start-page: 13
  year: 1990
  end-page: 39
  article-title: The chemistry of fumarolic vapor and thermal‐spring discharges from the Nevado del Ruiz volcanic‐magmatic‐hydrothermal system, Colombia
  publication-title: J. Volcanol. Geotherm. Res.
– start-page: 335
  year: 2010
  end-page: 382
– volume: 191
  start-page: 15
  year: 2010
  end-page: 32
  article-title: Cyclic processes and factors leading to phreatic eruption events: Insights from the 25 September 2007 eruption through Ruapehu Crater Lake, New Zealand
  publication-title: J. Volcanol. Geotherm. Res.
– volume: 97
  start-page: 287
  year: 2000
  end-page: 307
  article-title: Sulfur isotopic effects in the disproportionation reaction of sulfur dioxide in hydrothermal fluids: Implications for the delta S‐34 variations of dissolved bisulfate and elemental sulfur from active crater lakes
  publication-title: J. Volcanol. Geotherm. Res.
– volume: 214
  start-page: 499
  year: 2003
  end-page: 513
  article-title: Contrasting He‐C relationships in Nicaragua and Costa Rica: Insights into C cycling through subduction zones
  publication-title: Earth Planet. Sci. Lett.
– volume: 306
  start-page: 261
  year: 2011
  end-page: 271
  article-title: Mantle to surface degassing of alkalic magmas at Erebus Volcano, Antarctica
  publication-title: Earth Planet. Sci. Lett.
– year: 2013
  article-title: SO degassing from Turrialba Volcano linked to seismic signatures during the period 2008–2012
  publication-title: Int. J. Earth Sci.
– volume: 500
  start-page: 68
  year: 2013
  end-page: 72
  article-title: Feeding andesitic eruptions with a high‐speed connection from the mantle
  publication-title: Nature
– start-page: 215
  year: 2011
  end-page: 246
– volume: 6
  start-page: 2293
  year: 2014
  end-page: 2320
  article-title: Characterisation of the magmatic signature in gas emissions from Turrialba Volcano, Costa Rica
  publication-title: Solid Earth
– volume: 14
  start-page: 4076
  year: 2013b
  end-page: 4108
  article-title: Sulfur degassing at Erta Ale (Ethiopia) and Masaya (Nicaragua): Implications for degassing processes and oxygen fugacities of basaltic systems
  publication-title: Geochem. Geophys. Geosyst.
– volume: 16
  start-page: 2797
  year: 2015
  end-page: 2811
  article-title: Crustal‐scale degassing due to magma system destabilization and decoupling at Soufrière Hills Volcano, Monteserrat
  publication-title: Geochem. Geophys. Geosyst.
– start-page: 431
  year: 2000
  end-page: 445
– volume: 120
  start-page: 6071
  year: 2015
  end-page: 6084
  article-title: Intense magmatic degassing through the lake of Copahue Volcano, 2013–2014
  publication-title: J. Geophys. Res. Solid Earth
– volume: 232
  start-page: 319
  year: 2015
  end-page: 335
  article-title: Geochemistry of the mantle source and magma feeding system beneath Turrialba Volcano, Costa Rica
  publication-title: Lithos
– volume: 233
  start-page: 964
  year: 1986
  end-page: 967
  article-title: Eruption of the Nevado del Ruiz Volcano, Colombia, on 13 November 1985: Gas flux and fluid Geochemistry
  publication-title: Science
– volume: 38
  start-page: 1011
  year: 2010
  end-page: 1014
  article-title: Zircon reveals protracted magma storage and recycling beneath Mount St. Helens
  publication-title: Geology
– volume: 182
  start-page: 221
  year: 2009
  end-page: 230
  article-title: The 2007 eruption of Stromboli Volcano: Insights from the real‐time measurement of the volcanic gas plume CO /SO ratio
  publication-title: J. Volcanol. Geotherm. Res.
– volume: 286
  start-page: 397
  year: 2014
  end-page: 414
  article-title: Perils in distinguishing phreatic from phreatomagmatic ash; insights into the eruption mechanisms of the 6 August 2012 Mt. Tongariro eruption, New Zealand
  publication-title: J. Volcanol. Geotherm. Res.
– volume: 72
  start-page: 397
  year: 2010
  end-page: 410
  article-title: Evolution of fluid geochemistry at the Turrialba Volcano (Costa Rica) from 1998 to 2008
  publication-title: Bull. Volcanol.
– volume: 115
  year: 2010
  article-title: Network for Observation of Volcanic and Atmospheric Change (NOVAC)—A global network for volcanic gas monitoring: Network layout and instrument description
  publication-title: J. Geophys. Res.
