YM2413-MDB: A Multi-Instrumental FM Video Game Music Dataset with Emotion Annotations

Existing multi-instrumental datasets tend to be biased toward pop and classical music. In addition, they generally lack high-level annotations such as emotion tags. In this paper, we propose YM2413-MDB, an 80s FM video game music dataset with multi-label emotion annotations. It includes 669 audio an...

Full description

Saved in:
Bibliographic Details
Main Authors: Choi, Eunjin, Chung, Yoonjin, Lee, Seolhee, Jeon, JongIk, Kwon, Taegyun, Nam, Juhan
Format: Journal Article
Language:English
Published: 14-11-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Existing multi-instrumental datasets tend to be biased toward pop and classical music. In addition, they generally lack high-level annotations such as emotion tags. In this paper, we propose YM2413-MDB, an 80s FM video game music dataset with multi-label emotion annotations. It includes 669 audio and MIDI files of music from Sega and MSX PC games in the 80s using YM2413, a programmable sound generator based on FM. The collected game music is arranged with a subset of 15 monophonic instruments and one drum instrument. They were converted from binary commands of the YM2413 sound chip. Each song was labeled with 19 emotion tags by two annotators and validated by three verifiers to obtain refined tags. We provide the baseline models and results for emotion recognition and emotion-conditioned symbolic music generation using YM2413-MDB.
AbstractList Existing multi-instrumental datasets tend to be biased toward pop and classical music. In addition, they generally lack high-level annotations such as emotion tags. In this paper, we propose YM2413-MDB, an 80s FM video game music dataset with multi-label emotion annotations. It includes 669 audio and MIDI files of music from Sega and MSX PC games in the 80s using YM2413, a programmable sound generator based on FM. The collected game music is arranged with a subset of 15 monophonic instruments and one drum instrument. They were converted from binary commands of the YM2413 sound chip. Each song was labeled with 19 emotion tags by two annotators and validated by three verifiers to obtain refined tags. We provide the baseline models and results for emotion recognition and emotion-conditioned symbolic music generation using YM2413-MDB.
Author Chung, Yoonjin
Nam, Juhan
Choi, Eunjin
Jeon, JongIk
Kwon, Taegyun
Lee, Seolhee
Author_xml – sequence: 1
  givenname: Eunjin
  surname: Choi
  fullname: Choi, Eunjin
– sequence: 2
  givenname: Yoonjin
  surname: Chung
  fullname: Chung, Yoonjin
– sequence: 3
  givenname: Seolhee
  surname: Lee
  fullname: Lee, Seolhee
– sequence: 4
  givenname: JongIk
  surname: Jeon
  fullname: Jeon, JongIk
– sequence: 5
  givenname: Taegyun
  surname: Kwon
  fullname: Kwon, Taegyun
– sequence: 6
  givenname: Juhan
  surname: Nam
  fullname: Nam, Juhan
BackLink https://doi.org/10.48550/arXiv.2211.07131$$DView paper in arXiv
BookMark eNotz71OwzAUBWAPMEDhAZjwCyTk2nGcsIX-UakRS0Fiim7ia2EpcVDiQvv20MJ0znB0pO-aXfjBE2N3kMRprlTygOPBfcVCAMSJBglX7PW9EinIqFo8PfKSV_suuGjjpzDue_IBO76q-JszNPA19vQ7mFzLFxhwosC_Xfjgy34IbvC89H4IeKrTDbu02E10-58ztlstd_PnaPuy3szLbYSZhojQNpIKCxKLxlAhtMAitxYUSZ1paWxLkDVtSoSJLWymILdgTNOoHCwpOWP3f7dnV_05uh7HY33y1Wef_AFFBkxu
ContentType Journal Article
Copyright http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: http://creativecommons.org/licenses/by/4.0
DBID AKY
GOX
DOI 10.48550/arxiv.2211.07131
DatabaseName arXiv Computer Science
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2211_07131
GroupedDBID AKY
GOX
ID FETCH-LOGICAL-a671-eafb3e9f13a9bde9272a98ff15e37673dfce16bc4eea0f9f6518f1ddbb581fe53
IEDL.DBID GOX
IngestDate Mon Jan 08 05:45:19 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a671-eafb3e9f13a9bde9272a98ff15e37673dfce16bc4eea0f9f6518f1ddbb581fe53
OpenAccessLink https://arxiv.org/abs/2211.07131
ParticipantIDs arxiv_primary_2211_07131
PublicationCentury 2000
PublicationDate 2022-11-14
PublicationDateYYYYMMDD 2022-11-14
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-14
  day: 14
PublicationDecade 2020
PublicationYear 2022
Score 1.8639911
SecondaryResourceType preprint
Snippet Existing multi-instrumental datasets tend to be biased toward pop and classical music. In addition, they generally lack high-level annotations such as emotion...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Learning
Computer Science - Multimedia
Computer Science - Sound
Title YM2413-MDB: A Multi-Instrumental FM Video Game Music Dataset with Emotion Annotations
URI https://arxiv.org/abs/2211.07131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdZ27TwMxDMYj6MSCQIDKUxlYIxpf7nrHVuiLoTBQUJkq52JLHbgiWhB_PnkUwcKaZPoy5HNs_yzEZVZjcMagQuOlMpwXCg2Syth58805MYZAcfzYvZ-V_UHA5MifXhh8_1p8Jj6wXV0BBMKmj6N8fLMNEEq2Rg-zlJyMKK7N-d9z3mPGpT-PxHBP7G7cneyl69gXW9QciKeXSUgrqUn_5lr2ZGx5VXeR3JrI-nI4kc8LR0s5wleScfSy7OPaPzBrGT5K5SAN25G9plmm3PnqUEyHg-ntWG2mGSgsuloRss2oYp1hZR1V0AWsSmadUwCqZI5r0oWtDRF2uOIi1yVr56zNS82UZ0ei1SwbagsJ2oG1CB3Xsaawpqyh8saPMZBmgMyxaEcN5m8JWDEP8syjPCf_b52KHQil_aHEzZyJlheBzsX2yn1cRNW_AYD1f7k
link.rule.ids 228,230,782,887
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YM2413-MDB%3A+A+Multi-Instrumental+FM+Video+Game+Music+Dataset+with+Emotion+Annotations&rft.au=Choi%2C+Eunjin&rft.au=Chung%2C+Yoonjin&rft.au=Lee%2C+Seolhee&rft.au=Jeon%2C+JongIk&rft.date=2022-11-14&rft_id=info:doi/10.48550%2Farxiv.2211.07131&rft.externalDocID=2211_07131