Image Conditioned Keyframe-Based Video Summarization Using Object Detection

Video summarization plays an important role in selecting keyframe for understanding a video. Traditionally, it aims to find the most representative and diverse contents (or frames) in a video for short summaries. Recently, query-conditioned video summarization has been introduced, which considers us...

Full description

Saved in:
Bibliographic Details
Main Authors: Baghel, Neeraj, Raikwar, Suresh C, Bhatnagar, Charul
Format: Journal Article
Language:English
Published: 11-09-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Video summarization plays an important role in selecting keyframe for understanding a video. Traditionally, it aims to find the most representative and diverse contents (or frames) in a video for short summaries. Recently, query-conditioned video summarization has been introduced, which considers user queries to learn more user-oriented summaries and its preference. However, there are obstacles in text queries for user subjectivity and finding similarity between the user query and input frames. In this work, (i) Image is introduced as a query for user preference (ii) a mathematical model is proposed to minimize redundancy based on the loss function & summary variance and (iii) the similarity score between the query image and input video to obtain the summarized video. Furthermore, the Object-based Query Image (OQI) dataset has been introduced, which contains the query images. The proposed method has been validated using UT Egocentric (UTE) dataset. The proposed model successfully resolved the issues of (i) user preference, (ii) recognize important frames and selecting that keyframe in daily life videos, with different illumination conditions. The proposed method achieved 57.06% average F1-Score for UTE dataset and outperforms the existing state-of-theart by 11.01%. The process time is 7.81 times faster than actual time of video Experiments on a recently proposed UTE dataset show the efficiency of the proposed method
DOI:10.48550/arxiv.2009.05269