Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high‐frequency gas monitoring
Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by h...
Saved in:
Published in: | Journal of geophysical research. Solid earth Vol. 121; no. 8; pp. 5761 - 5775 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Blackwell Publishing Ltd
01-08-2016
John Wiley and Sons Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high‐frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO2‐rich gas (CO2/Stotal > 4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2 weeks before eruptions, which are accompanied by shallowly derived sulfur‐rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is ~8–10 km deep, whereas the shallow magmatic gas source is at ~3–5 km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H2S/SO2 varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000 T/d SO2 and H2S/SO2 > 1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H2S/SO2 < 0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high‐temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity.
Key Points
A gas composition precursor to eruptions is identified
Changes in gas compositions are associated with transitions in eruptive processes
Magma depth and volume are constrained |
---|---|
AbstractList | Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high-frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO
-rich gas (CO
/S
> 4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2 weeks before eruptions, which are accompanied by shallowly derived sulfur-rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is ~8-10 km deep, whereas the shallow magmatic gas source is at ~3-5 km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H
S/SO
varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000 T/d SO
and H
S/SO
> 1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H
S/SO
< 0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high-temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity. Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high‐frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO 2 ‐rich gas (CO 2 /S total > 4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2 weeks before eruptions, which are accompanied by shallowly derived sulfur‐rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is ~8–10 km deep, whereas the shallow magmatic gas source is at ~3–5 km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H 2 S/SO 2 varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000 T/d SO 2 and H 2 S/SO 2 > 1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H 2 S/SO 2 < 0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high‐temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity. A gas composition precursor to eruptions is identified Changes in gas compositions are associated with transitions in eruptive processes Magma depth and volume are constrained Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high-frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO2-rich gas (CO2/Stotal>4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2weeks before eruptions, which are accompanied by shallowly derived sulfur-rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is ~8-10km deep, whereas the shallow magmatic gas source is at ~3-5km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H2S/SO2 varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000T/d SO2 and H2S/SO2>1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H2S/SO2<0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high-temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity. Key Points A gas composition precursor to eruptions is identified Changes in gas compositions are associated with transitions in eruptive processes Magma depth and volume are constrained Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San Jose. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high-frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO sub(2)-rich gas (CO sub(2)/S sub(total)>4. 5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2weeks before eruptions, which are accompanied by shallowly derived sulfur-rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is ~8-10km deep, whereas the shallow magmatic gas source is at ~3-5km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H sub(2)S/SO sub(2) varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000T/d SO sub(2) and H sub(2)S/SO sub(2)>1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H sub(2)S/SO sub(2)<0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high-temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity. Key Points * A gas composition precursor to eruptions is identified * Changes in gas compositions are associated with transitions in eruptive processes * Magma depth and volume are constrained