– volume: 22
  start-page: 567
  year: 1995
  end-page: 570
  article-title: Manner of magma ascent at Unzen Volcano (Japan)
  publication-title: Geophys. Res. Lett.
– volume: 149
  start-page: 187
  year: 2005
  end-page: 200
  article-title: Thermal structure of the Costa Rica‐Nicaragua subduction zone
  publication-title: Phys. Earth Planet. Int.
– year: 2013a
– ident: e_1_2_9_41_1
  doi: 10.5194/sed-6-2293-2014
– ident: e_1_2_9_60_1
  doi: 10.1126/science.233.4767.964
– start-page: 335
  volume-title: The 2006 Eruption of Augustine Volcano
  year: 2010
  ident: e_1_2_9_35_1
  contributor:
    fullname: Larsen J. F.
– ident: e_1_2_9_30_1
  doi: 10.1007/978-3-642-80087-0_7
– ident: e_1_2_9_24_1
  doi: 10.1016/j.epsl.2016.1002.1056
– ident: e_1_2_9_3_1
  doi: 10.1016/j.jvolgeores.2008.09.013
– volume-title: Los Volcanes de Costa Rica: Geología, Historia, Riqueza Natural y du Gente
  year: 2009
  ident: e_1_2_9_6_1
  contributor:
    fullname: Alvarado G. E.
– ident: e_1_2_9_26_1
  doi: 10.1016/j.lithos.2015.07.012
– ident: e_1_2_9_55_1
  doi: 10.1016/S0377-0273(00)00292-4
– ident: e_1_2_9_10_1
  doi: 10.1126/science.1141900
– ident: e_1_2_9_11_1
  doi: 10.1007/s00445-012-0631-z
– ident: e_1_2_9_52_1
  doi: 10.2113/gsecongeo.105.1.3
– ident: e_1_2_9_14_1
  doi: 10.1130/G20078.1
– ident: e_1_2_9_56_1
  doi: 10.1002/2015JB012160
– ident: e_1_2_9_25_1
  doi: 10.1016/S0377-0273(99)00158-4
– ident: e_1_2_9_12_1
  doi: 10.1144/SP437.12
– ident: e_1_2_9_18_1
  doi: 10.1130/G31285.1
– ident: e_1_2_9_20_1
  doi: 10.1002/2015JB012537
– ident: e_1_2_9_5_1
– ident: e_1_2_9_19_1
  doi: 10.1007/s00531-00013-00958-00535
– ident: e_1_2_9_44_1
  doi: 10.1016/j.epsl.2011.04.005
– start-page: 375
  volume-title: The Caribbean Region. The Geology of North America
  year: 1990
  ident: e_1_2_9_13_1
  contributor:
    fullname: Carr M. J.
– ident: e_1_2_9_54_1
  doi: 10.5047/eps.2013.02.004
– start-page: 111
  volume-title: The Crust, Treatise on Geochemistry
  year: 2012
  ident: e_1_2_9_45_1
  contributor:
    fullname: Oppenheimer C.
– ident: e_1_2_9_4_1
  doi: 10.1016/j.epsl.2014.09.041
– ident: e_1_2_9_50_1
  doi: 10.1038/nature12342
– ident: e_1_2_9_49_1
– ident: e_1_2_9_31_1
  doi: 10.1016/0377-0273(90)90067-P
– ident: e_1_2_9_22_1
– start-page: 431
  volume-title: Encyclopedia of Volcanoes
  year: 2000
  ident: e_1_2_9_40_1
  contributor:
    fullname: Morrissey M.
