Exploring Level Blending across Platformers via Paths and Affordances
Techniques for procedural content generation via machine learning (PCGML) have been shown to be useful for generating novel game content. While used primarily for producing new content in the style of the game domain used for training, recent works have increasingly started to explore methods for di...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
22-08-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Techniques for procedural content generation via machine learning (PCGML)
have been shown to be useful for generating novel game content. While used
primarily for producing new content in the style of the game domain used for
training, recent works have increasingly started to explore methods for
discovering and generating content in novel domains via techniques such as
level blending and domain transfer. In this paper, we build on these works and
introduce a new PCGML approach for producing novel game content spanning
multiple domains. We use a new affordance and path vocabulary to encode data
from six different platformer games and train variational autoencoders on this
data, enabling us to capture the latent level space spanning all the domains
and generate new content with varying proportions of the different domains. |
---|---|
AbstractList | Techniques for procedural content generation via machine learning (PCGML)
have been shown to be useful for generating novel game content. While used
primarily for producing new content in the style of the game domain used for
training, recent works have increasingly started to explore methods for
discovering and generating content in novel domains via techniques such as
level blending and domain transfer. In this paper, we build on these works and
introduce a new PCGML approach for producing novel game content spanning
multiple domains. We use a new affordance and path vocabulary to encode data
from six different platformer games and train variational autoencoders on this
data, enabling us to capture the latent level space spanning all the domains
and generate new content with varying proportions of the different domains. |
Author | Bentley, Gerard Snodgrass, Sam Sarkar, Anurag Osborn, Joseph Summerville, Adam |
Author_xml | – sequence: 1 givenname: Anurag surname: Sarkar fullname: Sarkar, Anurag – sequence: 2 givenname: Adam surname: Summerville fullname: Summerville, Adam – sequence: 3 givenname: Sam surname: Snodgrass fullname: Snodgrass, Sam – sequence: 4 givenname: Gerard surname: Bentley fullname: Bentley, Gerard – sequence: 5 givenname: Joseph surname: Osborn fullname: Osborn, Joseph |
BackLink | https://doi.org/10.48550/arXiv.2009.06356$$DView paper in arXiv |
BookMark | eNotj71OwzAURj3AUAoP0Am_QIIT5zr2WKrwI0WiQ_foYl9DJNep7Coqb09bmD59ZzjSuWM3cYrE2KoSZaMBxBOm0ziXtRCmFEqCWrCuOx3ClMb4xXuaKfDnQNFdLto05cy3AY9-SntKmc8j8i0evzPH6Pjan7nDaCnfs1uPIdPD_y7Z7qXbbd6K_uP1fbPuC1StKhyYz8porBRosA1VTgplLTrlajDCtwpV3RCCqEEa78_UYeu0cKgVEMole_zTXjuGQxr3mH6GS89w7ZG_TUFHfg |
ContentType | Journal Article |
Copyright | http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | AKY EPD GOX |
DOI | 10.48550/arxiv.2009.06356 |
DatabaseName | arXiv Computer Science arXiv Statistics arXiv.org |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | 2009_06356 |
GroupedDBID | AKY EPD GOX |
ID | FETCH-LOGICAL-a676-d59b198a16585c4e1d306ccad6d2590f76a624ea502539ffd25da7d80da865ea3 |
IEDL.DBID | GOX |
IngestDate | Mon Jan 08 05:50:08 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a676-d59b198a16585c4e1d306ccad6d2590f76a624ea502539ffd25da7d80da865ea3 |
OpenAccessLink | https://arxiv.org/abs/2009.06356 |
ParticipantIDs | arxiv_primary_2009_06356 |
PublicationCentury | 2000 |
PublicationDate | 2020-08-22 |
PublicationDateYYYYMMDD | 2020-08-22 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-22 day: 22 |
PublicationDecade | 2020 |
PublicationYear | 2020 |
Score | 1.7804714 |
SecondaryResourceType | preprint |
Snippet | Techniques for procedural content generation via machine learning (PCGML)
have been shown to be useful for generating novel game content. While used
primarily... |
SourceID | arxiv |
SourceType | Open Access Repository |
SubjectTerms | Computer Science - Artificial Intelligence Computer Science - Learning Statistics - Machine Learning |
Title | Exploring Level Blending across Platformers via Paths and Affordances |
URI | https://arxiv.org/abs/2009.06356 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwED2RTiwIBKh8ygNrhPNhJx4LtHRAUIkO3apLzpEqoYCatuLnc5eEj4XVtiz5rPN7Tz4_A9wkDONFauKwTLwIFM50Zq0YWiKjKUKXankoPH3Nnhf5w1hsctT3Wxhcf652nT9w0dx2dpJioRZAEMdSsvX4suguJ1srrn787zjmmG3TH5CYHMJBz-7UqNuOI9jz9TGMf-rc1JOU6Kg7PukFMhS2GKVmb7gR7shMTO1WqGbMyhrFEl-NKqk9l41pTmA-Gc_vp2H_e0GINrMhGVewoMeIId6UqY-IyTmHiyyx4tBVZtHGqUfDpCNxVcWthBnlmjC3xmNyCoP6vfZDUIwxPisKBpsqS8vCOXIRaZnPeF3l9gyG7ZqXH51BhXwt6ZZtOM7_77qA_Vi0o-ZMiS9hsFlv_RUEDW2v2yh_ARdjemo |
link.rule.ids | 228,230,782,887 |
linkProvider | Cornell University |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+Level+Blending+across+Platformers+via+Paths+and+Affordances&rft.au=Sarkar%2C+Anurag&rft.au=Summerville%2C+Adam&rft.au=Snodgrass%2C+Sam&rft.au=Bentley%2C+Gerard&rft.date=2020-08-22&rft_id=info:doi/10.48550%2Farxiv.2009.06356&rft.externalDocID=2009_06356 |