Abstract Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high‐frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO 2 ‐rich gas (CO 2 /S total > 4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2 weeks before eruptions, which are accompanied by shallowly derived sulfur‐rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is ~8–10 km deep, whereas the shallow magmatic gas source is at ~3–5 km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H 2 S/SO 2 varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000 T/d SO 2 and H 2 S/SO 2 > 1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H 2 S/SO 2 < 0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high‐temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity. Key Points A gas composition precursor to eruptions is identified Changes in gas compositions are associated with transitions in eruptive processes Magma depth and volume are constrained Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high‐frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO2‐rich gas (CO2/Stotal > 4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2 weeks before eruptions, which are accompanied by shallowly derived sulfur‐rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is ~8–10 km deep, whereas the shallow magmatic gas source is at ~3–5 km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H2S/SO2 varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000 T/d SO2 and H2S/SO2 > 1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H2S/SO2 < 0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high‐temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity. Key Points A gas composition precursor to eruptions is identified Changes in gas compositions are associated with transitions in eruptive processes Magma depth and volume are constrained Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high‐frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO2‐rich gas (CO2/Stotal > 4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2 weeks before eruptions, which are accompanied by shallowly derived sulfur‐rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is ~8–10 km deep, whereas the shallow magmatic gas source is at ~3–5 km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H2S/SO2 varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000 T/d SO2 and H2S/SO2 > 1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H2S/SO2 < 0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high‐temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity. |
Author | Aiuppa, A. Moor, J. Maarten Muller, C. Dunbar, N. Moretti, R. Galle, B. Wehrmann, H. Avard, G. Liuzzo, M. Tamburello, G. Giudice, G. Conde, V. |
AuthorAffiliation | 3 Dipartimento DiSTeM Università di Palermo Palermo Italy 1 Observatorio Vulcanológico y Sismológico de Costa Rica Universidad Nacional Heredia Costa Rica 4 Istituto Nazionale di Geofisica e Vulcanologia Sezione di Palermo Palermo Italy 7 School of Earth Sciences University of Bristol Bristol UK 9 Department of Earth and Space Sciences Chalmers University of Technology Göteborg Sweden 6 New Mexico Bureau of Geology & Mineral Resources Earth and Environmental Science Department Socorro New Mexico USA 2 Department of Earth and Planetary Sciences University of New Mexico Albuquerque New Mexico USA 8 Dipartimento di Ingegneria Civile Design Edilizia e Ambiente Seconda Università degli Studi di Napoli Naples Italy 5 GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany |
AuthorAffiliation_xml | – name: 2 Department of Earth and Planetary Sciences University of New Mexico Albuquerque New Mexico USA – name: 6 New Mexico Bureau of Geology & Mineral Resources Earth and Environmental Science Department Socorro New Mexico USA – name: 5 GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany – name: 8 Dipartimento di Ingegneria Civile Design Edilizia e Ambiente Seconda Università degli Studi di Napoli Naples Italy – name: 4 Istituto Nazionale di Geofisica e Vulcanologia Sezione di Palermo Palermo Italy – name: 9 Department of Earth and Space Sciences Chalmers University of Technology Göteborg Sweden – name: 7 School of Earth Sciences University of Bristol Bristol UK – name: 1 Observatorio Vulcanológico y Sismológico de Costa Rica Universidad Nacional Heredia Costa Rica – name: 3 Dipartimento DiSTeM Università di Palermo Palermo Italy |