– ident: e_1_2_9_42_1
  doi: 10.1029/95GL00002
– ident: e_1_2_9_8_1
  doi: 10.1016/0377-0273(92)90046-G
– ident: e_1_2_9_2_1
  doi: 10.1130/G24149A.1
– ident: e_1_2_9_57_1
  doi: 10.1007/s00445-009-0332-4
– ident: e_1_2_9_43_1
  doi: 10.1029/96GL02061
– ident: e_1_2_9_23_1
  doi: 10.1002/ggge.20255
– ident: e_1_2_9_28_1
  doi: 10.1029/2008GC002246
– ident: e_1_2_9_51_1
  doi: 10.1016/S0012-821X(03)00401-1
– ident: e_1_2_9_7_1
  doi: 10.1515/9781501508370-007
– ident: e_1_2_9_46_1
  doi: 10.1016/j.jvolgeores.2014.05.001
– ident: e_1_2_9_53_1
  doi: 10.1130/0091-7613(2002)030<0671:ERAOBG>2.0.CO;2
– ident: e_1_2_9_38_1
  doi: 10.1007/s00445-010-0444-x
– ident: e_1_2_9_27_1
  doi: 10.1029/2009JD011823
– ident: e_1_2_9_39_1
  doi: 10.1144/GSL.SP.2003.213.01.06
– ident: e_1_2_9_9_1
  doi: 10.1016/j.jvolgeores.2007.08.008
– ident: e_1_2_9_47_1
  doi: 10.1016/j.pepi.2004.08.030
– ident: e_1_2_9_37_1
  doi: 10.1016/j.jvolgeores.2010.09.021
– ident: e_1_2_9_17_1
  doi: 10.1002/2015GC005791
– ident: e_1_2_9_36_1
  doi: 10.1093/petrology/egr027
– ident: e_1_2_9_33_1
  doi: 10.1515/9781501509674-012
– ident: e_1_2_9_29_1
  doi: 10.1016/0883-2927(87)90030-8
– ident: e_1_2_9_48_1
  doi: 10.1130/2006.2412(13)
– ident: e_1_2_9_21_1
  doi: 10.1016/j.jvolgeores.2004.11.034
– ident: e_1_2_9_16_1
  doi: 10.1016/j.jvolgeores.2010.01.008
– ident: e_1_2_9_34_1
  doi: 10.1016/S0377-0273(99)00161-4
– ident: e_1_2_9_15_1
  doi: 10.1130/G36905.36901
– ident: e_1_2_9_58_1
  doi: 10.1515/9781501508370-008
– ident: e_1_2_9_59_1
  doi: 10.1029/2010GC003412
– volume: 52
  start-page: 129
  year: 2015
  ident: e_1_2_9_32_1
  article-title: Actividad historica y analisis de la amenaza del volcan Turrialba, Costa Rica
  publication-title: Rev. Geol. Am. Central
  contributor:
    fullname: González G.
SSID ssj0000816914
Score 2.553006
Snippet Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San...
Abstract Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 5761
SubjectTerms Airports
Carbon dioxide
Chemistry and Physics of Minerals and Rocks/Volcanology
Composition
Costa Rica
Degassing
Emissions
Eruptions
explosive eruption
Explosive Volcanism
Gas composition
Gas monitoring
Gases
Geochemistry
Geological
Geophysics
High temperature
Hydrogen sulfide
hydrothermal system
Hydrothermal systems
Lava
Magma
Marine Geology and Geophysics
Mineralogy and Petrology
Monitoring
Natural Hazards
phreatic eruption
phreatomagmatic eruption
Reservoirs
Seismology
Subduction Zone Processes
Sulfur
Sulfur dioxide
Sulphur
Tectonophysics
Volatiles
Volatilization
Volcanic eruptions
Volcanic Gases
Volcano Monitoring
Volcano Seismology
Volcanoes
Volcanology
Washing
Title Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high‐frequency gas monitoring
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016JB013150
https://www.ncbi.nlm.nih.gov/pubmed/27774371
https://www.proquest.com/docview/1819937972
https://www.proquest.com/docview/3066606321
https://search.proquest.com/docview/1827906953
https://search.proquest.com/docview/1835664443
https://pubmed.ncbi.nlm.nih.gov/PMC5054823
