Bayesian Multi Scale Neural Network for Crowd Counting

Crowd Counting is a difficult but important problem in computer vision. Convolutional Neural Networks based on estimating the density map over the image has been highly successful in this domain. However dense crowd counting remains an open problem because of severe occlusion and perspective view in...

Full description

Saved in:
Bibliographic Details
Main Author: Sagar, Abhinav
Format: Journal Article
Language:English
Published: 11-07-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Crowd Counting is a difficult but important problem in computer vision. Convolutional Neural Networks based on estimating the density map over the image has been highly successful in this domain. However dense crowd counting remains an open problem because of severe occlusion and perspective view in which people can be present at various sizes. In this work, we propose a new network which uses a ResNet based feature extractor, downsampling block which uses dilated convolutions and upsampling block using transposed convolutions. We present a novel aggregation module which makes our network robust to the perspective view problem. We present the optimization details, loss functions and the algorithm used in our work. On evaluating on ShanghaiTech, UCF-CC-50 and UCF-QNRF datasets using MSE and MAE as evaluation metrics, our network outperforms previous state of the art approaches while giving uncertainty estimates in a principled bayesian manner.
DOI:10.48550/arxiv.2007.14245