HLOB -- Information Persistence and Structure in Limit Order Books

We introduce a novel large-scale deep learning model for Limit Order Book mid-price changes forecasting, and we name it `HLOB'. This architecture (i) exploits the information encoded by an Information Filtering Network, namely the Triangulated Maximally Filtered Graph, to unveil deeper and non-...

Full description

Saved in:
Bibliographic Details
Main Authors: Briola, Antonio, Bartolucci, Silvia, Aste, Tomaso
Format: Journal Article
Language:English
Published: 29-05-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We introduce a novel large-scale deep learning model for Limit Order Book mid-price changes forecasting, and we name it `HLOB'. This architecture (i) exploits the information encoded by an Information Filtering Network, namely the Triangulated Maximally Filtered Graph, to unveil deeper and non-trivial dependency structures among volume levels; and (ii) guarantees deterministic design choices to handle the complexity of the underlying system by drawing inspiration from the groundbreaking class of Homological Convolutional Neural Networks. We test our model against 9 state-of-the-art deep learning alternatives on 3 real-world Limit Order Book datasets, each including 15 stocks traded on the NASDAQ exchange, and we systematically characterize the scenarios where HLOB outperforms state-of-the-art architectures. Our approach sheds new light on the spatial distribution of information in Limit Order Books and on its degradation over increasing prediction horizons, narrowing the gap between microstructural modeling and deep learning-based forecasting in high-frequency financial markets.
AbstractList We introduce a novel large-scale deep learning model for Limit Order Book mid-price changes forecasting, and we name it `HLOB'. This architecture (i) exploits the information encoded by an Information Filtering Network, namely the Triangulated Maximally Filtered Graph, to unveil deeper and non-trivial dependency structures among volume levels; and (ii) guarantees deterministic design choices to handle the complexity of the underlying system by drawing inspiration from the groundbreaking class of Homological Convolutional Neural Networks. We test our model against 9 state-of-the-art deep learning alternatives on 3 real-world Limit Order Book datasets, each including 15 stocks traded on the NASDAQ exchange, and we systematically characterize the scenarios where HLOB outperforms state-of-the-art architectures. Our approach sheds new light on the spatial distribution of information in Limit Order Books and on its degradation over increasing prediction horizons, narrowing the gap between microstructural modeling and deep learning-based forecasting in high-frequency financial markets.
Author Aste, Tomaso
Bartolucci, Silvia
Briola, Antonio
Author_xml – sequence: 1
  givenname: Antonio
  surname: Briola
  fullname: Briola, Antonio
– sequence: 2
  givenname: Silvia
  surname: Bartolucci
  fullname: Bartolucci, Silvia
– sequence: 3
  givenname: Tomaso
  surname: Aste
  fullname: Aste, Tomaso
BackLink https://doi.org/10.48550/arXiv.2405.18938$$DView paper in arXiv
BookMark eNotz81KxDAYheEsdKGjF-DK3EBq_r42WdpBnYFCBWdf0vYLBG0iaUb07tXR1dm8HHguyVlMEQm5EbzSBoDfufwZPiqpOVTCWGUuSLvr-pYyRvfRp7y4ElKkz5jXsBaME1IXZ_pS8nEqx4w0RNqFJRTa5xkzbVN6Xa_IuXdvK17_74YcHh8O2x3r-qf99r5jrm4MM5orAQCjlR6sHk09cy2w8ZMAlF5JY2UzcqsmrxF8_VMAokAxcmjAabUht3-3J8TwnsPi8tfwixlOGPUNOjREaA
ContentType Journal Article
Copyright http://creativecommons.org/licenses/by-nc-nd/4.0
Copyright_xml – notice: http://creativecommons.org/licenses/by-nc-nd/4.0
DBID AKY
GOX
DOI 10.48550/arxiv.2405.18938
DatabaseName arXiv Computer Science
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2405_18938
GroupedDBID AKY
GOX
ID FETCH-LOGICAL-a678-84031555b92f594b86d041e7fc15e2f328927b093cf4e5f64b85ee1e1b0575a43
IEDL.DBID GOX
IngestDate Tue Jun 18 04:50:31 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a678-84031555b92f594b86d041e7fc15e2f328927b093cf4e5f64b85ee1e1b0575a43
OpenAccessLink https://arxiv.org/abs/2405.18938
ParticipantIDs arxiv_primary_2405_18938
PublicationCentury 2000
PublicationDate 2024-05-29
PublicationDateYYYYMMDD 2024-05-29
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-29
  day: 29
PublicationDecade 2020
PublicationYear 2024
Score 1.9236189
SecondaryResourceType preprint
Snippet We introduce a novel large-scale deep learning model for Limit Order Book mid-price changes forecasting, and we name it `HLOB'. This architecture (i) exploits...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Learning
Quantitative Finance - Trading and Microstructure
Title HLOB -- Information Persistence and Structure in Limit Order Books
URI https://arxiv.org/abs/2405.18938
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09TwMxDLVoJxYEAlSgoAysgXw2dyOFlg6IG9qh2ym5c6QuFWpVxM_HyR2ChTXx4hcpz47tF4D76MMktspxJxC5CbbkwWnLJV2MQWBRYMxPF0v3vi5eZkkmh_3Mwvjd1-az0wcO-0eiG_sgiVKLAQyUSi1br9W6K05mKa7e_teOYsy89Ick5qdw0kd37Kk7jjM4wu05TBdv1ZRxzvrRnwQFS53nCWHCnFEyz5ZZx_WwQ7bZsjx1xKqkisnSMML-Albz2ep5wfuvC7gnJzllTZqI2oZSRVuaUExaYSS62EiLKmrKcpQLotRNNGjjhCwsokQZUvjkjb6EIWX_OAJmg2gpiNO6Fd546QvXoGmijE4q0Vh5BaPscP3RqVPUCYs6Y3H9_9YNHCti51QGV-UYhuQj3sJg3x7uMsTfWEZ4dg
link.rule.ids 228,230,782,887
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HLOB+--+Information+Persistence+and+Structure+in+Limit+Order+Books&rft.au=Briola%2C+Antonio&rft.au=Bartolucci%2C+Silvia&rft.au=Aste%2C+Tomaso&rft.date=2024-05-29&rft_id=info:doi/10.48550%2Farxiv.2405.18938&rft.externalDocID=2405_18938