Exploring Level Blending across Platformers via Paths and Affordances

Techniques for procedural content generation via machine learning (PCGML) have been shown to be useful for generating novel game content. While used primarily for producing new content in the style of the game domain used for training, recent works have increasingly started to explore methods for di...

Full description

Saved in:
Bibliographic Details
Main Authors: Sarkar, Anurag, Summerville, Adam, Snodgrass, Sam, Bentley, Gerard, Osborn, Joseph
Format: Journal Article
Language:English
Published: 22-08-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Techniques for procedural content generation via machine learning (PCGML) have been shown to be useful for generating novel game content. While used primarily for producing new content in the style of the game domain used for training, recent works have increasingly started to explore methods for discovering and generating content in novel domains via techniques such as level blending and domain transfer. In this paper, we build on these works and introduce a new PCGML approach for producing novel game content spanning multiple domains. We use a new affordance and path vocabulary to encode data from six different platformer games and train variational autoencoders on this data, enabling us to capture the latent level space spanning all the domains and generate new content with varying proportions of the different domains.
AbstractList Techniques for procedural content generation via machine learning (PCGML) have been shown to be useful for generating novel game content. While used primarily for producing new content in the style of the game domain used for training, recent works have increasingly started to explore methods for discovering and generating content in novel domains via techniques such as level blending and domain transfer. In this paper, we build on these works and introduce a new PCGML approach for producing novel game content spanning multiple domains. We use a new affordance and path vocabulary to encode data from six different platformer games and train variational autoencoders on this data, enabling us to capture the latent level space spanning all the domains and generate new content with varying proportions of the different domains.
Author Bentley, Gerard
Snodgrass, Sam
Sarkar, Anurag
Osborn, Joseph
Summerville, Adam
Author_xml – sequence: 1
  givenname: Anurag
  surname: Sarkar
  fullname: Sarkar, Anurag
– sequence: 2
  givenname: Adam
  surname: Summerville
  fullname: Summerville, Adam
– sequence: 3
  givenname: Sam
  surname: Snodgrass
  fullname: Snodgrass, Sam
– sequence: 4
  givenname: Gerard
  surname: Bentley
  fullname: Bentley, Gerard
– sequence: 5
  givenname: Joseph
  surname: Osborn
  fullname: Osborn, Joseph
BackLink https://doi.org/10.48550/arXiv.2009.06356$$DView paper in arXiv
BookMark eNotj71OwzAURj3AUAoP0Am_QIIT5zr2WKrwI0WiQ_foYl9DJNep7Coqb09bmD59ZzjSuWM3cYrE2KoSZaMBxBOm0ziXtRCmFEqCWrCuOx3ClMb4xXuaKfDnQNFdLto05cy3AY9-SntKmc8j8i0evzPH6Pjan7nDaCnfs1uPIdPD_y7Z7qXbbd6K_uP1fbPuC1StKhyYz8porBRosA1VTgplLTrlajDCtwpV3RCCqEEa78_UYeu0cKgVEMole_zTXjuGQxr3mH6GS89w7ZG_TUFHfg
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKY
EPD
GOX
DOI 10.48550/arxiv.2009.06356
DatabaseName arXiv Computer Science
arXiv Statistics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2009_06356
GroupedDBID AKY
EPD
GOX
ID FETCH-LOGICAL-a676-d59b198a16585c4e1d306ccad6d2590f76a624ea502539ffd25da7d80da865ea3
IEDL.DBID GOX
IngestDate Mon Jan 08 05:50:08 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a676-d59b198a16585c4e1d306ccad6d2590f76a624ea502539ffd25da7d80da865ea3
OpenAccessLink https://arxiv.org/abs/2009.06356
ParticipantIDs arxiv_primary_2009_06356
PublicationCentury 2000
PublicationDate 2020-08-22
PublicationDateYYYYMMDD 2020-08-22
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-22
  day: 22
PublicationDecade 2020
PublicationYear 2020
Score 1.7804714
SecondaryResourceType preprint
Snippet Techniques for procedural content generation via machine learning (PCGML) have been shown to be useful for generating novel game content. While used primarily...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Artificial Intelligence
Computer Science - Learning
Statistics - Machine Learning
Title Exploring Level Blending across Platformers via Paths and Affordances
URI https://arxiv.org/abs/2009.06356
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwED2RTiwIBKh8ygNrhPNhJx4LtHRAUIkO3apLzpEqoYCatuLnc5eEj4XVtiz5rPN7Tz4_A9wkDONFauKwTLwIFM50Zq0YWiKjKUKXankoPH3Nnhf5w1hsctT3Wxhcf652nT9w0dx2dpJioRZAEMdSsvX4suguJ1srrn787zjmmG3TH5CYHMJBz-7UqNuOI9jz9TGMf-rc1JOU6Kg7PukFMhS2GKVmb7gR7shMTO1WqGbMyhrFEl-NKqk9l41pTmA-Gc_vp2H_e0GINrMhGVewoMeIId6UqY-IyTmHiyyx4tBVZtHGqUfDpCNxVcWthBnlmjC3xmNyCoP6vfZDUIwxPisKBpsqS8vCOXIRaZnPeF3l9gyG7ZqXH51BhXwt6ZZtOM7_77qA_Vi0o-ZMiS9hsFlv_RUEDW2v2yh_ARdjemo
link.rule.ids 228,230,782,887
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+Level+Blending+across+Platformers+via+Paths+and+Affordances&rft.au=Sarkar%2C+Anurag&rft.au=Summerville%2C+Adam&rft.au=Snodgrass%2C+Sam&rft.au=Bentley%2C+Gerard&rft.date=2020-08-22&rft_id=info:doi/10.48550%2Farxiv.2009.06356&rft.externalDocID=2009_06356