Author_xml | – sequence: 1 givenname: J. Maarten surname: Moor fullname: Moor, J. Maarten email: maartenjdemoor@gmail.com organization: Università di Palermo – sequence: 2 givenname: A. surname: Aiuppa fullname: Aiuppa, A. organization: Sezione di Palermo – sequence: 3 givenname: G. surname: Avard fullname: Avard, G. organization: Universidad Nacional – sequence: 4 givenname: H. surname: Wehrmann fullname: Wehrmann, H. organization: GEOMAR Helmholtz Centre for Ocean Research Kiel – sequence: 5 givenname: N. surname: Dunbar fullname: Dunbar, N. organization: Earth and Environmental Science Department – sequence: 6 givenname: C. surname: Muller fullname: Muller, C. organization: University of Bristol – sequence: 7 givenname: G. surname: Tamburello fullname: Tamburello, G. organization: Università di Palermo – sequence: 8 givenname: G. surname: Giudice fullname: Giudice, G. organization: Sezione di Palermo – sequence: 9 givenname: M. surname: Liuzzo fullname: Liuzzo, M. organization: Sezione di Palermo – sequence: 10 givenname: R. surname: Moretti fullname: Moretti, R. organization: Edilizia e Ambiente Seconda Università degli Studi di Napoli – sequence: 11 givenname: V. surname: Conde fullname: Conde, V. organization: Chalmers University of Technology – sequence: 12 givenname: B. surname: Galle fullname: Galle, B. organization: Chalmers University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27774371$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1rVDEUhoNU7IfduZaAmwqO5js3XQh21GopCKW6DblJ7kzKvcmY3NsyO3-Cv9FfYsrUobooZpPDyZOXc17efbATU_QAPMPoNUaIvCEIi7MThCnm6BHYI1iomaJc7GxrTHfBYSlXqJ6mtjB7AnaJlJJRiffA-nLKQwo9NCOsZQ6mbw38lnprYoJH81RGAy-CNS-P4Xu_MKWEuIAmOujztBrDtYernKwvxRcYYudz9g52OQ1wGRbLXz9-dtl_n3y0a1h_wyHFMKZcRZ6Cx53piz-8uw_A148fLuefZudfTj_P353PjOQNmgnDGHGNa5VsFJXWOd5S3rW85dxaIxqJRIsJI7XnlJOOdZ0XDjWeYCMUpwfg7UZ3NbWDd9bHMZter3IYTF7rZIL--yWGpV6ka80RZw2hVeDoTiCnukkZ9RCK9X1vok9T0biphgvG2P-gRCp0O1VFX_yDXqUpx-qEpkgIgQQl-CEKN1hVQ5QklXq1oWxOpWTfbbfDSN_mRN_PScWf33dkC_9JRQXoBrgJvV8_KKbPTi9OeM0Vor8BozfJfw |
CitedBy_id | crossref_primary_10_1016_j_jvolgeores_2023_107939 crossref_primary_10_1002_2017GC007141 crossref_primary_10_3389_feart_2023_1088768 crossref_primary_10_1029_2021GL096595 crossref_primary_10_1016_j_jvolgeores_2020_106769 crossref_primary_10_3389_feart_2017_00071 crossref_primary_10_1029_2018GL080301 crossref_primary_10_1029_2022JB024575 crossref_primary_10_1016_j_jvolgeores_2018_02_014 crossref_primary_10_1029_2021GL092879 crossref_primary_10_1016_j_earscirev_2017_03_005 crossref_primary_10_3389_feart_2018_00213 crossref_primary_10_1016_j_jvolgeores_2020_107098 crossref_primary_10_1016_j_jvolgeores_2021_107297 crossref_primary_10_5194_acp_21_3371_2021 crossref_primary_10_1016_j_epsl_2022_117948 crossref_primary_10_3389_feart_2018_00056 crossref_primary_10_1016_j_chemgeo_2018_10_001 crossref_primary_10_1016_j_jvolgeores_2016_09_003 crossref_primary_10_3389_feart_2023_1088056 crossref_primary_10_1126_sciadv_abb9103 crossref_primary_10_1007_s00445_021_01522_8 crossref_primary_10_1029_2019GC008258 crossref_primary_10_1016_j_jvolgeores_2019_01_004 crossref_primary_10_1007_s00445_018_1262_9 crossref_primary_10_1029_2021GC010288 crossref_primary_10_1038_s43247_022_00589_1 crossref_primary_10_1186_s40623_018_0855_z crossref_primary_10_1002_2017GC007227 crossref_primary_10_1007_s00445_020_1357_y crossref_primary_10_1016_j_chemgeo_2021_120627 crossref_primary_10_1002_2017GC006892 crossref_primary_10_3389_frobt_2020_549716 crossref_primary_10_3390_app12094241 crossref_primary_10_1007_s00445_017_1142_8 crossref_primary_10_1007_s00445_017_1144_6 crossref_primary_10_1126_science_aam5782 crossref_primary_10_1007_s00445_019_1331_8 crossref_primary_10_1002_2017GC006856 crossref_primary_10_1016_j_earscirev_2018_11_016 crossref_primary_10_1016_j_jvolgeores_2024_108075 crossref_primary_10_1029_2018GH000181 crossref_primary_10_1080_01431161_2017_1401250 crossref_primary_10_1002_2017JB014020 crossref_primary_10_5194_bg_16_1343_2019 crossref_primary_10_1016_j_jvolgeores_2017_03_001 crossref_primary_10_1038_s41467_020_16862_w crossref_primary_10_1029_2022GC010552 crossref_primary_10_3389_feart_2017_00015 crossref_primary_10_1016_j_jvolgeores_2021_107312 crossref_primary_10_1038_s41586_019_1643_z crossref_primary_10_1146_annurev_earth_082420_060506 crossref_primary_10_1007_s00445_022_01556_6 crossref_primary_10_1016_j_eng_2019_03_004 crossref_primary_10_1186_s40623_021_01471_8 crossref_primary_10_1038_s43247_023_01103_x crossref_primary_10_3389_feart_2017_00050 crossref_primary_10_1016_j_chemgeo_2020_119722 crossref_primary_10_1080_10256016_2020_1814277 crossref_primary_10_5194_amt_11_2441_2018 crossref_primary_10_1016_j_jvolgeores_2019_06_011 crossref_primary_10_1126_sciadv_abh0191 crossref_primary_10_1130_G46323_1 crossref_primary_10_5194_amt_15_4373_2022 crossref_primary_10_1002_2016GC006525 crossref_primary_10_1007_s00445_017_1151_7 crossref_primary_10_1016_j_epsl_2017_10_040 crossref_primary_10_1029_2019GC008573 crossref_primary_10_1029_2019GC008494 crossref_primary_10_1029_2019GC008690 crossref_primary_10_1029_2022GC010786 crossref_primary_10_1186_s40623_024_01984_y crossref_primary_10_1038_s41586_019_1131_5 crossref_primary_10_1130_GES01495_1 crossref_primary_10_3389_feart_2023_1088992 crossref_primary_10_1186_s40623_018_0919_0 