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagEhIXypttCzISSCARNbGdhzkg0RdVDwiVBXGL7B2bVtomq6Q59MZP6G_sL2HG2Q27KqqEuEUa27HjGfub8fgLY68kogrpXBF5JeNIWa0jq72JfBYbyL2DOARzDr_mn38Ue_tEk_NhcRem54cYAm5kGWG9JgM3tt3-QxqKO1d2tEN0McFlR0ch3OCQX4YQC_1TQgd2b4EPkcZ-zVPfsYXt5fqrm9I1pHk9YXIZyIad6GD9f8dwn92bY1D-sVeaB-yWqx6yOyEXdNI-YhfjrjmrT6fcnPMxRQjN1Br-vZ7iLNT8zW6NgJIf4-S-fc_33E9E37j9cVMBd003o-WTz_rrB67llOzVNA443WPhRI589evSN30C9wXH2vwsLCsUX3zMvh3sj3cPo_kfGiKDfgb6nUYpAQVY9EUR50wAUitTb1ObpqgaGR2i2oS8Gm9BQw7Ke5dBXDiRmEyn8glbq-rKPWM8BpskpCYSId4kswaBRlFYEF5AYmEyYq8XU1TOeiKOsqdcFuXyZxyxrcX8lXNzbEuEMYTDdC7-KpbkxCFWE8mIvRzEaGd0eGIqV3fUhMh1TH2-qYxEdKyUwjJPe40Z-ipyBNoyxzfkK7o0FCCe71VJdXoS-L4RpKpCYJvvgi7dOPzy6NPxTjj73Pi34pvsLgn63MYttnbedO45u91C9yJY1W-28yIb
link.rule.ids 230,315,782,786,887,1408,27935,27936,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCNFLKa92oQUjgQRSoya28zCXqk-WUipUthW3yF7bbaVtsso2h974Cf2N_SXMOLthV0WVELdInjh2PGN_Mx5_JuQdB1TBrc0CJ3gYCC1loKVTgUtCZVJnTeiDOd0f6eHPbGcXaXI2JmdhGn6INuCGluHnazRwDEiv_2ENhaUr2d9Cvhj02R-IREi8u4Hz722QBW-VkJ7fm8FDIKFl4-R3qGJ9uoLZZekW1rydMjkNZf1atPf4v3uxSBbGMJRuNnrzhNyzxVPy0KeD9kfPyFWvri7K8wFVl7SHQUI10IqelAMYiJJ-2C4BU9IjGN-Pn-iOPQUADisgVYWhtqqHOIPSYXMCwY4o5ntVlTUUj7JQ5Ee--XXtqiaH-4rC2_TCzywYYnxOjvd2e9vdYHxJQ6DA1QDXUwnBTGY0uKMAdfrGxJrHTsc6jkE7EtxH1RE6Nk4baVIjnLOJCTPLIpXImL8gc0VZ2GVCQ6OjCDWFA8rrJ1oB1sgybZhjJtKm3yHvJ2OUDxsujrxhXWb59G_skJXJAOZjixzlgGQQismU_bWYox8HcI1FHfK2LQZTw_0TVdiyxipYKkNs810yHACyEAJklhqVadvKUsDaPIUvpDPK1Aog1fdsSXF-5im_AaeKjEGda16Z7ux-vv_5aMtvf778N_E35FG39-0gP_hy-PUVmUehJtVxhcxdVrVdJfdHpn7tTew33_8mPA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagCNQL5Z-FAkYCCaRGTWznjwMS7XYpBVVVWVBvkb1jl0rbZJVtDr3xCH1GnoQZZzfsqqgS4hbJE8eOZ-xvxuPPjL2SiCqktVnglAwDZfI8MLnTgUtCDamzEPpgzu7XdP8o6-8QTc77-VmYlh-iC7iRZfj5mgx8Am7zD2korlzJ3hbRxZDLfkMREqcjHPKgi7HQpRK5p_cW-BDk2LBZ7jtWsblYwfKqdAlqXs6YXESyfikarP1vJ-6w2zMQyj-0WnOXXbPlPXbTJ4OOpvfZ-bCpT6uTMddnfEghQj02mn-vxjgMFX-zXSGi5Ic4um_f8b49RviN6x_XJXBbNxOaP_mkPX9gp5yyveraAqeDLJzYkX_9vHB1m8F9zvFtfurnFQowPmDfBjvD7d1gdkVDoNHRQMdTKyUgA4POKAKdEUBsZOxMbOIYdSOhXVQTkVvjDOSQgnLOJhBmVkQ6yWP5kK2UVWkfMx6CiSLSE4kYb5QYjUgjywwIJyAyMOqx1_MhKiYtE0fRci6LYvE39tj6fPyKmT1OC8QxBMTyVPy1WJIXh2BNRD32sitGQ6PdE13aqqEqRJqH1OarZCTCY6UUyjxqNaZrq0gRacsUv5Au6VInQETfyyXlyQ9P-I0oVWUC69zwunRl94u9j4dbfvPzyb-Jv2C3DvqD4sun_c9P2SrJtHmO62zlrG7sM3Z9Cs1zb2C_AUhgJOs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Turmoil+at+Turrialba+Volcano+%28Costa+Rica%29%3A+Degassing+and+eruptive+processes+inferred+from+high%E2%80%90frequency+gas+monitoring&rft.jtitle=Journal+of+geophysical+research.+Solid+earth&rft.au=Moor%2C+J.+Maarten&rft.au=Aiuppa%2C+A.&rft.au=Avard%2C+G.&rft.au=Wehrmann%2C+H.&rft.date=2016-08-01&rft.issn=2169-9313&rft.eissn=2169-9356&rft.volume=121&rft.issue=8&rft.spage=5761&rft.epage=5775&rft_id=info:doi/10.1002%2F2016JB013150&rft.externalDBID=10.1002%252F2016JB013150&rft.externalDocID=JGRB51690
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9313&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9313&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9313&client=summon