Boundedness properties of maximal operators on Lorentz spaces
We study mapping properties of the centered Hardy--Littlewood maximal operator $\mathcal{M}$ acting on Lorentz spaces. Given $p \in (1,\infty)$ and a metric measure space $\mathfrak{X}$ we let $\Omega^p_{\rm HL}(\mathfrak{X}) \subset [0,1]^2$ be the set of all pairs $(\frac{1}{q},\frac{1}{r})$ such...
Saved in:
Main Author: | |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
08-05-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study mapping properties of the centered Hardy--Littlewood maximal
operator $\mathcal{M}$ acting on Lorentz spaces. Given $p \in (1,\infty)$ and a
metric measure space $\mathfrak{X}$ we let $\Omega^p_{\rm HL}(\mathfrak{X})
\subset [0,1]^2$ be the set of all pairs $(\frac{1}{q},\frac{1}{r})$ such that
$\mathcal{M}$ is bounded from $L^{p,q}(\mathfrak{X})$ to
$L^{p,r}(\mathfrak{X})$. For each fixed $p$ all possible shapes of
$\Omega^p_{\rm HL}(\mathfrak{X})$ are characterized. Namely, we show that the
boundary of $\Omega^p_{\rm HL}(\mathfrak{X})$ either is empty or takes the form
$$\{ \delta \} \times [0, \lim_{u \rightarrow \delta} F(u)] \ \cup \ \{(u,
F(u)) : u \in (\delta, 1] \},$$ where $\delta \in [0,1]$ and $F \colon [\delta,
1] \rightarrow [0,1]$ is concave, non-decreasing, and satisfying $F(u) \leq u$.
Conversely, for each such $F$ we find $\mathfrak{X}$ such that $\mathcal{M}$ is
bounded from $L^{p,q}(\mathfrak{X})$ to $L^{p,r}(\mathfrak{X})$ if and only if
the point $(\frac{1}{q}, \frac{1}{r})$ lies on or under the graph of $F$, that
is, $\frac{1}{q} \geq \delta$ and $\frac{1}{r} \leq F\big(\frac{1}{q}\big)$. |
---|---|
DOI: | 10.48550/arxiv.1905.03232 |