crossref_primary_10_1016_j_scitotenv_2021_146274 crossref_primary_10_1016_j_jvolgeores_2021_107347 crossref_primary_10_3389_feart_2022_897267 crossref_primary_10_1029_2018JB015655 crossref_primary_10_3389_feart_2023_1197796 crossref_primary_10_1016_j_jvolgeores_2021_107181 crossref_primary_10_1038_s41467_018_05293_3 crossref_primary_10_3389_feart_2019_00154 crossref_primary_10_1007_s00445_022_01571_7 crossref_primary_10_1029_2021GC009911 crossref_primary_10_1038_s41598_019_41901_y crossref_primary_10_1029_2018GC007692 crossref_primary_10_1029_2019GC008882 crossref_primary_10_3389_feart_2018_00247 crossref_primary_10_1029_2023GC011064 crossref_primary_10_1016_j_jvolgeores_2021_107383 crossref_primary_10_1093_gji_ggae054 crossref_primary_10_1016_j_gca_2024_01_016 crossref_primary_10_1785_0120230021 crossref_primary_10_1016_j_jvolgeores_2024_108052 |
Cites_doi | 10.5194/sed-6-2293-2014 10.1126/science.233.4767.964 10.1007/978-3-642-80087-0_7 10.1016/j.epsl.2016.1002.1056 10.1016/j.jvolgeores.2008.09.013 10.1016/j.lithos.2015.07.012 10.1016/S0377-0273(00)00292-4 10.1126/science.1141900 10.1007/s00445-012-0631-z 10.2113/gsecongeo.105.1.3 10.1130/G20078.1 10.1002/2015JB012160 10.1016/S0377-0273(99)00158-4 10.1144/SP437.12 10.1130/G31285.1 10.1002/2015JB012537 10.1007/s00531-00013-00958-00535 10.1016/j.epsl.2011.04.005 10.5047/eps.2013.02.004 10.1016/j.epsl.2014.09.041 10.1038/nature12342 10.1016/0377-0273(90)90067-P 10.1029/95GL00002 10.1016/0377-0273(92)90046-G 10.1130/G24149A.1 10.1007/s00445-009-0332-4 10.1029/96GL02061 10.1002/ggge.20255 10.1029/2008GC002246 10.1016/S0012-821X(03)00401-1 10.1515/9781501508370-007 10.1016/j.jvolgeores.2014.05.001 10.1130/0091-7613(2002)030<0671:ERAOBG>2.0.CO;2 10.1007/s00445-010-0444-x 10.1029/2009JD011823 10.1144/GSL.SP.2003.213.01.06 10.1016/j.jvolgeores.2007.08.008 10.1016/j.pepi.2004.08.030 10.1016/j.jvolgeores.2010.09.021 10.1002/2015GC005791 10.1093/petrology/egr027 10.1515/9781501509674-012 10.1016/0883-2927(87)90030-8 10.1130/2006.2412(13) 10.1016/j.jvolgeores.2004.11.034 10.1016/j.jvolgeores.2010.01.008 10.1016/S0377-0273(99)00161-4 10.1130/G36905.36901 10.1515/9781501508370-008 10.1029/2010GC003412 |
ContentType | Journal Article |
Copyright | 2016. The Authors. 2016. American Geophysical Union. All Rights Reserved. 2016. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2016. The Authors. – notice: 2016. American Geophysical Union. All Rights Reserved. – notice: 2016. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN NPM AAYXX CITATION 7ST 7TG 8FD C1K F1W FR3 H8D H96 KL. KR7 L.G L7M SOI 5PM |
DOI | 10.1002/2016JB013150 |
DatabaseName | Wiley_OA刊 Wiley-Blackwell Open Access Backfiles PubMed CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Environmental Sciences and Pollution Management |
DatabaseTitleList | PubMed Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | TURMOIL AT TURRIALBA VOLCANO |
EISSN | 2169-9356 |
EndPage | 5775 |
ExternalDocumentID | 4183767621 10_1002_2016JB013150 27774371 JGRB51690 |
Genre | article Journal Article |
GeographicLocations | Costa Rica ASW, Costa Rica |
GeographicLocations_xml | – name: Costa Rica – name: ASW, Costa Rica |
GrantInformation_xml | – fundername: Deep Carbon Observatory – fundername: German Research Foundation (DFG) – fundername: Costa Rican Comision Nacional de Emergencias – fundername: European Research Council funderid: 305377 – fundername: European Research Council grantid: 305377 |
GroupedDBID | 05W 0R~ 1OC 24P 31~ 33P 50Y 52M 702 8-1 8FG A00 AAESR AAHHS AANLZ AASGY AAXRX AAZKR ABCUV ABJCF ABJNI ACAHQ ACCFJ ACCZN ACGFS ACGOD ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARAPS ASPBG AVWKF AZFZN AZQEC AZVAB BFHJK BGLVJ BMXJE BRXPI CCPQU DPXWK DRFUL DRSTM EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ L6V LATKE LEEKS LITHE LOXES LUTES LYRES M7R M7S MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- P-X P2W P62 PATMY PCBAR PQQKQ PROAC PTHSS PYCSY R.K RJQFR RNS ROL SUPJJ WBKPD WIN WXSBR WYJ ~OA NPM AAYXX CITATION 7ST 7TG 8FD AAMNL C1K F1W FR3 H8D H96 KL. KR7 L.G L7M SOI 5PM |
ID | FETCH-LOGICAL-a7580-6a442d8db978937cdd5b35fb5b55cca68706b12425fbd9d7d4ffe6d08e21a6953 |
IEDL.DBID | 33P |
ISSN | 2169-9313 |
IngestDate | Tue Sep 17 20:51:11 EDT 2024 Wed Jul 17 04:10:30 EDT 2024 Fri Aug 16 00:48:45 EDT 2024 Tue Nov 19 05:31:56 EST 2024 Tue Nov 19 05:04:27 EST 2024 Fri Aug 23 00:40:27 EDT 2024 Sat Sep 28 08:29:38 EDT 2024 Sat Aug 24 00:53:49 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | phreatic eruption phreatomagmatic eruption hydrothermal system explosive eruption volcano monitoring volcanic gases |
Language | English |
License | Attribution-NonCommercial-NoDerivs This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a7580-6a442d8db978937cdd5b35fb5b55cca68706b12425fbd9d7d4ffe6d08e21a6953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016JB013150 |
