Integrability propagation for a Boltzmann system describing polyatomic gas mixtures

This paper explores the $L^{p}$ Lebesgue's integrability propagation, $p\in(1,\infty]$, of a system of space homogeneous Boltzmann equations modelling a multi-component mixture of polyatomic gases based on the continuous internal energy. For typical collision kernels proposed in the literature,...

Full description

Saved in:
Bibliographic Details
Main Authors: Alonso, Ricardo, Pavić-Čolić, Milana
Format: Journal Article
Language:English
Published: 11-05-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper explores the $L^{p}$ Lebesgue's integrability propagation, $p\in(1,\infty]$, of a system of space homogeneous Boltzmann equations modelling a multi-component mixture of polyatomic gases based on the continuous internal energy. For typical collision kernels proposed in the literature, $L^p$ moment-entropy-based estimates for the collision operator gain part and a lower bound for the loss part are performed leading to a vector valued inequality for the collision operator and, consequently, to a differential inequality for the vector valued solutions of the system. This allows to prove the propagation property of the polynomially weighted $L^p$ norms associated to the vector valued solution of the system of Boltzmann equations. The case $p=\infty$ is found as a limit of the case $p<\infty$.
AbstractList This paper explores the $L^{p}$ Lebesgue's integrability propagation, $p\in(1,\infty]$, of a system of space homogeneous Boltzmann equations modelling a multi-component mixture of polyatomic gases based on the continuous internal energy. For typical collision kernels proposed in the literature, $L^p$ moment-entropy-based estimates for the collision operator gain part and a lower bound for the loss part are performed leading to a vector valued inequality for the collision operator and, consequently, to a differential inequality for the vector valued solutions of the system. This allows to prove the propagation property of the polynomially weighted $L^p$ norms associated to the vector valued solution of the system of Boltzmann equations. The case $p=\infty$ is found as a limit of the case $p<\infty$.
Author Pavić-Čolić, Milana
Alonso, Ricardo
Author_xml – sequence: 1
  givenname: Ricardo
  surname: Alonso
  fullname: Alonso, Ricardo
– sequence: 2
  givenname: Milana
  surname: Pavić-Čolić
  fullname: Pavić-Čolić, Milana
BackLink https://doi.org/10.48550/arXiv.2305.06749$$DView paper in arXiv
BookMark eNotz7tOwzAYQGEPMJTCAzDVL5DgS2zHI1RcKlVioHv0O7EjS4kd2QY1PD2iMJ3tSN8NugoxWITuKambVgjyAOnsv2rGiaiJVI3eoI9DKHZMYPzky4qXFBcYofgYsIsJA36KU_meIQSc11zsjAeb--SNDyNe4rRCibPv8QgZz_5cPpPNt-jawZTt3X-36PTyfNq_Vcf318P-8ViBVLpioHTjjG0FU8SxhhrJScsNbSkbdC8Uk1wBMY4PFEgjlRSO9ZqxQVKlKfAt2v1tL6puSX6GtHa_uu6i4z-4e0yz
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKZ
GOX
DOI 10.48550/arxiv.2305.06749
DatabaseName arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2305_06749
GroupedDBID AKZ
GOX
ID FETCH-LOGICAL-a679-2a794fbe85270f241b63083b1812d9c572637a0bf3d1a046765f2c922d61791a3
IEDL.DBID GOX
IngestDate Mon Jan 08 05:45:17 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a679-2a794fbe85270f241b63083b1812d9c572637a0bf3d1a046765f2c922d61791a3
OpenAccessLink https://arxiv.org/abs/2305.06749
ParticipantIDs arxiv_primary_2305_06749
PublicationCentury 2000
PublicationDate 2023-05-11
PublicationDateYYYYMMDD 2023-05-11
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-11
  day: 11
PublicationDecade 2020
PublicationYear 2023
Score 1.8828758
SecondaryResourceType preprint
Snippet This paper explores the $L^{p}$ Lebesgue's integrability propagation, $p\in(1,\infty]$, of a system of space homogeneous Boltzmann equations modelling a...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Mathematics - Mathematical Physics
Physics - Mathematical Physics
Title Integrability propagation for a Boltzmann system describing polyatomic gas mixtures
URI https://arxiv.org/abs/2305.06749
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwED2RTiwIBKh8ygNrIHHi2Bn5aIEFhnboVp1jp6rUJlXTVi2_nrNTBAur7enZvvfOH-8A7pSJU6kFKTdheJhiJEIdF2WYWkEEq5XhyhexHciPkXrpOZsc9vMXBpfb6ab1B9bNA-ljcU_xNM0DCDh3T7ZeP0ft5aS34tqP_x1HGtM3_SGJ_jEc7dUde2yn4wQObHUKg_fWksE_Q90xClm0iT0gjBQjQ_ZUz1Zfc6wq1voqM2PdZqacdcIW9WxHefF8WrAJNmw-3boj_-YMhv3e8Pkt3NcyCDGTeciR1n2prRJcRiWxps4SEj_a8avJCyF5lkiMdJmYGClllZkoeZFzbjLnH4rJOXSqurJdYElpiVGKggtlUsydXxyqCGOSEprwlhfQ9QiMF61dxdiBM_bgXP7fdQWHrpC6uxeP42vorJZrewNBY9a3HvNvhZR_8A
link.rule.ids 228,230,782,887
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrability+propagation+for+a+Boltzmann+system+describing+polyatomic+gas+mixtures&rft.au=Alonso%2C+Ricardo&rft.au=Pavi%C4%87-%C4%8Coli%C4%87%2C+Milana&rft.date=2023-05-11&rft_id=info:doi/10.48550%2Farxiv.2305.06749&rft.externalDocID=2305_06749