Infinitary Action Logic with Exponentiation

We introduce infinitary action logic with exponentiation -- that is, the multiplicative-additive Lambek calculus extended with Kleene star and with a family of subexponential modalities, which allows some of the structural rules (contraction, weakening, permutation). The logic is presented in the fo...

Full description

Saved in:
Bibliographic Details
Main Authors: Kuznetsov, Stepan L, Speranski, Stanislav O
Format: Journal Article
Language:English
Published: 19-01-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We introduce infinitary action logic with exponentiation -- that is, the multiplicative-additive Lambek calculus extended with Kleene star and with a family of subexponential modalities, which allows some of the structural rules (contraction, weakening, permutation). The logic is presented in the form of an infinitary sequent calculus. We prove cut elimination and, in the case where at least one subexponential allows non-local contraction, establish exact complexity boundaries in two senses. First, we show that the derivability problem for this logic is $\Pi_1^1$-complete. Second, we show that the closure ordinal of its derivability operator is $\omega_1^{\mathrm{CK}}$. In the case where no subexponential allows contraction, we show that complexity is the same as for infinitary action logic itself. Namely, the derivability problem in this case is $\Pi^0_1$-complete and the closure ordinal is not greater than $\omega^\omega$.
AbstractList We introduce infinitary action logic with exponentiation -- that is, the multiplicative-additive Lambek calculus extended with Kleene star and with a family of subexponential modalities, which allows some of the structural rules (contraction, weakening, permutation). The logic is presented in the form of an infinitary sequent calculus. We prove cut elimination and, in the case where at least one subexponential allows non-local contraction, establish exact complexity boundaries in two senses. First, we show that the derivability problem for this logic is $\Pi_1^1$-complete. Second, we show that the closure ordinal of its derivability operator is $\omega_1^{\mathrm{CK}}$. In the case where no subexponential allows contraction, we show that complexity is the same as for infinitary action logic itself. Namely, the derivability problem in this case is $\Pi^0_1$-complete and the closure ordinal is not greater than $\omega^\omega$.
Author Kuznetsov, Stepan L
Speranski, Stanislav O
Author_xml – sequence: 1
  givenname: Stepan L
  surname: Kuznetsov
  fullname: Kuznetsov, Stepan L
– sequence: 2
  givenname: Stanislav O
  surname: Speranski
  fullname: Speranski, Stanislav O
BackLink https://doi.org/10.48550/arXiv.2001.06863$$DView paper in arXiv
BookMark eNotzjsLwjAUhuEMOnj7AU52l9bTniRNRxFvUHBxL-lJqgFNpRYv_97r9A0fvDx91vG1t4yNY4i4EgJmunm4W5QAxBFIJbHHpltfOe9a3TyDObWu9kFeHxwFd9ceg-Xj8i741unPM2TdSp-udvTfAduvlvvFJsx36-1inodaphhaFAlxrmwKsVCIEomDsUqXWZkazm0lTJmZVFokjRVKAmEgMyqRRAllOGCTX_arLS6NO791xUddfNX4AkbmPho
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKY
AKZ
GOX
DOI 10.48550/arxiv.2001.06863
DatabaseName arXiv Computer Science
arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2001_06863
GroupedDBID AKY
AKZ
GOX
ID FETCH-LOGICAL-a673-e352c448e701583363c40de8ab9b7d44ef5db9d76e3ca3f36c05d09d826cc2c93
IEDL.DBID GOX
IngestDate Mon Jan 08 05:40:47 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a673-e352c448e701583363c40de8ab9b7d44ef5db9d76e3ca3f36c05d09d826cc2c93
OpenAccessLink https://arxiv.org/abs/2001.06863
ParticipantIDs arxiv_primary_2001_06863
PublicationCentury 2000
PublicationDate 2020-01-19
PublicationDateYYYYMMDD 2020-01-19
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-19
  day: 19
PublicationDecade 2020
PublicationYear 2020
Score 1.7591066
SecondaryResourceType preprint
Snippet We introduce infinitary action logic with exponentiation -- that is, the multiplicative-additive Lambek calculus extended with Kleene star and with a family of...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Logic in Computer Science
Mathematics - Logic
Title Infinitary Action Logic with Exponentiation
URI https://arxiv.org/abs/2001.06863
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09TwMxDLVoJxYEAlQ-lYE1cHe5y8dYQUsnGOjQrUqcROpSqitF5d_j5A7BwppksSPL7yV-NsBdEaVGFQ3XTW2JoJiSu8ZJrgJhBasNhqyFmb2pl4V-mqQ2OexHC2Pb_eqz6w_stg-p4Oc-iRjEAAZVlUq2nl8X3edkbsXVn_89RxgzL_1JEtNjOOrRHRt313ECB2F9ChSDcUWRY9svNs4yApYmHCNLb6Bsst-8r1PJTnbRGcynk_njjPczCriVSvBA-AWJ4QRFaVULIQXWhQ_aOuOUr-sQG--MVzIItCIKiUXjC-MJ1CNWaMQ5DInmhxGwisLLR_JRLF0dCfqg1JHgPrrSoajNBYyyZctN14YiDZAsl9noy_-3ruCwSgyxKHlprmH40e7CDQy2fnebffkNmyxxgA
link.rule.ids 228,230,782,887
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Infinitary+Action+Logic+with+Exponentiation&rft.au=Kuznetsov%2C+Stepan+L&rft.au=Speranski%2C+Stanislav+O&rft.date=2020-01-19&rft_id=info:doi/10.48550%2Farxiv.2001.06863&rft.externalDocID=2001_06863