CSR5: An Efficient Storage Format for Cross-Platform Sparse Matrix-Vector Multiplication

Sparse matrix-vector multiplication (SpMV) is a fundamental building block for numerous applications. In this paper, we propose CSR5 (Compressed Sparse Row 5), a new storage format, which offers high-throughput SpMV on various platforms including CPUs, GPUs and Xeon Phi. First, the CSR5 format is in...

Full description

Saved in:
Bibliographic Details
Main Authors: Liu, Weifeng, Vinter, Brian
Format: Journal Article
Language:English
Published: 17-03-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Sparse matrix-vector multiplication (SpMV) is a fundamental building block for numerous applications. In this paper, we propose CSR5 (Compressed Sparse Row 5), a new storage format, which offers high-throughput SpMV on various platforms including CPUs, GPUs and Xeon Phi. First, the CSR5 format is insensitive to the sparsity structure of the input matrix. Thus the single format can support an SpMV algorithm that is efficient both for regular matrices and for irregular matrices. Furthermore, we show that the overhead of the format conversion from the CSR to the CSR5 can be as low as the cost of a few SpMV operations. We compare the CSR5-based SpMV algorithm with 11 state-of-the-art formats and algorithms on four mainstream processors using 14 regular and 10 irregular matrices as a benchmark suite. For the 14 regular matrices in the suite, we achieve comparable or better performance over the previous work. For the 10 irregular matrices, the CSR5 obtains average performance improvement of 17.6\%, 28.5\%, 173.0\% and 293.3\% (up to 213.3\%, 153.6\%, 405.1\% and 943.3\%) over the best existing work on dual-socket Intel CPUs, an nVidia GPU, an AMD GPU and an Intel Xeon Phi, respectively. For real-world applications such as a solver with only tens of iterations, the CSR5 format can be more practical because of its low-overhead for format conversion. The source code of this work is downloadable at https://github.com/bhSPARSE/Benchmark_SpMV_using_CSR5
AbstractList Sparse matrix-vector multiplication (SpMV) is a fundamental building block for numerous applications. In this paper, we propose CSR5 (Compressed Sparse Row 5), a new storage format, which offers high-throughput SpMV on various platforms including CPUs, GPUs and Xeon Phi. First, the CSR5 format is insensitive to the sparsity structure of the input matrix. Thus the single format can support an SpMV algorithm that is efficient both for regular matrices and for irregular matrices. Furthermore, we show that the overhead of the format conversion from the CSR to the CSR5 can be as low as the cost of a few SpMV operations. We compare the CSR5-based SpMV algorithm with 11 state-of-the-art formats and algorithms on four mainstream processors using 14 regular and 10 irregular matrices as a benchmark suite. For the 14 regular matrices in the suite, we achieve comparable or better performance over the previous work. For the 10 irregular matrices, the CSR5 obtains average performance improvement of 17.6\%, 28.5\%, 173.0\% and 293.3\% (up to 213.3\%, 153.6\%, 405.1\% and 943.3\%) over the best existing work on dual-socket Intel CPUs, an nVidia GPU, an AMD GPU and an Intel Xeon Phi, respectively. For real-world applications such as a solver with only tens of iterations, the CSR5 format can be more practical because of its low-overhead for format conversion. The source code of this work is downloadable at https://github.com/bhSPARSE/Benchmark_SpMV_using_CSR5
Author Liu, Weifeng
Vinter, Brian
Author_xml – sequence: 1
  givenname: Weifeng
  surname: Liu
  fullname: Liu, Weifeng
– sequence: 2
  givenname: Brian
  surname: Vinter
  fullname: Vinter, Brian
BackLink https://doi.org/10.48550/arXiv.1503.05032$$DView paper in arXiv
BookMark eNotj0FOwzAURL2ABZQegBW-QILtXycxuypqAakVFakQu-jHsZGlJI4cg8rtCYXNjGbxRnrX5GLwgyHklrN0VUjJ7jGc3FfKJYOUzSGuyHtZvcoHuh7oxlqnnRkiraIP-GHo1oceI7U-0DL4aUoOHcZ59bQaMUyG7jEGd0rejJ4Juv_sohs7pzE6P9yQS4vdZJb_vSDH7eZYPiW7l8fncr1LMMtFAsYqvtK5zFTGeMNbURiWcxAMQIMEbGTBRYtKFNi2AKoRAEZKoYxEqzQsyN3f7VmtHoPrMXzXv4r1WRF-ANFBTMA
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKY
AKZ
GOX
DOI 10.48550/arxiv.1503.05032
DatabaseName arXiv Computer Science
arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 1503_05032
GroupedDBID AKY
AKZ
GOX
ID FETCH-LOGICAL-a672-3ef914c7569601b1d28e07132033c353ab5812da928add339b233e5529e5af9c3
IEDL.DBID GOX
IngestDate Mon Jan 08 05:42:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a672-3ef914c7569601b1d28e07132033c353ab5812da928add339b233e5529e5af9c3
OpenAccessLink https://arxiv.org/abs/1503.05032
ParticipantIDs arxiv_primary_1503_05032
PublicationCentury 2000
PublicationDate 2015-03-17
PublicationDateYYYYMMDD 2015-03-17
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-17
  day: 17
PublicationDecade 2010
PublicationYear 2015
Score 1.5987282
SecondaryResourceType preprint
Snippet Sparse matrix-vector multiplication (SpMV) is a fundamental building block for numerous applications. In this paper, we propose CSR5 (Compressed Sparse Row 5),...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Distributed, Parallel, and Cluster Computing
Computer Science - Mathematical Software
Mathematics - Numerical Analysis
Title CSR5: An Efficient Storage Format for Cross-Platform Sparse Matrix-Vector Multiplication
URI https://arxiv.org/abs/1503.05032
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwELVoJxYEAlQ-5YHV0PijttmqkMBSQKRC2SI7diQkFKp-qT-fsxMEC6vt6Szfe88-v0PoRnDHEzl2hGrjCZ-A3NHCKmK4so43DYiO2DqhkM-lesiCTQ7--QtjlruPbecPbFd3wFbYbXAsgSQ7oDSUbD2-lN3jZLTi6tf_rgOOGYf-gER-iA56doen3XYcoT3fHqMyLd7EPZ62OIt-DZDmcQFSF04yziNlxMAccRrwirx-mnXgkbhYgOT0eBYs9HfkPV6u41lX_tffs52geZ7N0yfSNzQgZiIpYb7RCa-lmIBsSGziqPJBJNIxYzUTzFgBcOuMpgqyDmPaUsa8EFR7YRpds1M0bL9aP0LYaCu59VL5CMHaOuqB6IjaWgYgT8_QKIahWnSeFVWIUBUjdP7_1AXaBz4gQolVIi_RcL3c-Cs0WLnNdQz8N-mff9o
link.rule.ids 228,230,782,887
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CSR5%3A+An+Efficient+Storage+Format+for+Cross-Platform+Sparse+Matrix-Vector+Multiplication&rft.au=Liu%2C+Weifeng&rft.au=Vinter%2C+Brian&rft.date=2015-03-17&rft_id=info:doi/10.48550%2Farxiv.1503.05032&rft.externalDocID=1503_05032