Integrability propagation for a Boltzmann system describing polyatomic gas mixtures
This paper explores the $L^{p}$ Lebesgue's integrability propagation, $p\in(1,\infty]$, of a system of space homogeneous Boltzmann equations modelling a multi-component mixture of polyatomic gases based on the continuous internal energy. For typical collision kernels proposed in the literature,...
Saved in:
Main Authors: | , |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
11-05-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This paper explores the $L^{p}$ Lebesgue's integrability propagation,
$p\in(1,\infty]$, of a system of space homogeneous Boltzmann equations
modelling a multi-component mixture of polyatomic gases based on the continuous
internal energy. For typical collision kernels proposed in the literature,
$L^p$ moment-entropy-based estimates for the collision operator gain part and a
lower bound for the loss part are performed leading to a vector valued
inequality for the collision operator and, consequently, to a differential
inequality for the vector valued solutions of the system. This allows to prove
the propagation property of the polynomially weighted $L^p$ norms associated to
the vector valued solution of the system of Boltzmann equations. The case
$p=\infty$ is found as a limit of the case $p<\infty$. |
---|---|
AbstractList | This paper explores the $L^{p}$ Lebesgue's integrability propagation,
$p\in(1,\infty]$, of a system of space homogeneous Boltzmann equations
modelling a multi-component mixture of polyatomic gases based on the continuous
internal energy. For typical collision kernels proposed in the literature,
$L^p$ moment-entropy-based estimates for the collision operator gain part and a
lower bound for the loss part are performed leading to a vector valued
inequality for the collision operator and, consequently, to a differential
inequality for the vector valued solutions of the system. This allows to prove
the propagation property of the polynomially weighted $L^p$ norms associated to
the vector valued solution of the system of Boltzmann equations. The case
$p=\infty$ is found as a limit of the case $p<\infty$. |
Author | Pavić-Čolić, Milana Alonso, Ricardo |
Author_xml | – sequence: 1 givenname: Ricardo surname: Alonso fullname: Alonso, Ricardo – sequence: 2 givenname: Milana surname: Pavić-Čolić fullname: Pavić-Čolić, Milana |
BackLink | https://doi.org/10.48550/arXiv.2305.06749$$DView paper in arXiv |
BookMark | eNotz7tOwzAYQGEPMJTCAzDVL5DgS2zHI1RcKlVioHv0O7EjS4kd2QY1PD2iMJ3tSN8NugoxWITuKambVgjyAOnsv2rGiaiJVI3eoI9DKHZMYPzky4qXFBcYofgYsIsJA36KU_meIQSc11zsjAeb--SNDyNe4rRCibPv8QgZz_5cPpPNt-jawZTt3X-36PTyfNq_Vcf318P-8ViBVLpioHTjjG0FU8SxhhrJScsNbSkbdC8Uk1wBMY4PFEgjlRSO9ZqxQVKlKfAt2v1tL6puSX6GtHa_uu6i4z-4e0yz |
ContentType | Journal Article |
Copyright | http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | AKZ GOX |
DOI | 10.48550/arxiv.2305.06749 |
DatabaseName | arXiv Mathematics arXiv.org |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | 2305_06749 |
GroupedDBID | AKZ GOX |
ID | FETCH-LOGICAL-a679-2a794fbe85270f241b63083b1812d9c572637a0bf3d1a046765f2c922d61791a3 |
IEDL.DBID | GOX |
IngestDate | Mon Jan 08 05:45:17 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a679-2a794fbe85270f241b63083b1812d9c572637a0bf3d1a046765f2c922d61791a3 |
OpenAccessLink | https://arxiv.org/abs/2305.06749 |
ParticipantIDs | arxiv_primary_2305_06749 |
PublicationCentury | 2000 |
PublicationDate | 2023-05-11 |
PublicationDateYYYYMMDD | 2023-05-11 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-11 day: 11 |
PublicationDecade | 2020 |
PublicationYear | 2023 |
Score | 1.8828758 |
SecondaryResourceType | preprint |
Snippet | This paper explores the $L^{p}$ Lebesgue's integrability propagation,
$p\in(1,\infty]$, of a system of space homogeneous Boltzmann equations
modelling a... |
SourceID | arxiv |
SourceType | Open Access Repository |
SubjectTerms | Mathematics - Mathematical Physics Physics - Mathematical Physics |
Title | Integrability propagation for a Boltzmann system describing polyatomic gas mixtures |
URI | https://arxiv.org/abs/2305.06749 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwED2RTiwIBKh8ygNrIHHi2Bn5aIEFhnboVp1jp6rUJlXTVi2_nrNTBAur7enZvvfOH-8A7pSJU6kFKTdheJhiJEIdF2WYWkEEq5XhyhexHciPkXrpOZsc9vMXBpfb6ab1B9bNA-ljcU_xNM0DCDh3T7ZeP0ft5aS34tqP_x1HGtM3_SGJ_jEc7dUde2yn4wQObHUKg_fWksE_Q90xClm0iT0gjBQjQ_ZUz1Zfc6wq1voqM2PdZqacdcIW9WxHefF8WrAJNmw-3boj_-YMhv3e8Pkt3NcyCDGTeciR1n2prRJcRiWxps4SEj_a8avJCyF5lkiMdJmYGClllZkoeZFzbjLnH4rJOXSqurJdYElpiVGKggtlUsydXxyqCGOSEprwlhfQ9QiMF61dxdiBM_bgXP7fdQWHrpC6uxeP42vorJZrewNBY9a3HvNvhZR_8A |
link.rule.ids | 228,230,782,887 |
linkProvider | Cornell University |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrability+propagation+for+a+Boltzmann+system+describing+polyatomic+gas+mixtures&rft.au=Alonso%2C+Ricardo&rft.au=Pavi%C4%87-%C4%8Coli%C4%87%2C+Milana&rft.date=2023-05-11&rft_id=info:doi/10.48550%2Farxiv.2305.06749&rft.externalDocID=2305_06749 |