PMID | 27774371 |
PQID | 1819937972 |
PQPubID | 54731 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5054823 proquest_miscellaneous_1835664443 proquest_miscellaneous_1827906953 proquest_journals_3066606321 proquest_journals_1819937972 crossref_primary_10_1002_2016JB013150 pubmed_primary_27774371 wiley_primary_10_1002_2016JB013150_JGRB51690 |
PublicationCentury | 2000 |
PublicationDate | August 2016 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: August 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington – name: Hoboken |
PublicationTitle | Journal of geophysical research. Solid earth |
PublicationTitleAlternate | J Geophys Res Solid Earth |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons Inc |
References | 1987; 2 2013b; 14 2013; 65 2010; 105 2011; 52 2011; 12 2001; 108 2007; 35 1992; 52 2004; 32 1990; 42 2009; 10 2014; 407 1990 2000 2016; 437 2005; 146 2010; 115 2011; 73 1995; 22 2005; 149 2015; 43 2000; 97 2010; 198 2014; 286 2010; 191 2014; 6 1996; 23 2010; 72 2007; 168 2010; 38 2015; 16 2012 2002; 30 2011 2010 1986; 233 2009; 182 2015; 52 2013; 500 2015; 120 2009 2016; 442 1996 2016; 121 2006 1994 1993 2013a 2003 2003; 214 2012; 74 2007; 317 2011; 306 2015; 232 2013 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 Larsen J. F. (e_1_2_9_35_1) 2010 e_1_2_9_54_1 Morrissey M. (e_1_2_9_40_1) 2000 Oppenheimer C. (e_1_2_9_45_1) 2012 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 González G. (e_1_2_9_32_1) 2015; 52 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 Carr M. J. (e_1_2_9_13_1) 1990 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 Alvarado G. E. (e_1_2_9_6_1) 2009 e_1_2_9_29_1 |
References_xml | – year: 2011 – volume: 108 start-page: 303 year: 2001 end-page: 341 article-title: Magmatic gas scrubbing: Implications for volcano monitoring publication-title: J. Volcanol. Geotherm. Res. – year: 2009 – volume: 146 start-page: 117 year: 2005 end-page: 138 article-title: Degassing at Anatahan Volcano during the May 2003 eruption: Implications from petrology, ash leachates, and SO emissions publication-title: J. Volcanol. Geotherm. Res. – volume: 30 start-page: 671 year: 2002 end-page: 674 article-title: Experimental rapid alteration of basaltic glass: Implications for the origins of atmospheric particulates publication-title: Geology – volume: 32 start-page: 141 year: 2004 end-page: 144 article-title: Magmatic precursors to the 18 May 1980 eruption of Mount St. Helens, USA publication-title: Geology – volume: 97 start-page: 31 year: 2000 end-page: 53 article-title: Geochemistry of the magmatic‐hydrothermal system of Kawah Ijen Volcano, East Java, Indonesia publication-title: J. Volcanol. Geotherm. Res. – volume: 52 start-page: 129 year: 2015 end-page: 149 article-title: Actividad historica y analisis de la amenaza del volcan Turrialba, Costa Rica publication-title: Rev. Geol. Am. Central – volume: 23 start-page: 2057 year: 1996 end-page: 2060 article-title: On the role of hydrothermal systems in the transfer of volcanic sulfur to the atmosphere publication-title: Geophys. Res. Lett. – volume: 65 start-page: 591 year: 2013 end-page: 607 article-title: Precursory activity and evolution of the 2011 eruption of Shinmoe‐dake in Kirishima Volcano—Insights from ash samples publication-title: Earth Planets Space – volume: 168 start-page: 68 year: 2007 end-page: 92 article-title: High water contents in basaltic magmas from Irazú Volcano, Costa Rica publication-title: J. Volcanol. Geotherm. Res. – start-page: 375 year: 1990 end-page: 391 – volume: 52 start-page: 231 year: 1992 end-page: 246 article-title: A review on phreatic eruptions and their precursors publication-title: J. Volcanol. Geotherm. Res. – volume: 437 year: 2016 article-title: HCl degassing from extremely acidic crater lakes: Preliminary results from experimental determinations and implications for geochemical monitoring publication-title: Geol. Soc. Lond. Spec. Publ. – volume: 121 start-page: 114 year: 2016 end-page: 133 article-title: Tomographic image of a seismically active volcano: Mammoth Mountain, California publication-title: J. Geophys. Res. Solid Earth – volume: 407 start-page: 134 year: 2014 end-page: 147 article-title: Gas measurements from the Costa Rica‐Nicaragua volcanic segment suggest possible along‐arc variations in volcanic gas chemistry publication-title: Earth Planet. Sci. Lett. – start-page: 111 year: 2012 end-page: 179 – start-page: 221 year: 1996 end-page: 256 – volume: 73 start-page: 167 year: 2011 end-page: 213 – volume: 198 start-page: 416 year: 2010 end-page: 432 article-title: Geophysical, geochemical and geodetical signals of reawakening at Turrialba Volcano (Costa Rica) after almost 150 years of quiescence publication-title: J. Volcanol. Geotherm. Res. – volume: 74 start-page: 