Learning Semantic Vector Representations of Source Code via a Siamese Neural Network

The abundance of open-source code, coupled with the success of recent advances in deep learning for natural language processing, has given rise to a promising new application of machine learning to source code. In this work, we explore the use of a Siamese recurrent neural network model on Python so...

Full description

Saved in:
Bibliographic Details
Main Authors: Wehr, David, Fede, Halley, Pence, Eleanor, Zhang, Bo, Ferreira, Guilherme, Walczyk, John, Hughes, Joseph
Format: Journal Article
Language:English
Published: 26-04-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The abundance of open-source code, coupled with the success of recent advances in deep learning for natural language processing, has given rise to a promising new application of machine learning to source code. In this work, we explore the use of a Siamese recurrent neural network model on Python source code to create vectors which capture the semantics of code. We evaluate the quality of embeddings by identifying which problem from a programming competition the code solves. Our model significantly outperforms a bag-of-tokens embedding, providing promising results for improving code embeddings that can be used in future software engineering tasks.
AbstractList The abundance of open-source code, coupled with the success of recent advances in deep learning for natural language processing, has given rise to a promising new application of machine learning to source code. In this work, we explore the use of a Siamese recurrent neural network model on Python source code to create vectors which capture the semantics of code. We evaluate the quality of embeddings by identifying which problem from a programming competition the code solves. Our model significantly outperforms a bag-of-tokens embedding, providing promising results for improving code embeddings that can be used in future software engineering tasks.
Author Pence, Eleanor
Walczyk, John
Ferreira, Guilherme
Wehr, David
Zhang, Bo
Fede, Halley
Hughes, Joseph
Author_xml – sequence: 1
  givenname: David
  surname: Wehr
  fullname: Wehr, David
– sequence: 2
  givenname: Halley
  surname: Fede
  fullname: Fede, Halley
– sequence: 3
  givenname: Eleanor
  surname: Pence
  fullname: Pence, Eleanor
– sequence: 4
  givenname: Bo
  surname: Zhang
  fullname: Zhang, Bo
– sequence: 5
  givenname: Guilherme
  surname: Ferreira
  fullname: Ferreira, Guilherme
– sequence: 6
  givenname: John
  surname: Walczyk
  fullname: Walczyk, John
– sequence: 7
  givenname: Joseph
  surname: Hughes
  fullname: Hughes, Joseph
BackLink https://doi.org/10.48550/arXiv.1904.11968$$DView paper in arXiv
BookMark eNotj81KxDAURrPQhY4-gCvzAq1J07TJUop_UBRscVtukxsJTpMh7Yz69tbR1YGPjwPnnJyEGJCQK87yUknJbiB9-UPONStzznWlzkjfIqTgwzvtcIKweEPf0Cwx0VfcJZwxLLD4GGYaHe3iPhmkTbRIDx4o0M7DtJ7oM-4TbFcsnzF9XJBTB9sZL_-5If39Xd88Zu3Lw1Nz22ZQ1SorBY7MqsI6p4QFo6CSGkpgutB8tKIea-60WCeF0pbOKmDCFEJLY7kEFBty_ac9Zg275CdI38Nv3nDMEz95mE06
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKY
EPD
GOX
DOI 10.48550/arxiv.1904.11968
DatabaseName arXiv Computer Science
arXiv Statistics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 1904_11968
GroupedDBID AKY
EPD
GOX
ID FETCH-LOGICAL-a678-43eb0d82dff83dac8a659a4a09291bd37b71f939a48e5d4fd8a03c2395cd15ae3
IEDL.DBID GOX
IngestDate Mon Jan 08 05:43:02 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a678-43eb0d82dff83dac8a659a4a09291bd37b71f939a48e5d4fd8a03c2395cd15ae3
OpenAccessLink https://arxiv.org/abs/1904.11968
ParticipantIDs arxiv_primary_1904_11968
PublicationCentury 2000
PublicationDate 2019-04-26
PublicationDateYYYYMMDD 2019-04-26
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-26
  day: 26
PublicationDecade 2010
PublicationYear 2019
Score 1.7328358
SecondaryResourceType preprint
Snippet The abundance of open-source code, coupled with the success of recent advances in deep learning for natural language processing, has given rise to a promising...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Learning
Computer Science - Programming Languages
Computer Science - Software Engineering
Statistics - Machine Learning
Title Learning Semantic Vector Representations of Source Code via a Siamese Neural Network
URI https://arxiv.org/abs/1904.11968
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1NT8MwDI3YTlwQCND4lA9cK9KkbdIjGhs7DYlOaLfJqV3UAx3a2MTPJ02L4MLVsSzFUWTHfn4R4o6MlMzGRNSCw5IydpEtYx0x-diAJBUGyvxZYeZL-zhpaXLgZxYGN1_1vuMHdtt7H60Sf6nzzA7EQKkWsvX0vOyak4GKq9f_1fM5ZhD9CRLTY3HUZ3fw0B3HiTjg5lQseg7TNyj43W-kLuE11MrhJcBQ--mfZgvrCopQTIfxmhj2NQJCUbdAVoaWRsPbnne47TOxmE4W41nUf2YQoY8HUaLZSbKKqspqwtJiluaYoPTpSexIG2fiKtdeZDmlpCKLUpdK52lJcYqsz8WwWTc8EiB15Z9-mSRvJiGbW3RMDrVjJY1zfCFGwQWrj46vYtV6ZxW8c_n_0pU49LlAaJSo7FoMPzc7vhGDLe1ug9O_AYBSgfo
link.rule.ids 228,230,782,887
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Semantic+Vector+Representations+of+Source+Code+via+a+Siamese+Neural+Network&rft.au=Wehr%2C+David&rft.au=Fede%2C+Halley&rft.au=Pence%2C+Eleanor&rft.au=Zhang%2C+Bo&rft.date=2019-04-26&rft_id=info:doi/10.48550%2Farxiv.1904.11968&rft.externalDocID=1904_11968