The categorical theory of relations and quantizations

In this paper we develope a categorical theory of relations and use this formulation to define the notion of quantization for relations. Categories of relations are defined in the context of symmetric monoidal categories. They are shown to be symmetric monoidal categories in their own right and are...

Full description

Saved in:
Bibliographic Details
Main Authors: Jakobsen, Per K, Lychagin, Valentin
Format: Journal Article
Language:English
Published: 29-10-2001
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper we develope a categorical theory of relations and use this formulation to define the notion of quantization for relations. Categories of relations are defined in the context of symmetric monoidal categories. They are shown to be symmetric monoidal categories in their own right and are found to be isomorphic to certain categories of $A-A$ bicomodules. Properties of relations are defined in terms of the symmetric monoidal structure. Equivalence relations are shown to be commutative monoids in the category of relations. Quantization in our view is a property of functors between monoidal categories. This notion of quantization induce a deformation of all algebraic structures in the category, in particular the ones defining properties of relations like transitivity and symmetry.
AbstractList In this paper we develope a categorical theory of relations and use this formulation to define the notion of quantization for relations. Categories of relations are defined in the context of symmetric monoidal categories. They are shown to be symmetric monoidal categories in their own right and are found to be isomorphic to certain categories of $A-A$ bicomodules. Properties of relations are defined in terms of the symmetric monoidal structure. Equivalence relations are shown to be commutative monoids in the category of relations. Quantization in our view is a property of functors between monoidal categories. This notion of quantization induce a deformation of all algebraic structures in the category, in particular the ones defining properties of relations like transitivity and symmetry.
Author Lychagin, Valentin
Jakobsen, Per K
Author_xml – sequence: 1
  givenname: Per K
  surname: Jakobsen
  fullname: Jakobsen, Per K
– sequence: 2
  givenname: Valentin
  surname: Lychagin
  fullname: Lychagin, Valentin
BackLink https://doi.org/10.48550/arXiv.math/0110311$$DView paper in arXiv
BookMark eNotj79uwjAYxD3QoaU8AYv7AAF_sR07Y4WgICGxZI--OE5jKdjUuBXw9OWfbjjphrv7vZGRD94SMgU2E1pKNsd4cn-zPaZ-zgAYB3glsuotNZjsd4jO4EBTb0M809DRaAdMLvgjRd_Sn1_0yV0eyTt56XA42snTx6RaLavFOtvuvjaLz22GCiArmIDSmOuSRlW2eQGSm1wpI4Br07SyK8qrpBC2KUWRo84RlFYgFNcNa_iYfDxq78_rQ3R7jOf6RlA_Cfg_oEpC1Q
ContentType Journal Article
DBID AKZ
GOX
DOI 10.48550/arxiv.math/0110311
DatabaseName arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID math_0110311
GroupedDBID AKZ
GOX
ID FETCH-LOGICAL-a711-60419cc1038a79d26153c277c4138cbd5f69696544eb9462a82a178714738b0b3
IEDL.DBID GOX
IngestDate Mon Jan 08 05:40:19 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a711-60419cc1038a79d26153c277c4138cbd5f69696544eb9462a82a178714738b0b3
OpenAccessLink https://arxiv.org/abs/math/0110311
ParticipantIDs arxiv_primary_math_0110311
PublicationCentury 2000
PublicationDate 2001-10-29
PublicationDateYYYYMMDD 2001-10-29
PublicationDate_xml – month: 10
  year: 2001
  text: 2001-10-29
  day: 29
PublicationDecade 2000
PublicationYear 2001
Score 1.3192577
SecondaryResourceType preprint
Snippet In this paper we develope a categorical theory of relations and use this formulation to define the notion of quantization for relations. Categories of...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Mathematics - Category Theory
Mathematics - Quantum Algebra
Title The categorical theory of relations and quantizations
URI https://arxiv.org/abs/math/0110311
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ07T8MwEMdPtBMLAgGC8pCFWC1ix_FjRNDSCQY6dItsxwYWHilF5dtzdhKpE2scy_L5dX_57meAa1splNRWUYnigwonInWRR5ru7DizVgqX8p3nz-pxqe-nCZNzNeTC2Hbz9tPxgd3qBp221_RUKc48VDgjzlPQ1sPTssMHZRhXX2P7T_Qz88etg2K2D3u9h0duuyE5gJ3wfggVDgdJwUcvHZOD5ATCX_IRSTuEoxEU9eRrjV0dciOPYDGbLu7mtH-xgFrFGJWFYMb7xBy3yjQ8OVOeK-XxpNDeNVWUCUZTCRGcEZJbzS3DFcOEKrUrXHkMYxT94QRImUh4ktmoeRC2CCZ6o1XEZlDxhOhPYZL7WH92UIo6GaDuDTD5r_AMdnMcFe6_3JzD-LtdhwsYrZr1ZbbtHzj9eNg
link.rule.ids 228,230,782,887
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+categorical+theory+of+relations+and+quantizations&rft.au=Jakobsen%2C+Per+K&rft.au=Lychagin%2C+Valentin&rft.date=2001-10-29&rft_id=info:doi/10.48550%2Farxiv.math%2F0110311&rft.externalDocID=math_0110311