Learning Missing Modal Electronic Health Records with Unified Multi-modal Data Embedding and Modality-Aware Attention

Electronic Health Record (EHR) provides abundant information through various modalities. However, learning multi-modal EHR is currently facing two major challenges, namely, 1) data embedding and 2) cases with missing modality. A lack of shared embedding function across modalities can discard the tem...

Full description

Saved in:
Bibliographic Details
Main Authors: Lee, Kwanhyung, Lee, Soojeong, Hahn, Sangchul, Hyun, Heejung, Choi, Edward, Ahn, Byungeun, Lee, Joohyung
Format: Journal Article
Language:English
Published: 03-05-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Electronic Health Record (EHR) provides abundant information through various modalities. However, learning multi-modal EHR is currently facing two major challenges, namely, 1) data embedding and 2) cases with missing modality. A lack of shared embedding function across modalities can discard the temporal relationship between different EHR modalities. On the other hand, most EHR studies are limited to relying only on EHR Times-series, and therefore, missing modality in EHR has not been well-explored. Therefore, in this study, we introduce a Unified Multi-modal Set Embedding (UMSE) and Modality-Aware Attention (MAA) with Skip Bottleneck (SB). UMSE treats all EHR modalities without a separate imputation module or error-prone carry-forward, whereas MAA with SB learns missing modal EHR with effective modality-aware attention. Our model outperforms other baseline models in mortality, vasopressor need, and intubation need prediction with the MIMIC-IV dataset.
AbstractList Electronic Health Record (EHR) provides abundant information through various modalities. However, learning multi-modal EHR is currently facing two major challenges, namely, 1) data embedding and 2) cases with missing modality. A lack of shared embedding function across modalities can discard the temporal relationship between different EHR modalities. On the other hand, most EHR studies are limited to relying only on EHR Times-series, and therefore, missing modality in EHR has not been well-explored. Therefore, in this study, we introduce a Unified Multi-modal Set Embedding (UMSE) and Modality-Aware Attention (MAA) with Skip Bottleneck (SB). UMSE treats all EHR modalities without a separate imputation module or error-prone carry-forward, whereas MAA with SB learns missing modal EHR with effective modality-aware attention. Our model outperforms other baseline models in mortality, vasopressor need, and intubation need prediction with the MIMIC-IV dataset.
Author Lee, Soojeong
Ahn, Byungeun
Hahn, Sangchul
Hyun, Heejung
Lee, Joohyung
Lee, Kwanhyung
Choi, Edward
Author_xml – sequence: 1
  givenname: Kwanhyung
  surname: Lee
  fullname: Lee, Kwanhyung
– sequence: 2
  givenname: Soojeong
  surname: Lee
  fullname: Lee, Soojeong
– sequence: 3
  givenname: Sangchul
  surname: Hahn
  fullname: Hahn, Sangchul
– sequence: 4
  givenname: Heejung
  surname: Hyun
  fullname: Hyun, Heejung
– sequence: 5
  givenname: Edward
  surname: Choi
  fullname: Choi, Edward
– sequence: 6
  givenname: Byungeun
  surname: Ahn
  fullname: Ahn, Byungeun
– sequence: 7
  givenname: Joohyung
  surname: Lee
  fullname: Lee, Joohyung
BackLink https://doi.org/10.48550/arXiv.2305.02504$$DView paper in arXiv
BookMark eNotj71OwzAYRT3AAIUHYMIvkOB_lzEqgVZKhYTKHDn2Z7CUOMhxKX17aMp0dId7pHONLuIYAaE7SkqxlJI8mPQTvkvGiSwJk0RcoX0DJsUQP_A2TNPM0Zke1z3YnMYYLF6D6fMnfgM7JjfhQ_gb7zH4AA5v930OxTBfnkw2uB46cO7kMdGdXSEfi-pgEuAqZ4g5jPEGXXrTT3D7zwXaPde71bpoXl82q6opjNKisNIurfYcOmYkpx1XkmhQIMFRAk554Zn2VDOv3SMVndKUKc2JsCC8V5Qv0P1ZO3e3XykMJh3bU3879_NfgLlYew
ContentType Journal Article
Copyright http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: http://creativecommons.org/licenses/by/4.0
DBID AKY
GOX
DOI 10.48550/arxiv.2305.02504
DatabaseName arXiv Computer Science
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2305_02504
GroupedDBID AKY
GOX
ID FETCH-LOGICAL-a674-c5c8c7f3eb2a531b36507e6e5ed10ed6f4f27f172f7d914b671267304ce4ff613
IEDL.DBID GOX
IngestDate Mon Jan 08 05:38:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a674-c5c8c7f3eb2a531b36507e6e5ed10ed6f4f27f172f7d914b671267304ce4ff613
OpenAccessLink https://arxiv.org/abs/2305.02504
ParticipantIDs arxiv_primary_2305_02504
PublicationCentury 2000
PublicationDate 2023-05-03
PublicationDateYYYYMMDD 2023-05-03
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-03
  day: 03
PublicationDecade 2020
PublicationYear 2023
Score 1.8819865
SecondaryResourceType preprint
Snippet Electronic Health Record (EHR) provides abundant information through various modalities. However, learning multi-modal EHR is currently facing two major...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Learning
Title Learning Missing Modal Electronic Health Records with Unified Multi-modal Data Embedding and Modality-Aware Attention
URI https://arxiv.org/abs/2305.02504
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07T8MwED7RTiwIBKg85YHV0CSOnY4VDXQBBjp0q_w6xNAUtSnw8znb4bEwWYovkXyWdd_F930HcGUs5T1Yeu6qQnNBmJmPlEMeGCEaVY6YBTby9Fk9zqtJHWRy2DcXRq8_X9-TPrDZ3BA-Lq-jylYPenkeSrbun-bpcjJKcXX2v3aEMeOjP0Hibh_2OnTHxmk7DmDHN4ew7TRMX9gDrTKOK0dW9U8HGpbIQCzlghsWfo4yQoNI-JBFiixfxlcmutWsXhrvQshhunHpWwSl-fhDrz0bt20qYDyC2V09u53yrtsB11IJbktbWYUFZbqazoUpCDopL33pXTb0TqLAXCHBDVRulAkjVZZLOp7CeoFIQfkY-s2q8QNg0g0rW-kRhW4jCmm00qFyKrNYKSNUfgKD6KPFWxK0WAT3LaL7Tv-fOoPd0Go9FvsV59Bv11t_Ab2N217GXfkC36OL7g
link.rule.ids 228,230,782,887
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Missing+Modal+Electronic+Health+Records+with+Unified+Multi-modal+Data+Embedding+and+Modality-Aware+Attention&rft.au=Lee%2C+Kwanhyung&rft.au=Lee%2C+Soojeong&rft.au=Hahn%2C+Sangchul&rft.au=Hyun%2C+Heejung&rft.date=2023-05-03&rft_id=info:doi/10.48550%2Farxiv.2305.02504&rft.externalDocID=2305_02504