A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules
The predictive power of the ab initio Bethe-Salpeter equation (BSE) approach, rigorously based on many-body Green's function theory but incorporating information from density functional theory, has already been demonstrated for the optical gaps and spectra of solid-state systems. Interest in ph...
Saved in:
Main Authors: | , , |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
18-05-2015
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The predictive power of the ab initio Bethe-Salpeter equation (BSE) approach,
rigorously based on many-body Green's function theory but incorporating
information from density functional theory, has already been demonstrated for
the optical gaps and spectra of solid-state systems. Interest in photoactive
hybrid organic/inorganic systems has recently increased, and so has the use of
the BSE for computing neutral excitations of organic molecules. However, no
systematic benchmarks of the BSE for neutral electronic excitations of organic
molecules exist. Here, we study the performance of the BSE for the 28 small
molecules in Thiel's widely-used time-dependent density functional theory
benchmark set [M. Schreiber et al. J. Chem. Phys. 128, 134110 (2008)]. We
observe that the BSE produces results that depend critically on the mean-field
starting point employed in the perturbative approach. We find that this
starting point dependence is mainly introduced through the quasiparticle
energies obtained at the intermediate GW step, and that with a judicious choice
of starting mean-field, singlet excitation energies obtained from BSE are in
excellent quantitative agreement with higher-level wavefunction methods. The
quality of the triplet excitations is slightly less satisfactory. |
---|---|
DOI: | 10.48550/arxiv.1505.04759 |