Sharp systolic inequalities for Riemannian and Finsler spheres of revolution

Trans. Amer. Math. Soc. 374 (2021), 1815-1845 We prove that the systolic ratio of a sphere of revolution $S$ does not exceed $\pi$ and equals $\pi$ if and only if $S$ is Zoll. More generally, we consider the rotationally symmetric Finsler metrics on a sphere of revolution which are defined by shifti...

Full description

Saved in:
Bibliographic Details
Main Authors: Abbondandolo, Alberto, Bramham, Barney, Hryniewicz, Umberto L, Salomão, Pedro A. S
Format: Journal Article
Language:English
Published: 21-08-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Trans. Amer. Math. Soc. 374 (2021), 1815-1845 We prove that the systolic ratio of a sphere of revolution $S$ does not exceed $\pi$ and equals $\pi$ if and only if $S$ is Zoll. More generally, we consider the rotationally symmetric Finsler metrics on a sphere of revolution which are defined by shifting the tangent unit circles by a Killing vector field. We prove that in this class of metrics the systolic ratio does not exceed $\pi$ and equals $\pi$ if and only if the metric is Riemannian and Zoll.
AbstractList Trans. Amer. Math. Soc. 374 (2021), 1815-1845 We prove that the systolic ratio of a sphere of revolution $S$ does not exceed $\pi$ and equals $\pi$ if and only if $S$ is Zoll. More generally, we consider the rotationally symmetric Finsler metrics on a sphere of revolution which are defined by shifting the tangent unit circles by a Killing vector field. We prove that in this class of metrics the systolic ratio does not exceed $\pi$ and equals $\pi$ if and only if the metric is Riemannian and Zoll.
Author Hryniewicz, Umberto L
Salomão, Pedro A. S
Bramham, Barney
Abbondandolo, Alberto
Author_xml – sequence: 1
  givenname: Alberto
  surname: Abbondandolo
  fullname: Abbondandolo, Alberto
– sequence: 2
  givenname: Barney
  surname: Bramham
  fullname: Bramham, Barney
– sequence: 3
  givenname: Umberto L
  surname: Hryniewicz
  fullname: Hryniewicz, Umberto L
– sequence: 4
  givenname: Pedro A. S
  surname: Salomão
  fullname: Salomão, Pedro A. S
BackLink https://doi.org/10.48550/arXiv.1808.06995$$DView paper in arXiv
BookMark eNotz0FPwyAYxnEOetC5D7CTfIFWyoDC0SxOTZqY6O7NW3jJSDqo0C3u26vT03P550l-t-QqpoiErBpWCy0le4D8FU51o5mumTJG3pDuYw95ouVc5jQGS0PEzyOMYQ5YqE-Zvgc8QIwBIoXo6DbEMmKmZdpj_kmSpxlPaTzOIcU7cu1hLLj83wXZbZ92m5eqe3t-3Tx2FahWVsoPAq01rTdCKg9OamG5BCeUbJ03jLdoGXPIB9M0GrjmjDOnvWXceDesF-T-7_bC6accDpDP_S-rv7DW31_MSzE
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKZ
GOX
DOI 10.48550/arxiv.1808.06995
DatabaseName arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 1808_06995
GroupedDBID AKZ
GOX
ID FETCH-LOGICAL-a675-6fb4ecc97f9456fad584c25ad4657df9027ec00de2b9118a282020d8fc029fdb3
IEDL.DBID GOX
IngestDate Mon Jan 08 05:49:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a675-6fb4ecc97f9456fad584c25ad4657df9027ec00de2b9118a282020d8fc029fdb3
OpenAccessLink https://arxiv.org/abs/1808.06995
ParticipantIDs arxiv_primary_1808_06995
PublicationCentury 2000
PublicationDate 2018-08-21
PublicationDateYYYYMMDD 2018-08-21
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-21
  day: 21
PublicationDecade 2010
PublicationYear 2018
Score 1.7087708
SecondaryResourceType preprint
Snippet Trans. Amer. Math. Soc. 374 (2021), 1815-1845 We prove that the systolic ratio of a sphere of revolution $S$ does not exceed $\pi$ and equals $\pi$ if and only...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Mathematics - Differential Geometry
Mathematics - Dynamical Systems
Mathematics - Symplectic Geometry
Title Sharp systolic inequalities for Riemannian and Finsler spheres of revolution
URI https://arxiv.org/abs/1808.06995
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdZ07T8MwEMdPpBMLAgEqT3lgtXCdh-MRQUMHBBJ06Bb5KUWCtEpoxcfn7ATBwmrf4vPjfif7_ga4UTjN2pWM6iI1FE9JTqXWnCovHPOpYbkLxcmLN_G8Kh_mQSaH_NTCqO6r2Q36wLq_nZVRXlPKPIGE8_Bk6_FlNVxORimu0f7XDhkzNv0JEtUhHIx0R-6G6TiCPdcew1MQRd6QoJkcRHgJct1QyohJKkFmJK-N-whfB6mWYF5Pqqbt311H-lDxjyZrTzq3G5fICSyr-fJ-QcdPDKhCFqeF1xl6SQovEVW8shjwDc-VzYpcWC8xK3SGMeu4xmOnVJgBIcDZ0hvGpbc6PYVJu27dFAjuLCm0ZgWzLEPKUUZJpB3hMWJLI4szmMah15tBp6IOXqmjV87_77qAfWSAoFJN-ewSJp_d1l1B0tvtdXT2N5uXfps
link.rule.ids 228,230,782,887
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sharp+systolic+inequalities+for+Riemannian+and+Finsler+spheres+of+revolution&rft.au=Abbondandolo%2C+Alberto&rft.au=Bramham%2C+Barney&rft.au=Hryniewicz%2C+Umberto+L&rft.au=Salom%C3%A3o%2C+Pedro+A.+S&rft.date=2018-08-21&rft_id=info:doi/10.48550%2Farxiv.1808.06995&rft.externalDocID=1808_06995