Quantum Dynamics in Phase space using the Biorthogonal von Neumann bases: Algorithmic Considerations

The von Neumann lattice refers to a discrete basis of Gaussians located on a lattice in phase space. It provides an attractive approach for solving quantum mechanical problems, allowing the pruning of tensor-product basis sets using phase space considerations. In a series of recent articles Shimshov...

Full description

Saved in:
Bibliographic Details
Main Authors: Machnes, Shai, Assémat, Elie, Tannor, David
Format: Journal Article
Language:English
Published: 12-03-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The von Neumann lattice refers to a discrete basis of Gaussians located on a lattice in phase space. It provides an attractive approach for solving quantum mechanical problems, allowing the pruning of tensor-product basis sets using phase space considerations. In a series of recent articles Shimshovitz et al. [Phys. Rev. Lett. 109 7 (2012)], Takemoto et al. [Journal of Chemical Physics 137 1 (2012)] Machnes et al. [Journal of Chemical Physics, accepted (2016)]), we have introduced two key new elements into the method: a formalism for converging the basis and for efficient pruning by use of the biorthogonal basis. In this paper we review the key components of the theory and then present new, efficient and parallelizable iterative algorithms for solving the time-independent and time-dependent Schr\"odinger equations. The algorithms dynamically determine the active reduced basis iteratively without resorting to classical analogs. These algorithmic developments, combined with the previous formal developments, allow quantum dynamics to be performed directly and economically in phase space. We provide two illustrative examples: double-well tunneling and double ionization of helium.
AbstractList The von Neumann lattice refers to a discrete basis of Gaussians located on a lattice in phase space. It provides an attractive approach for solving quantum mechanical problems, allowing the pruning of tensor-product basis sets using phase space considerations. In a series of recent articles Shimshovitz et al. [Phys. Rev. Lett. 109 7 (2012)], Takemoto et al. [Journal of Chemical Physics 137 1 (2012)] Machnes et al. [Journal of Chemical Physics, accepted (2016)]), we have introduced two key new elements into the method: a formalism for converging the basis and for efficient pruning by use of the biorthogonal basis. In this paper we review the key components of the theory and then present new, efficient and parallelizable iterative algorithms for solving the time-independent and time-dependent Schr\"odinger equations. The algorithms dynamically determine the active reduced basis iteratively without resorting to classical analogs. These algorithmic developments, combined with the previous formal developments, allow quantum dynamics to be performed directly and economically in phase space. We provide two illustrative examples: double-well tunneling and double ionization of helium.
Author Assémat, Elie
Tannor, David
Machnes, Shai
Author_xml – sequence: 1
  givenname: Shai
  surname: Machnes
  fullname: Machnes, Shai
– sequence: 2
  givenname: Elie
  surname: Assémat
  fullname: Assémat, Elie
– sequence: 3
  givenname: David
  surname: Tannor
  fullname: Tannor, David
BackLink https://doi.org/10.48550/arXiv.1603.03963$$DView paper in arXiv
BookMark eNotj8tOhDAYRrvQhY4-gCv_FwBbSltwN-I1mXiJ7slP6UATaCctTJy3F0dX37c4Ock5JyfOO0PIFaNpXghBbzB8233KJOUp5aXkZ6T9mNFN8wj3B4ej1RGsg_ceo4G4Q21gjtZ1MPUG7qwPU-8773CAvXfwauYRnYNmoeMtrIfOBzv1iwUq76JtTcDJLu-CnG5xiObyf1fk8_Hhq3pONm9PL9V6k6BUPGkbpnIssBFKqAyFQcawpCVjmqttJjFjuWBULXCbKyWkltiYFjXTNC84X5HrP-uxst4FO2I41L-19bGW_wD8OFJk
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID GOX
DOI 10.48550/arxiv.1603.03963
DatabaseName arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 1603_03963
GroupedDBID GOX
ID FETCH-LOGICAL-a673-db174a8ab57572a5ea11a90911c37f26a2145107a67d47756c6abedac1c04833
IEDL.DBID GOX
IngestDate Mon Jan 08 05:47:52 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a673-db174a8ab57572a5ea11a90911c37f26a2145107a67d47756c6abedac1c04833
OpenAccessLink https://arxiv.org/abs/1603.03963
ParticipantIDs arxiv_primary_1603_03963
PublicationCentury 2000
PublicationDate 2016-03-12
PublicationDateYYYYMMDD 2016-03-12
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-12
  day: 12
PublicationDecade 2010
PublicationYear 2016
Score 1.6288459
SecondaryResourceType preprint
Snippet The von Neumann lattice refers to a discrete basis of Gaussians located on a lattice in phase space. It provides an attractive approach for solving quantum...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Physics - Quantum Physics
Title Quantum Dynamics in Phase space using the Biorthogonal von Neumann bases: Algorithmic Considerations
URI https://arxiv.org/abs/1603.03963
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwELVoJxYEAlQ-dQNrII7jOGUrtIWpgMrQLTp_pK0ESdWQip_POWkFC2tyjqKzrffOd37H2E1OKM0xFoF1qQ5i60SgZc5pLUtprJB9wZsmtlM1maXDkZfJgd1dGFx_LzetPrCu7nwP5NtQ0CLpsE4U-ZKtp5dZm5xspLi29r92xDGbR39AYnzIDrbsDgbtdByxPVccM_tW0-_XnzBsu79XsCzgdUHwAbSdjQNfez4HYmLwsPRplHLu6TFsygImzh-yF-DBprqHwce8pGh-QV-BXavN9sjthE3Ho_fH52Db3CDARJFrNIUCmKImuqQilA45xz6BNzdC5VGCXkGcQjMytrFSMjEJamfRcONF4MUp6xZl4XoMIh1r7EtMUIWxcVKHJkfuUhroc4r6jPUaj2SrVr4i887KGmed___qgu0TNUh8tRWPLln3a127K9apbH3dzMEPIZKGcg
link.rule.ids 228,230,782,887
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Dynamics+in+Phase+space+using+the+Biorthogonal+von+Neumann+bases%3A+Algorithmic+Considerations&rft.au=Machnes%2C+Shai&rft.au=Ass%C3%A9mat%2C+Elie&rft.au=Tannor%2C+David&rft.date=2016-03-12&rft_id=info:doi/10.48550%2Farxiv.1603.03963&rft.externalDocID=1603_03963