KrADagrad: Kronecker Approximation-Domination Gradient Preconditioned Stochastic Optimization

Second order stochastic optimizers allow parameter update step size and direction to adapt to loss curvature, but have traditionally required too much memory and compute for deep learning. Recently, Shampoo [Gupta et al., 2018] introduced a Kronecker factored preconditioner to reduce these requireme...

Full description

Saved in:
Bibliographic Details
Main Authors: Mei, Jonathan, Moreno, Alexander, Walters, Luke
Format: Journal Article
Language:English
Published: 30-05-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Second order stochastic optimizers allow parameter update step size and direction to adapt to loss curvature, but have traditionally required too much memory and compute for deep learning. Recently, Shampoo [Gupta et al., 2018] introduced a Kronecker factored preconditioner to reduce these requirements: it is used for large deep models [Anil et al., 2020] and in production [Anil et al., 2022]. However, it takes inverse matrix roots of ill-conditioned matrices. This requires 64-bit precision, imposing strong hardware constraints. In this paper, we propose a novel factorization, Kronecker Approximation-Domination (KrAD). Using KrAD, we update a matrix that directly approximates the inverse empirical Fisher matrix (like full matrix AdaGrad), avoiding inversion and hence 64-bit precision. We then propose KrADagrad$^\star$, with similar computational costs to Shampoo and the same regret. Synthetic ill-conditioned experiments show improved performance over Shampoo for 32-bit precision, while for several real datasets we have comparable or better generalization.
AbstractList Second order stochastic optimizers allow parameter update step size and direction to adapt to loss curvature, but have traditionally required too much memory and compute for deep learning. Recently, Shampoo [Gupta et al., 2018] introduced a Kronecker factored preconditioner to reduce these requirements: it is used for large deep models [Anil et al., 2020] and in production [Anil et al., 2022]. However, it takes inverse matrix roots of ill-conditioned matrices. This requires 64-bit precision, imposing strong hardware constraints. In this paper, we propose a novel factorization, Kronecker Approximation-Domination (KrAD). Using KrAD, we update a matrix that directly approximates the inverse empirical Fisher matrix (like full matrix AdaGrad), avoiding inversion and hence 64-bit precision. We then propose KrADagrad$^\star$, with similar computational costs to Shampoo and the same regret. Synthetic ill-conditioned experiments show improved performance over Shampoo for 32-bit precision, while for several real datasets we have comparable or better generalization.
Author Mei, Jonathan
Moreno, Alexander
Walters, Luke
Author_xml – sequence: 1
  givenname: Jonathan
  surname: Mei
  fullname: Mei, Jonathan
– sequence: 2
  givenname: Alexander
  surname: Moreno
  fullname: Moreno, Alexander
– sequence: 3
  givenname: Luke
  surname: Walters
  fullname: Walters, Luke
BackLink https://doi.org/10.48550/arXiv.2305.19416$$DView paper in arXiv
BookMark eNotj0FOwzAQRb2ABRQOwApfIMGuM3HCLmqhRa1UJLpF0WTsgAWxIzdChdOTBlbzNXr6-u-SnfngLWM3UqRZASDuMB7dVzpXAlJZZjK_YK-bWC3xLaK555s44vRhI6_6Poaj63BwwSfL0Dk_Rb4aQWf9wJ-jpeCNO32t4S9DoHc8DI74rh9c534m_oqdt_h5sNf_d8b2jw_7xTrZ7lZPi2qbYK7zpNBYEEpBJFrTGALUqoRGK23aOWnAQpAFgEwqGjOgLEtswAic57mwpGbs9q928qv7OC6P3_XJs5481S9veVGs
ContentType Journal Article
Copyright http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: http://creativecommons.org/licenses/by/4.0
DBID AKY
EPD
GOX
DOI 10.48550/arxiv.2305.19416
DatabaseName arXiv Computer Science
arXiv Statistics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2305_19416
GroupedDBID AKY
EPD
GOX
ID FETCH-LOGICAL-a676-87a8ca10cc0fdbdc5a7395b737df2c75a80ce555413ca805a199ab5d0a2660ec3
IEDL.DBID GOX
IngestDate Mon Jan 08 05:39:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a676-87a8ca10cc0fdbdc5a7395b737df2c75a80ce555413ca805a199ab5d0a2660ec3
OpenAccessLink https://arxiv.org/abs/2305.19416
ParticipantIDs arxiv_primary_2305_19416
PublicationCentury 2000
PublicationDate 2023-05-30
PublicationDateYYYYMMDD 2023-05-30
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-30
  day: 30
PublicationDecade 2020
PublicationYear 2023
Score 1.8844892
SecondaryResourceType preprint
Snippet Second order stochastic optimizers allow parameter update step size and direction to adapt to loss curvature, but have traditionally required too much memory...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Learning
Statistics - Machine Learning
Title KrADagrad: Kronecker Approximation-Domination Gradient Preconditioned Stochastic Optimization
URI https://arxiv.org/abs/2305.19416
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LSwMxEB5sT15EUalPcvAazW42u6m3xb6gYIX20Issk8dqD7ay3Up_vkl2RS_ehmQg8IVkZpiZbwDuFJo4QSWpxkjRBLmlMi4zqkvhnAMjVD-M85nMs-elHAw9TQ756YXBar_6aviB1fbB-cfi3oXZUdqBThz7kq3xbNkkJwMVV6v_q-d8zLD0x0iMjuGo9e5I3lzHCRzY9Sm8Tqt8gG8VmkcyrTZr6ysZSO7JvPerpnOQDja-JMWLZFyFKqyavIRg1TRkQobM641-R0-rTGbunX-0DZRnsBgNF08T2k41oJhmqft9UDpcmNasNMpogT5VpjKemTLWmUDJtBXOyEdcO1lg1O-jEoahM6XMan4O3bU7tgckcUGk4FonqVKJZVJZyZVlvJQmLpNUXEAvYFF8NsQVhYepCDBd_r91BYd-pHrIkLNr6NbVzt5AZ2t2twH9b4hRhe4
link.rule.ids 228,230,782,887
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KrADagrad%3A+Kronecker+Approximation-Domination+Gradient+Preconditioned+Stochastic+Optimization&rft.au=Mei%2C+Jonathan&rft.au=Moreno%2C+Alexander&rft.au=Walters%2C+Luke&rft.date=2023-05-30&rft_id=info:doi/10.48550%2Farxiv.2305.19416&rft.externalDocID=2305_19416