1757 year: 2012 end-page: 1770 article-title: Space‐ and ground‐based measurements of sulphur dioxide emissions from Turrialba Volcano (Costa Rica) publication-title: Bull. Volcanol. – volume: 43 start-page: 767 year: 2015 end-page: 770 article-title: The geological CO degassing history of a long‐lived caldera publication-title: Geology – start-page: 187 year: 1994 end-page: 230 – volume: 52 start-page: 1737 year: 2011 end-page: 1762 article-title: Experimental simulation of closed‐system degassing in the system basalt‐H O‐CO ‐S‐Cl publication-title: J. Petrol. – volume: 73 start-page: 115 year: 2011 end-page: 122 article-title: Failed magmatic eruptions: Late‐stage cessation of magma ascent publication-title: Bull. Volcanol. – volume: 442 start-page: 218 year: 2016 end-page: 227 article-title: Short‐period volcanic gas precursors to phreatic eruptions: Insights from Poás Volcano, Costa Rica publication-title: Earth Planet. Sci. Lett. – volume: 10 year: 2009 article-title: Galapagos‐OIB signature in southern Central America: Mantle refertilization by arc–hot spot interaction publication-title: Geochem. Geophys. Geosyst. – volume: 2 start-page: 143 year: 1987 end-page: 161 article-title: Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand publication-title: Appl. Geochem. – start-page: 235 year: 2006 end-page: 257 – volume: 12 year: 2011 article-title: Volcanic CO output at the Central American subduction zone inferred from melt inclusions in olivine crystals from mafic tephras publication-title: Geochem. Geophys. Geosyst. – volume: 317 start-page: 227 year: 2007 end-page: 230 article-title: Depth of slug‐driven strombolian explosive activity publication-title: Science – year: 1993 – volume: 35 start-page: 1115 year: 2007 end-page: 1118 article-title: Forecasting Etna eruptions by real‐time observation of volcanic gas composition publication-title: Geology – start-page: 81 year: 2003 end-page: 101 – volume: 105 start-page: 3 year: 2010 end-page: 41 article-title: Porphyry Copper Systems publication-title: Econ. Geol. – volume: 42 start-page: 13 year: 1990 end-page: 39 article-title: The chemistry of fumarolic vapor and thermal‐spring discharges from the Nevado del Ruiz volcanic‐magmatic‐hydrothermal system, Colombia publication-title: J. Volcanol. Geotherm. Res. – start-page: 335 year: 2010 end-page: 382 – volume: 191 start-page: 15 year: 2010 end-page: 32 article-title: Cyclic processes and factors leading to phreatic eruption events: Insights from the 25 September 2007 eruption through Ruapehu Crater Lake, New Zealand publication-title: J. Volcanol. Geotherm. Res. – volume: 97 start-page: 287 year: 2000 end-page: 307 article-title: Sulfur isotopic effects in the disproportionation reaction of sulfur dioxide in hydrothermal fluids: Implications for the delta S‐34 variations of dissolved bisulfate and elemental sulfur from active crater lakes publication-title: J. Volcanol. Geotherm. Res. – volume: 214 start-page: 499 year: 2003 end-page: 513 article-title: Contrasting He‐C relationships in Nicaragua and Costa Rica: Insights into C cycling through subduction zones publication-title: Earth Planet. Sci. Lett. – volume: 306 start-page: 261 year: 2011 end-page: 271 article-title: Mantle to surface degassing of alkalic magmas at Erebus Volcano, Antarctica publication-title: Earth Planet. Sci. Lett. – year: 2013 article-title: SO degassing from Turrialba Volcano linked to seismic signatures during the period 2008–2012 publication-title: Int. J. Earth Sci. – volume: 500 start-page: 68 year: 2013 end-page: 72 article-title: Feeding andesitic eruptions with a high‐speed connection from the mantle publication-title: Nature – start-page: 215 year: 2011 end-page: 246 – volume: 6 start-page: 2293 year: 2014 end-page: 2320 article-title: Characterisation of the magmatic signature in gas emissions from Turrialba Volcano, Costa Rica publication-title: Solid Earth – volume: 14 start-page: 4076 year: 2013b end-page: 4108 article-title: Sulfur degassing at Erta Ale (Ethiopia) and Masaya (Nicaragua): Implications for degassing processes and oxygen fugacities of basaltic systems publication-title: Geochem. Geophys. Geosyst. – volume: 16 start-page: 2797 year: 2015 end-page: 2811 article-title: Crustal‐scale degassing due to magma system destabilization and decoupling at Soufrière Hills Volcano, Monteserrat publication-title: Geochem. Geophys. Geosyst. – start-page: 431 year: 2000 end-page: 445 – volume: 120 start-page: 6071 year: 2015 end-page: 6084 article-title: Intense magmatic degassing through the lake of Copahue Volcano, 2013–2014 publication-title: J. Geophys. Res. Solid Earth – volume: 232 start-page: 319 year: 2015 end-page: 335 article-title: Geochemistry of the mantle source and magma feeding system beneath Turrialba Volcano, Costa Rica publication-title: Lithos – volume: 233 start-page: 964 year: 1986 end-page: 967 article-title: Eruption of the Nevado del Ruiz Volcano, Colombia, on 13 November 1985: Gas flux and fluid Geochemistry publication-title: Science – volume: 38 start-page: 1011 year: 2010 end-page: 1014 article-title: Zircon reveals protracted magma storage and recycling beneath Mount St. Helens publication-title: Geology – volume: 182 start-page: 221 year: 2009 end-page: 230 article-title: The 2007 eruption of Stromboli Volcano: Insights from the real‐time measurement of the volcanic gas plume CO /SO ratio publication-title: J. Volcanol. Geotherm. Res. – volume: 286 start-page: 397 year: 2014 end-page: 414 article-title: Perils in distinguishing phreatic from phreatomagmatic ash; insights into the eruption mechanisms of the 6 August 2012 Mt. Tongariro eruption, New Zealand publication-title: J. Volcanol. Geotherm. Res. – volume: 72 start-page: 397 year: 2010 end-page: 410 article-title: Evolution of fluid geochemistry at the Turrialba Volcano (Costa Rica) from 1998 to 2008 publication-title: Bull. Volcanol. – volume: 115 year: 2010 article-title: Network for Observation of Volcanic and Atmospheric Change (NOVAC)—A global network for volcanic gas monitoring: Network layout and instrument description publication-title: J. Geophys. Res. – volume: 22 start-page: 567 year: 1995 end-page: 570 article-title: Manner of magma ascent at Unzen Volcano (Japan) publication-title: Geophys. Res. Lett. – volume: 149 start-page: 187 year: 2005 end-page: 200 article-title: Thermal structure of the Costa Rica‐Nicaragua subduction zone publication-title: Phys. Earth Planet. Int. – year: 2013a – ident: e_1_2_9_41_1 doi: 10.5194/sed-6-2293-2014 – ident: e_1_2_9_60_1 doi: 10.1126/science.233.4767.964 – start-page: 335 volume-title: The 2006 Eruption of Augustine Volcano year: 2010 ident: e_1_2_9_35_1 contributor: fullname: Larsen J. F. – ident: e_1_2_9_30_1 doi: 10.1007/978-3-642-80087-0_7 – ident: e_1_2_9_24_1 doi: 10.1016/j.epsl.2016.1002.1056 – ident: e_1_2_9_3_1 doi: 10.1016/j.jvolgeores.2008.09.013 – volume-title: Los Volcanes de Costa Rica: Geología, Historia, Riqueza Natural y du Gente year: 2009 ident: e_1_2_9_6_1 contributor: fullname: Alvarado G. E. – ident: e_1_2_9_26_1 doi: 10.1016/j.lithos.2015.07.012 – ident: e_1_2_9_55_1 doi: 10.1016/S0377-0273(00)00292-4 – ident: e_1_2_9_10_1 doi: 10.1126/science.1141900 – ident: e_1_2_9_11_1 doi: 10.1007/s00445-012-0631-z – ident: e_1_2_9_52_1 doi: 10.2113/gsecongeo.105.1.3 – ident: e_1_2_9_14_1 doi: 10.1130/G20078.1 – ident: e_1_2_9_56_1 doi: 10.1002/2015JB012160 – ident: e_1_2_9_25_1 doi: 10.1016/S0377-0273(99)00158-4 – ident: e_1_2_9_12_1 doi: 10.1144/SP437.12 – ident: e_1_2_9_18_1 doi: 10.1130/G31285.1 – ident: e_1_2_9_20_1 doi: 10.1002/2015JB012537 – ident: e_1_2_9_5_1 – ident: e_1_2_9_19_1 doi: 10.1007/s00531-00013-00958-00535 – ident: e_1_2_9_44_1 doi: 10.1016/j.epsl.2011.04.005 – start-page: 375 volume-title: The Caribbean Region. The Geology of North America year: 1990 ident: e_1_2_9_13_1 contributor: fullname: Carr M. J. – ident: e_1_2_9_54_1 doi: 10.5047/eps.2013.02.004 – start-page: 111 volume-title: The Crust, Treatise on Geochemistry year: 2012 ident: e_1_2_9_45_1 contributor: fullname: Oppenheimer C. – ident: e_1_2_9_4_1 doi: 10.1016/j.epsl.2014.09.041 – ident: e_1_2_9_50_1 doi: 10.1038/nature12342 – ident: e_1_2_9_49_1 – ident: e_1_2_9_31_1 doi: 10.1016/0377-0273(90)90067-P – ident: e_1_2_9_22_1 – start-page: 431 volume-title: Encyclopedia of Volcanoes year: 2000 ident: e_1_2_9_40_1 contributor: fullname: Morrissey M. – ident: e_1_2_9_42_1 doi: 10.1029/95GL00002 – ident: e_1_2_9_8_1 doi: 10.1016/0377-0273(92)90046-G – ident: e_1_2_9_2_1 doi: 10.1130/G24149A.1 – ident: e_1_2_9_57_1 doi: 10.1007/s00445-009-0332-4 – ident: e_1_2_9_43_1 doi: 10.1029/96GL02061 – ident: e_1_2_9_23_1 doi: 10.1002/ggge.20255 – ident: e_1_2_9_28_1 doi: 10.1029/2008GC002246 – ident: e_1_2_9_51_1 doi: 10.1016/S0012-821X(03)00401-1 – ident: e_1_2_9_7_1 doi: 10.1515/9781501508370-007 – ident: e_1_2_9_46_1 doi: 10.1016/j.jvolgeores.2014.05.001 – ident: e_1_2_9_53_1 doi: 10.1130/0091-7613(2002)030<0671:ERAOBG>2.0.CO;2 – ident: e_1_2_9_38_1 doi: 10.1007/s00445-010-0444-x – ident: e_1_2_9_27_1 doi: 10.1029/2009JD011823 – ident: e_1_2_9_39_1 doi: 10.1144/GSL.SP.2003.213.01.06 – ident: e_1_2_9_9_1 doi: 10.1016/j.jvolgeores.2007.08.008 – ident: e_1_2_9_47_1 doi: 10.1016/j.pepi.2004.08.030 – ident: e_1_2_9_37_1 doi: 10.1016/j.jvolgeores.2010.09.021 – ident: e_1_2_9_17_1 doi: 10.1002/2015GC005791 – ident: e_1_2_9_36_1 doi: 10.1093/petrology/egr027 – ident: e_1_2_9_33_1 doi: 10.1515/9781501509674-012 – ident: e_1_2_9_29_1 doi: 10.1016/0883-2927(87)90030-8 – ident: e_1_2_9_48_1 doi: 10.1130/2006.2412(13) – ident: e_1_2_9_21_1 doi: 10.1016/j.jvolgeores.2004.11.034 – ident: e_1_2_9_16_1 doi: 10.1016/j.jvolgeores.2010.01.008 – ident: e_1_2_9_34_1 doi: 10.1016/S0377-0273(99)00161-4 – ident: e_1_2_9_15_1 doi: 10.1130/G36905.36901 – ident: e_1_2_9_58_1 doi: 10.1515/9781501508370-008 – ident: e_1_2_9_59_1 doi: 10.1029/2010GC003412 – volume: 52 start-page: 129 year: 2015 ident: e_1_2_9_32_1 article-title: Actividad historica y analisis de la amenaza del volcan Turrialba, Costa Rica publication-title: Rev. Geol. Am. Central contributor: fullname: González G. |
