Parkinson's Disease: The Mitochondria-Iron Link

Mitochondrial dysfunction, iron accumulation, and oxidative damage are conditions often found in damaged brain areas of Parkinson’s disease. We propose that a causal link exists between these three events. Mitochondrial dysfunction results not only in increased reactive oxygen species production but...

Full description

Saved in:
Bibliographic Details
Published in:Parkinson's disease Vol. 2016; no. 2016; pp. 463 - 483
Main Authors: Muñoz, Yorka, Carrasco, Carlos M., Campos, Joaquín D., Aguirre, Pabla, Núñez, Marco T.
Format: Journal Article
Language:English
Published: Cairo, Egypt Hindawi Limiteds 01-01-2016
Hindawi Publishing Corporation
John Wiley & Sons, Inc
Hindawi Limited
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mitochondrial dysfunction, iron accumulation, and oxidative damage are conditions often found in damaged brain areas of Parkinson’s disease. We propose that a causal link exists between these three events. Mitochondrial dysfunction results not only in increased reactive oxygen species production but also in decreased iron-sulfur cluster synthesis and unorthodox activation of Iron Regulatory Protein 1 (IRP1), a key regulator of cell iron homeostasis. In turn, IRP1 activation results in iron accumulation and hydroxyl radical-mediated damage. These three occurrences—mitochondrial dysfunction, iron accumulation, and oxidative damage—generate a positive feedback loop of increased iron accumulation and oxidative stress. Here, we review the evidence that points to a link between mitochondrial dysfunction and iron accumulation as early events in the development of sporadic and genetic cases of Parkinson’s disease. Finally, an attempt is done to contextualize the possible relationship between mitochondria dysfunction and iron dyshomeostasis. Based on published evidence, we propose that iron chelation—by decreasing iron-associated oxidative damage and by inducing cell survival and cell-rescue pathways—is a viable therapy for retarding this cycle.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ObjectType-Article-1
ObjectType-Feature-2
Academic Editor: Rubén Gómez-Sánchez
ISSN:2042-0080
2090-8083
2042-0080
DOI:10.1155/2016/7049108