Optimal control of diffusion processes: $\infty$-order variational analysis and numerical solution

IEEE Control Systems Letters, vol. 8, pp. 1469-1474, 2024 We tackle a nonlinear optimal control problem for a stochastic differential equation in Euclidean space and its state-linear counterpart for the Fokker-Planck-Kolmogorov equation in the space of probabilities. Our approach is founded on a nov...

Full description

Saved in:
Bibliographic Details
Main Authors: Chertovskih, Roman, Pogodaev, Nikolay, Staritsyn, Maxim, Aguiar, A. Pedro
Format: Journal Article
Language:English
Published: 04-03-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract IEEE Control Systems Letters, vol. 8, pp. 1469-1474, 2024 We tackle a nonlinear optimal control problem for a stochastic differential equation in Euclidean space and its state-linear counterpart for the Fokker-Planck-Kolmogorov equation in the space of probabilities. Our approach is founded on a novel concept of local optimality surpassing Pontryagin's minimum, originally crafted for deterministic optimal ensemble control problems. A key practical outcome is a rapidly converging numerical algorithm, which proves its feasibility for problems involving Markovian and open-loop strategies.
AbstractList IEEE Control Systems Letters, vol. 8, pp. 1469-1474, 2024 We tackle a nonlinear optimal control problem for a stochastic differential equation in Euclidean space and its state-linear counterpart for the Fokker-Planck-Kolmogorov equation in the space of probabilities. Our approach is founded on a novel concept of local optimality surpassing Pontryagin's minimum, originally crafted for deterministic optimal ensemble control problems. A key practical outcome is a rapidly converging numerical algorithm, which proves its feasibility for problems involving Markovian and open-loop strategies.
Author Pogodaev, Nikolay
Chertovskih, Roman
Aguiar, A. Pedro
Staritsyn, Maxim
Author_xml – sequence: 1
  givenname: Roman
  surname: Chertovskih
  fullname: Chertovskih, Roman
– sequence: 2
  givenname: Nikolay
  surname: Pogodaev
  fullname: Pogodaev, Nikolay
– sequence: 3
  givenname: Maxim
  surname: Staritsyn
  fullname: Staritsyn, Maxim
– sequence: 4
  givenname: A. Pedro
  surname: Aguiar
  fullname: Aguiar, A. Pedro
BackLink https://doi.org/10.48550/arXiv.2403.01945$$DView paper in arXiv
https://doi.org/10.1109/LCSYS.2024.3410632$$DView published paper (Access to full text may be restricted)
BookMark eNotj7FOwzAQhj3AAIUHYMJD1wSntpOYDVVAkSp16YgUnR2fZCm1IzupyNvjFpb_fp2-O-m7Jzc-eEvIU8VK0UrJXiD-uHO5EYyXrFJC3hF9GCd3goGa4KcYBhqQ9g5xTi54OsZgbEo2vdL1t_M4LesixN5GeoboYMpMPoUcS3Ipl576-WSjM3mdwjBfiAdyizAk-_g_V-T48X7c7or94fNr-7YvoG5kgVo2VSOw0bYBVWu1qVBb2VrLDSJqsEoyBXVljGBYS65abqBvlO0BWiH4ijz_vb1KdmPMWnHpLrLdVZb_AncRVCg
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKZ
GOX
DOI 10.48550/arxiv.2403.01945
DatabaseName arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2403_01945
GroupedDBID AKZ
GOX
ID FETCH-LOGICAL-a675-fb57174f7be7a96b921fbe58ee3cfffbae9509a61cc40f653983cad79edaa8443
IEDL.DBID GOX
IngestDate Tue Sep 24 12:24:42 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a675-fb57174f7be7a96b921fbe58ee3cfffbae9509a61cc40f653983cad79edaa8443
OpenAccessLink https://arxiv.org/abs/2403.01945
ParticipantIDs arxiv_primary_2403_01945
PublicationCentury 2000
PublicationDate 2024-03-04
PublicationDateYYYYMMDD 2024-03-04
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-04
  day: 04
PublicationDecade 2020
PublicationYear 2024
Score 1.9142755
SecondaryResourceType preprint
Snippet IEEE Control Systems Letters, vol. 8, pp. 1469-1474, 2024 We tackle a nonlinear optimal control problem for a stochastic differential equation in Euclidean...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Mathematics - Optimization and Control
Title Optimal control of diffusion processes: $\infty$-order variational analysis and numerical solution
URI https://arxiv.org/abs/2403.01945
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwED3RTiwIBKh8ykNXQ-M4jsOGoIWJDnTogFSdY1tCgrRqmgr-PWcnFSxskePpztZ7zz6_AxiSaMCRtYIXRIa41IgctSTNk1qUCeFRpmIT29f8Za4fx8Emh-3ewuD6633b-gOb-jaYxd0QCZFZD3pChJKtp-m8vZyMVlzd_N95xDHj0B-QmBzCQcfu2H2bjiPYc9UxmClty08a7srC2dKz0JekCQdVbNVW6rv6jg3fKN2b7yGPfphsSzK2O6pj2HmH0IdlVdNes3yw3cI5gdlkPHt45l1rA47E0Lk3Gcko6XPjciyUKUTijcu0c2npvTfoCgJyVElZypEP7rE6LdHmhbNIoZTpKfSrZeUGwLzwQmsCWZSpLBNlSHPmQhlpTKoU5mcwiAFZrFr3ikWI1SLG6vz_XxewLwi9Y7GVvIT-Zt24K-jVtrmOKfgB_jaG3w
link.rule.ids 228,230,782,887
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+control+of+diffusion+processes%3A+%24%5Cinfty%24-order+variational+analysis+and+numerical+solution&rft.au=Chertovskih%2C+Roman&rft.au=Pogodaev%2C+Nikolay&rft.au=Staritsyn%2C+Maxim&rft.au=Aguiar%2C+A.+Pedro&rft.date=2024-03-04&rft_id=info:doi/10.48550%2Farxiv.2403.01945&rft.externalDocID=2403_01945