Boundedness properties of maximal operators on Lorentz spaces

We study mapping properties of the centered Hardy--Littlewood maximal operator $\mathcal{M}$ acting on Lorentz spaces. Given $p \in (1,\infty)$ and a metric measure space $\mathfrak{X}$ we let $\Omega^p_{\rm HL}(\mathfrak{X}) \subset [0,1]^2$ be the set of all pairs $(\frac{1}{q},\frac{1}{r})$ such...

Full description

Saved in:
Bibliographic Details
Main Author: Kosz, Dariusz
Format: Journal Article
Language:English
Published: 08-05-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study mapping properties of the centered Hardy--Littlewood maximal operator $\mathcal{M}$ acting on Lorentz spaces. Given $p \in (1,\infty)$ and a metric measure space $\mathfrak{X}$ we let $\Omega^p_{\rm HL}(\mathfrak{X}) \subset [0,1]^2$ be the set of all pairs $(\frac{1}{q},\frac{1}{r})$ such that $\mathcal{M}$ is bounded from $L^{p,q}(\mathfrak{X})$ to $L^{p,r}(\mathfrak{X})$. For each fixed $p$ all possible shapes of $\Omega^p_{\rm HL}(\mathfrak{X})$ are characterized. Namely, we show that the boundary of $\Omega^p_{\rm HL}(\mathfrak{X})$ either is empty or takes the form $$\{ \delta \} \times [0, \lim_{u \rightarrow \delta} F(u)] \ \cup \ \{(u, F(u)) : u \in (\delta, 1] \},$$ where $\delta \in [0,1]$ and $F \colon [\delta, 1] \rightarrow [0,1]$ is concave, non-decreasing, and satisfying $F(u) \leq u$. Conversely, for each such $F$ we find $\mathfrak{X}$ such that $\mathcal{M}$ is bounded from $L^{p,q}(\mathfrak{X})$ to $L^{p,r}(\mathfrak{X})$ if and only if the point $(\frac{1}{q}, \frac{1}{r})$ lies on or under the graph of $F$, that is, $\frac{1}{q} \geq \delta$ and $\frac{1}{r} \leq F\big(\frac{1}{q}\big)$.
DOI:10.48550/arxiv.1905.03232