Learning Missing Modal Electronic Health Records with Unified Multi-modal Data Embedding and Modality-Aware Attention
Electronic Health Record (EHR) provides abundant information through various modalities. However, learning multi-modal EHR is currently facing two major challenges, namely, 1) data embedding and 2) cases with missing modality. A lack of shared embedding function across modalities can discard the tem...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
03-05-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Electronic Health Record (EHR) provides abundant information through various
modalities. However, learning multi-modal EHR is currently facing two major
challenges, namely, 1) data embedding and 2) cases with missing modality. A
lack of shared embedding function across modalities can discard the temporal
relationship between different EHR modalities. On the other hand, most EHR
studies are limited to relying only on EHR Times-series, and therefore, missing
modality in EHR has not been well-explored. Therefore, in this study, we
introduce a Unified Multi-modal Set Embedding (UMSE) and Modality-Aware
Attention (MAA) with Skip Bottleneck (SB). UMSE treats all EHR modalities
without a separate imputation module or error-prone carry-forward, whereas MAA
with SB learns missing modal EHR with effective modality-aware attention. Our
model outperforms other baseline models in mortality, vasopressor need, and
intubation need prediction with the MIMIC-IV dataset. |
---|---|
AbstractList | Electronic Health Record (EHR) provides abundant information through various
modalities. However, learning multi-modal EHR is currently facing two major
challenges, namely, 1) data embedding and 2) cases with missing modality. A
lack of shared embedding function across modalities can discard the temporal
relationship between different EHR modalities. On the other hand, most EHR
studies are limited to relying only on EHR Times-series, and therefore, missing
modality in EHR has not been well-explored. Therefore, in this study, we
introduce a Unified Multi-modal Set Embedding (UMSE) and Modality-Aware
Attention (MAA) with Skip Bottleneck (SB). UMSE treats all EHR modalities
without a separate imputation module or error-prone carry-forward, whereas MAA
with SB learns missing modal EHR with effective modality-aware attention. Our
model outperforms other baseline models in mortality, vasopressor need, and
intubation need prediction with the MIMIC-IV dataset. |
Author | Lee, Soojeong Ahn, Byungeun Hahn, Sangchul Hyun, Heejung Lee, Joohyung Lee, Kwanhyung Choi, Edward |
Author_xml | – sequence: 1 givenname: Kwanhyung surname: Lee fullname: Lee, Kwanhyung – sequence: 2 givenname: Soojeong surname: Lee fullname: Lee, Soojeong – sequence: 3 givenname: Sangchul surname: Hahn fullname: Hahn, Sangchul – sequence: 4 givenname: Heejung surname: Hyun fullname: Hyun, Heejung – sequence: 5 givenname: Edward surname: Choi fullname: Choi, Edward – sequence: 6 givenname: Byungeun surname: Ahn fullname: Ahn, Byungeun – sequence: 7 givenname: Joohyung surname: Lee fullname: Lee, Joohyung |
BackLink | https://doi.org/10.48550/arXiv.2305.02504$$DView paper in arXiv |
BookMark | eNotj71OwzAYRT3AAIUHYMIvkOB_lzEqgVZKhYTKHDn2Z7CUOMhxKX17aMp0dId7pHONLuIYAaE7SkqxlJI8mPQTvkvGiSwJk0RcoX0DJsUQP_A2TNPM0Zke1z3YnMYYLF6D6fMnfgM7JjfhQ_gb7zH4AA5v930OxTBfnkw2uB46cO7kMdGdXSEfi-pgEuAqZ4g5jPEGXXrTT3D7zwXaPde71bpoXl82q6opjNKisNIurfYcOmYkpx1XkmhQIMFRAk554Zn2VDOv3SMVndKUKc2JsCC8V5Qv0P1ZO3e3XykMJh3bU3879_NfgLlYew |
ContentType | Journal Article |
Copyright | http://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: http://creativecommons.org/licenses/by/4.0 |
DBID | AKY GOX |
DOI | 10.48550/arxiv.2305.02504 |
DatabaseName | arXiv Computer Science arXiv.org |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | 2305_02504 |
GroupedDBID | AKY GOX |
ID | FETCH-LOGICAL-a674-c5c8c7f3eb2a531b36507e6e5ed10ed6f4f27f172f7d914b671267304ce4ff613 |
IEDL.DBID | GOX |
IngestDate | Mon Jan 08 05:38:45 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a674-c5c8c7f3eb2a531b36507e6e5ed10ed6f4f27f172f7d914b671267304ce4ff613 |
OpenAccessLink | https://arxiv.org/abs/2305.02504 |
ParticipantIDs | arxiv_primary_2305_02504 |
PublicationCentury | 2000 |
PublicationDate | 2023-05-03 |
PublicationDateYYYYMMDD | 2023-05-03 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-03 day: 03 |
PublicationDecade | 2020 |
PublicationYear | 2023 |
Score | 1.8819865 |
SecondaryResourceType | preprint |
Snippet | Electronic Health Record (EHR) provides abundant information through various
modalities. However, learning multi-modal EHR is currently facing two major... |
SourceID | arxiv |
SourceType | Open Access Repository |
SubjectTerms | Computer Science - Learning |
Title | Learning Missing Modal Electronic Health Records with Unified Multi-modal Data Embedding and Modality-Aware Attention |
URI | https://arxiv.org/abs/2305.02504 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07T8MwED7RTiwIBKg85YHV0CSOnY4VDXQBBjp0q_w6xNAUtSnw8znb4bEwWYovkXyWdd_F930HcGUs5T1Yeu6qQnNBmJmPlEMeGCEaVY6YBTby9Fk9zqtJHWRy2DcXRq8_X9-TPrDZ3BA-Lq-jylYPenkeSrbun-bpcjJKcXX2v3aEMeOjP0Hibh_2OnTHxmk7DmDHN4ew7TRMX9gDrTKOK0dW9U8HGpbIQCzlghsWfo4yQoNI-JBFiixfxlcmutWsXhrvQshhunHpWwSl-fhDrz0bt20qYDyC2V09u53yrtsB11IJbktbWYUFZbqazoUpCDopL33pXTb0TqLAXCHBDVRulAkjVZZLOp7CeoFIQfkY-s2q8QNg0g0rW-kRhW4jCmm00qFyKrNYKSNUfgKD6KPFWxK0WAT3LaL7Tv-fOoPd0Go9FvsV59Bv11t_Ab2N217GXfkC36OL7g |
link.rule.ids | 228,230,782,887 |
linkProvider | Cornell University |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Missing+Modal+Electronic+Health+Records+with+Unified+Multi-modal+Data+Embedding+and+Modality-Aware+Attention&rft.au=Lee%2C+Kwanhyung&rft.au=Lee%2C+Soojeong&rft.au=Hahn%2C+Sangchul&rft.au=Hyun%2C+Heejung&rft.date=2023-05-03&rft_id=info:doi/10.48550%2Farxiv.2305.02504&rft.externalDocID=2305_02504 |