SSID | ssj0000816914 |
Score | 2.553006 |
Snippet | Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San... Abstract Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 5761 |
SubjectTerms | Airports Carbon dioxide Chemistry and Physics of Minerals and Rocks/Volcanology Composition Costa Rica Degassing Emissions Eruptions explosive eruption Explosive Volcanism Gas composition Gas monitoring Gases Geochemistry Geological Geophysics High temperature Hydrogen sulfide hydrothermal system Hydrothermal systems Lava Magma Marine Geology and Geophysics Mineralogy and Petrology Monitoring Natural Hazards phreatic eruption phreatomagmatic eruption Reservoirs Seismology Subduction Zone Processes Sulfur Sulfur dioxide Sulphur Tectonophysics Volatiles Volatilization Volcanic eruptions Volcanic Gases Volcano Monitoring Volcano Seismology Volcanoes Volcanology Washing |
Title | Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high‐frequency gas monitoring |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016JB013150 https://www.ncbi.nlm.nih.gov/pubmed/27774371 https://www.proquest.com/docview/1819937972 https://www.proquest.com/docview/3066606321 https://search.proquest.com/docview/1827906953 https://search.proquest.com/docview/1835664443 https://pubmed.ncbi.nlm.nih.gov/PMC5054823 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagEhIXypttCzISSCARNbGdhzkg0RdVDwiVBXGL7B2bVtomq6Q59MZP6G_sL2HG2Q27KqqEuEUa27HjGfub8fgLY68kogrpXBF5JeNIWa0jq72JfBYbyL2DOARzDr_mn38Ue_tEk_NhcRem54cYAm5kGWG9JgM3tt3-QxqKO1d2tEN0McFlR0ch3OCQX4YQC_1TQgd2b4EPkcZ-zVPfsYXt5fqrm9I1pHk9YXIZyIad6GD9f8dwn92bY1D-sVeaB-yWqx6yOyEXdNI-YhfjrjmrT6fcnPMxRQjN1Br-vZ7iLNT8zW6NgJIf4-S-fc_33E9E37j9cVMBd003o-WTz_rrB67llOzVNA443WPhRI589evSN30C9wXH2vwsLCsUX3zMvh3sj3cPo_kfGiKDfgb6nUYpAQVY9EUR50wAUitTb1ObpqgaGR2i2oS8Gm9BQw7Ke5dBXDiRmEyn8glbq-rKPWM8BpskpCYSId4kswaBRlFYEF5AYmEyYq8XU1TOeiKOsqdcFuXyZxyxrcX8lXNzbEuEMYTDdC7-KpbkxCFWE8mIvRzEaGd0eGIqV3fUhMh1TH2-qYxEdKyUwjJPe40Z-ipyBNoyxzfkK7o0FCCe71VJdXoS-L4RpKpCYJvvgi7dOPzy6NPxTjj73Pi34pvsLgn63MYttnbedO45u91C9yJY1W-28yIb |
link.rule.ids | 230,315,782,786,887,1408,27935,27936,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCNFLKa92oQUjgQRSoya28zCXqk-WUipUthW3yF7bbaVtsso2h974Cf2N_SXMOLthV0WVELdInjh2PGN_Mx5_JuQdB1TBrc0CJ3gYCC1loKVTgUtCZVJnTeiDOd0f6eHPbGcXaXI2JmdhGn6INuCGluHnazRwDEiv_2ENhaUr2d9Cvhj02R-IREi8u4Hz722QBW-VkJ7fm8FDIKFl4-R3qGJ9uoLZZekW1rydMjkNZf1atPf4v3uxSBbGMJRuNnrzhNyzxVPy0KeD9kfPyFWvri7K8wFVl7SHQUI10IqelAMYiJJ-2C4BU9IjGN-Pn-iOPQUADisgVYWhtqqHOIPSYXMCwY4o5ntVlTUUj7JQ5Ee--XXtqiaH-4rC2_TCzywYYnxOjvd2e9vdYHxJQ6DA1QDXUwnBTGY0uKMAdfrGxJrHTsc6jkE7EtxH1RE6Nk4baVIjnLOJCTPLIpXImL8gc0VZ2GVCQ6OjCDWFA8rrJ1oB1sgybZhjJtKm3yHvJ2OUDxsujrxhXWb59G_skJXJAOZjixzlgGQQismU_bWYox8HcI1FHfK2LQZTw_0TVdiyxipYKkNs810yHACyEAJklhqVadvKUsDaPIUvpDPK1Aog1fdsSXF-5im_AaeKjEGda16Z7ux-vv_5aMtvf778N_E35FG39-0gP_hy-PUVmUehJtVxhcxdVrVdJfdHpn7tTew33_8mPA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagCNQL5Z-FAkYCCaRGTWznjwMS7XYpBVVVWVBvkb1jl0rbZJVtDr3xCH1GnoQZZzfsqqgS4hbJE8eOZ-xvxuPPjL2SiCqktVnglAwDZfI8MLnTgUtCDamzEPpgzu7XdP8o6-8QTc77-VmYlh-iC7iRZfj5mgx8Am7zD2korlzJ3hbRxZDLfkMREqcjHPKgi7HQpRK5p_cW-BDk2LBZ7jtWsblYwfKqdAlqXs6YXESyfikarP1vJ-6w2zMQyj-0WnOXXbPlPXbTJ4OOpvfZ-bCpT6uTMddnfEghQj02mn-vxjgMFX-zXSGi5Ic4um_f8b49RviN6x_XJXBbNxOaP_mkPX9gp5yyveraAqeDLJzYkX_9vHB1m8F9zvFtfurnFQowPmDfBjvD7d1gdkVDoNHRQMdTKyUgA4POKAKdEUBsZOxMbOIYdSOhXVQTkVvjDOSQgnLOJhBmVkQ6yWP5kK2UVWkfMx6CiSLSE4kYb5QYjUgjywwIJyAyMOqx1_MhKiYtE0fRci6LYvE39tj6fPyKmT1OC8QxBMTyVPy1WJIXh2BNRD32sitGQ6PdE13aqqEqRJqH1OarZCTCY6UUyjxqNaZrq0gRacsUv5Au6VInQETfyyXlyQ9P-I0oVWUC69zwunRl94u9j4dbfvPzyb-Jv2C3DvqD4sun_c9P2SrJtHmO62zlrG7sM3Z9Cs1zb2C_AUhgJOs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Turmoil+at+Turrialba+Volcano+%28Costa+Rica%29%3A+Degassing+and+eruptive+processes+inferred+from+high%E2%80%90frequency+gas+monitoring&rft.jtitle=Journal+of+geophysical+research.+Solid+earth&rft.au=Moor%2C+J.+Maarten&rft.au=Aiuppa%2C+A.&rft.au=Avard%2C+G.&rft.au=Wehrmann%2C+H.&rft.date=2016-08-01&rft.issn=2169-9313&rft.eissn=2169-9356&rft.volume=121&rft.issue=8&rft.spage=5761&rft.epage=5775&rft_id=info:doi/10.1002%2F2016JB013150&rft.externalDBID=10.1002%252F2016JB013150&rft.externalDocID=JGRB51690 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9313&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9313&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9313&client=summon |