Optimal control of diffusion processes: $\infty$-order variational analysis and numerical solution
IEEE Control Systems Letters, vol. 8, pp. 1469-1474, 2024 We tackle a nonlinear optimal control problem for a stochastic differential equation in Euclidean space and its state-linear counterpart for the Fokker-Planck-Kolmogorov equation in the space of probabilities. Our approach is founded on a nov...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
04-03-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | IEEE Control Systems Letters, vol. 8, pp. 1469-1474, 2024 We tackle a nonlinear optimal control problem for a stochastic differential
equation in Euclidean space and its state-linear counterpart for the
Fokker-Planck-Kolmogorov equation in the space of probabilities. Our approach
is founded on a novel concept of local optimality surpassing Pontryagin's
minimum, originally crafted for deterministic optimal ensemble control
problems. A key practical outcome is a rapidly converging numerical algorithm,
which proves its feasibility for problems involving Markovian and open-loop
strategies. |
---|---|
AbstractList | IEEE Control Systems Letters, vol. 8, pp. 1469-1474, 2024 We tackle a nonlinear optimal control problem for a stochastic differential
equation in Euclidean space and its state-linear counterpart for the
Fokker-Planck-Kolmogorov equation in the space of probabilities. Our approach
is founded on a novel concept of local optimality surpassing Pontryagin's
minimum, originally crafted for deterministic optimal ensemble control
problems. A key practical outcome is a rapidly converging numerical algorithm,
which proves its feasibility for problems involving Markovian and open-loop
strategies. |
Author | Pogodaev, Nikolay Chertovskih, Roman Aguiar, A. Pedro Staritsyn, Maxim |
Author_xml | – sequence: 1 givenname: Roman surname: Chertovskih fullname: Chertovskih, Roman – sequence: 2 givenname: Nikolay surname: Pogodaev fullname: Pogodaev, Nikolay – sequence: 3 givenname: Maxim surname: Staritsyn fullname: Staritsyn, Maxim – sequence: 4 givenname: A. Pedro surname: Aguiar fullname: Aguiar, A. Pedro |
BackLink | https://doi.org/10.48550/arXiv.2403.01945$$DView paper in arXiv https://doi.org/10.1109/LCSYS.2024.3410632$$DView published paper (Access to full text may be restricted) |
BookMark | eNotj7FOwzAQhj3AAIUHYMJD1wSntpOYDVVAkSp16YgUnR2fZCm1IzupyNvjFpb_fp2-O-m7Jzc-eEvIU8VK0UrJXiD-uHO5EYyXrFJC3hF9GCd3goGa4KcYBhqQ9g5xTi54OsZgbEo2vdL1t_M4LesixN5GeoboYMpMPoUcS3Ipl576-WSjM3mdwjBfiAdyizAk-_g_V-T48X7c7or94fNr-7YvoG5kgVo2VSOw0bYBVWu1qVBb2VrLDSJqsEoyBXVljGBYS65abqBvlO0BWiH4ijz_vb1KdmPMWnHpLrLdVZb_AncRVCg |
ContentType | Journal Article |
Copyright | http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | AKZ GOX |
DOI | 10.48550/arxiv.2403.01945 |
DatabaseName | arXiv Mathematics arXiv.org |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | 2403_01945 |
GroupedDBID | AKZ GOX |
ID | FETCH-LOGICAL-a675-fb57174f7be7a96b921fbe58ee3cfffbae9509a61cc40f653983cad79edaa8443 |
IEDL.DBID | GOX |
IngestDate | Tue Sep 24 12:24:42 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a675-fb57174f7be7a96b921fbe58ee3cfffbae9509a61cc40f653983cad79edaa8443 |
OpenAccessLink | https://arxiv.org/abs/2403.01945 |
ParticipantIDs | arxiv_primary_2403_01945 |
PublicationCentury | 2000 |
PublicationDate | 2024-03-04 |
PublicationDateYYYYMMDD | 2024-03-04 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-04 day: 04 |
PublicationDecade | 2020 |
PublicationYear | 2024 |
Score | 1.9142755 |
SecondaryResourceType | preprint |
Snippet | IEEE Control Systems Letters, vol. 8, pp. 1469-1474, 2024 We tackle a nonlinear optimal control problem for a stochastic differential
equation in Euclidean... |
SourceID | arxiv |
SourceType | Open Access Repository |
SubjectTerms | Mathematics - Optimization and Control |
Title | Optimal control of diffusion processes: $\infty$-order variational analysis and numerical solution |
URI | https://arxiv.org/abs/2403.01945 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwED3RTiwIBKh8ykNXQ-M4jsOGoIWJDnTogFSdY1tCgrRqmgr-PWcnFSxskePpztZ7zz6_AxiSaMCRtYIXRIa41IgctSTNk1qUCeFRpmIT29f8Za4fx8Emh-3ewuD6633b-gOb-jaYxd0QCZFZD3pChJKtp-m8vZyMVlzd_N95xDHj0B-QmBzCQcfu2H2bjiPYc9UxmClty08a7srC2dKz0JekCQdVbNVW6rv6jg3fKN2b7yGPfphsSzK2O6pj2HmH0IdlVdNes3yw3cI5gdlkPHt45l1rA47E0Lk3Gcko6XPjciyUKUTijcu0c2npvTfoCgJyVElZypEP7rE6LdHmhbNIoZTpKfSrZeUGwLzwQmsCWZSpLBNlSHPmQhlpTKoU5mcwiAFZrFr3ikWI1SLG6vz_XxewLwi9Y7GVvIT-Zt24K-jVtrmOKfgB_jaG3w |
link.rule.ids | 228,230,782,887 |
linkProvider | Cornell University |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+control+of+diffusion+processes%3A+%24%5Cinfty%24-order+variational+analysis+and+numerical+solution&rft.au=Chertovskih%2C+Roman&rft.au=Pogodaev%2C+Nikolay&rft.au=Staritsyn%2C+Maxim&rft.au=Aguiar%2C+A.+Pedro&rft.date=2024-03-04&rft_id=info:doi/10.48550%2Farxiv.2403.01945&rft.externalDocID=2403_01945 |