Plasma treatments and photonic nanostructures for shallow nitrogen vacancy centers in diamond

We investigate the influence of plasma treatments, especially a 0V-bias, potentially low damage O$_2$ plasma as well as a biased Ar/SF$_6$/O$_2$ plasma on shallow, negative nitrogen vacancy (NV$^-$) centers. We ignite and sustain using our 0V-bias plasma using purely inductive coupling. To this end,...

Full description

Saved in:
Bibliographic Details
Main Authors: Radtke, Mariusz, Render, Lara, Nelz, Richard, Neu, Elke
Format: Journal Article
Language:English
Published: 30-09-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the influence of plasma treatments, especially a 0V-bias, potentially low damage O$_2$ plasma as well as a biased Ar/SF$_6$/O$_2$ plasma on shallow, negative nitrogen vacancy (NV$^-$) centers. We ignite and sustain using our 0V-bias plasma using purely inductive coupling. To this end, we pre-treat surfaces of high purity chemical vapor deposited single-crystal diamond (SCD). Subsequently, we create $\sim$10 nm deep NV$^-$ centers via implantation and annealing. Onto the annealed SCD surface, we fabricate nanopillar structures that efficiently waveguide the photoluminescence (PL) of shallow NV$^-$. Characterizing single NV$^-$ inside these nanopillars, we find that the Ar/SF$_6$/O$_2$ plasma treatment quenches NV$^-$ PL even considering that the annealing and cleaning steps following ion implantation remove any surface termination. In contrast, for our 0V-bias as well as biased O$_2$ plasma, we observe stable NV$^-$ PL and low background fluorescence from the photonic nanostructures.
DOI:10.48550/arxiv.1909.13496