Lower Bounds on $0$-Extension with Steiner Nodes

In the $0$-Extension problem, we are given an edge-weighted graph $G=(V,E,c)$, a set $T\subseteq V$ of its vertices called terminals, and a semi-metric $D$ over $T$, and the goal is to find an assignment $f$ of each non-terminal vertex to a terminal, minimizing the sum, over all edges $(u,v)\in E$,...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen, Yu, Tan, Zihan
Format: Journal Article
Language:English
Published: 17-01-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the $0$-Extension problem, we are given an edge-weighted graph $G=(V,E,c)$, a set $T\subseteq V$ of its vertices called terminals, and a semi-metric $D$ over $T$, and the goal is to find an assignment $f$ of each non-terminal vertex to a terminal, minimizing the sum, over all edges $(u,v)\in E$, the product of the edge weight $c(u,v)$ and the distance $D(f(u),f(v))$ between the terminals that $u,v$ are mapped to. Current best approximation algorithms on $0$-Extension are based on rounding a linear programming relaxation called the \emph{semi-metric LP relaxation}. The integrality gap of this LP, with best upper bound $O(\log |T|/\log\log |T|)$ and best lower bound $\Omega((\log |T|)^{2/3})$, has been shown to be closely related to the best quality of cut and flow vertex sparsifiers. We study a variant of the $0$-Extension problem where Steiner vertices are allowed. Specifically, we focus on the integrality gap of the same semi-metric LP relaxation to this new problem. Following from previous work, this new integrality gap turns out to be closely related to the quality achievable by cut/flow vertex sparsifiers with Steiner nodes, a major open problem in graph compression. Our main result is that the new integrality gap stays superconstant $\Omega(\log\log |T|)$ even if we allow a super-linear $O(|T|\log^{1-\varepsilon}|T|)$ number of Steiner nodes.
AbstractList In the $0$-Extension problem, we are given an edge-weighted graph $G=(V,E,c)$, a set $T\subseteq V$ of its vertices called terminals, and a semi-metric $D$ over $T$, and the goal is to find an assignment $f$ of each non-terminal vertex to a terminal, minimizing the sum, over all edges $(u,v)\in E$, the product of the edge weight $c(u,v)$ and the distance $D(f(u),f(v))$ between the terminals that $u,v$ are mapped to. Current best approximation algorithms on $0$-Extension are based on rounding a linear programming relaxation called the \emph{semi-metric LP relaxation}. The integrality gap of this LP, with best upper bound $O(\log |T|/\log\log |T|)$ and best lower bound $\Omega((\log |T|)^{2/3})$, has been shown to be closely related to the best quality of cut and flow vertex sparsifiers. We study a variant of the $0$-Extension problem where Steiner vertices are allowed. Specifically, we focus on the integrality gap of the same semi-metric LP relaxation to this new problem. Following from previous work, this new integrality gap turns out to be closely related to the quality achievable by cut/flow vertex sparsifiers with Steiner nodes, a major open problem in graph compression. Our main result is that the new integrality gap stays superconstant $\Omega(\log\log |T|)$ even if we allow a super-linear $O(|T|\log^{1-\varepsilon}|T|)$ number of Steiner nodes.
Author Chen, Yu
Tan, Zihan
Author_xml – sequence: 1
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
– sequence: 2
  givenname: Zihan
  surname: Tan
  fullname: Tan, Zihan
BackLink https://doi.org/10.48550/arXiv.2401.09585$$DView paper in arXiv
BookMark eNotzr1OwzAUBWAPdICWB2AiQ9eEm58b22NbFVopgoHukZ17LSyBXSUpLW9PKZ2OjnR09N2JmxADC_GQQ1YpRHgy_cl_Z0UFeQYaFd4KaOKR-2QZD4GGJIZkDvN0fRo5DP7cjn78SN5H9uE8eo3Ew0xMnPkc-P6aU7F7Xu9Wm7R5e9muFk1qaokpFc51FtiiVCoHS9pQxxVr62onLTKqimSuLZtSlZYU6IIKkl1NEtDqcioe_28v5Hbf-y_T_7R_9PZCL38BW8Y_tA
ContentType Journal Article
Copyright http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: http://creativecommons.org/licenses/by/4.0
DBID AKY
GOX
DOI 10.48550/arxiv.2401.09585
DatabaseName arXiv Computer Science
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2401_09585
GroupedDBID AKY
GOX
ID FETCH-LOGICAL-a675-d2ffcb0eb578810bd9adce4e9bf6f7b5e584d719bea383bd8092d2d7c6d705b93
IEDL.DBID GOX
IngestDate Sat Jan 20 12:17:15 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a675-d2ffcb0eb578810bd9adce4e9bf6f7b5e584d719bea383bd8092d2d7c6d705b93
OpenAccessLink https://arxiv.org/abs/2401.09585
ParticipantIDs arxiv_primary_2401_09585
PublicationCentury 2000
PublicationDate 2024-01-17
PublicationDateYYYYMMDD 2024-01-17
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-17
  day: 17
PublicationDecade 2020
PublicationYear 2024
Score 1.9102209
SecondaryResourceType preprint
Snippet In the $0$-Extension problem, we are given an edge-weighted graph $G=(V,E,c)$, a set $T\subseteq V$ of its vertices called terminals, and a semi-metric $D$...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Data Structures and Algorithms
Title Lower Bounds on $0$-Extension with Steiner Nodes
URI https://arxiv.org/abs/2401.09585
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwED3RTiwIBKh8ykNXg2OaOB75SGFAZWiHbpWdO0ssLWoo6s_nLimChTHOLedYeu_Ol_cAhlwiM2xQoYvojeYTQjrUCXXJ3DVZGom9g7Qupm4yL58qkclRP__ChPX2_avTB47NLcNNdsMkoMx70LNWRrae3-bd5WQrxbWL_41jjtku_QGJ8SEc7Niduu8-xxHs0fIYzKs4kakHMTBq1Gqphmaoq207Os5P0glVUzGd5KDJCqk5gdm4mj2-6J1RgQ7MtzXalOpoKOaizW4i-oA1jcjHVCQXc2KQR5f5SIHrwYil8RYturpAZ_Lo706hz7U-DUBRkiSCLWJuR2Rd8CkISqP3LsO8PoNBm97io9OiWEjmizbz8_9fXcC-ZSyWzkHmLqH_ud7QFfQa3Fy3G_oNf1xy0A
link.rule.ids 228,230,782,887
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lower+Bounds+on+%240%24-Extension+with+Steiner+Nodes&rft.au=Chen%2C+Yu&rft.au=Tan%2C+Zihan&rft.date=2024-01-17&rft_id=info:doi/10.48550%2Farxiv.2401.09585&rft.externalDocID=2401_09585