Generalised homotopy and commutativity principle

In this paper, we study the action of special $n\times n $ linear (resp. symplectic) matrices which are homotopic to identity on the right invertible $n\times m$ matrices. We also prove that the commutator subgroup of $\rm{O}_{2n}(R[X])$ is two stably elementary orthogonal for a local ring $R$ with...

Full description

Saved in:
Bibliographic Details
Main Authors: Rao, Ravi A, Sharma, Sampat
Format: Journal Article
Language:English
Published: 08-11-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we study the action of special $n\times n $ linear (resp. symplectic) matrices which are homotopic to identity on the right invertible $n\times m$ matrices. We also prove that the commutator subgroup of $\rm{O}_{2n}(R[X])$ is two stably elementary orthogonal for a local ring $R$ with $\frac{1}{2}\in R$ and $n\geq 3.$
AbstractList In this paper, we study the action of special $n\times n $ linear (resp. symplectic) matrices which are homotopic to identity on the right invertible $n\times m$ matrices. We also prove that the commutator subgroup of $\rm{O}_{2n}(R[X])$ is two stably elementary orthogonal for a local ring $R$ with $\frac{1}{2}\in R$ and $n\geq 3.$
Author Rao, Ravi A
Sharma, Sampat
Author_xml – sequence: 1
  givenname: Ravi A
  surname: Rao
  fullname: Rao, Ravi A
– sequence: 2
  givenname: Sampat
  surname: Sharma
  fullname: Sharma, Sampat
BackLink https://doi.org/10.48550/arXiv.2211.04111$$DView paper in arXiv
BookMark eNotzrFOwzAUhWEPMJTSB-hEXiDhXttx7BFVtCBV6tI9unFuVUuJHaWhIm9PKUxn-8_3JB5iiizEGqHQtizhlcbvcC2kRCxAI-JCwI4jj9SFC7fZOfVpSsOcUWwzn_r-a6IpXMM0Z8MYog9Dx8_i8UTdhVf_uxTH7ftx85HvD7vPzds-J1Nh7kBaKW114lYaZZRsABVY7bAxDrhsrGEg0mgtkEHw3hlVaqzQeCudU0vx8pe9k-vbfU_jXP_S6ztd_QCloD5p
ContentType Journal Article
Copyright http://creativecommons.org/publicdomain/zero/1.0
Copyright_xml – notice: http://creativecommons.org/publicdomain/zero/1.0
DBID AKZ
GOX
DOI 10.48550/arxiv.2211.04111
DatabaseName arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2211_04111
GroupedDBID AKZ
GOX
ID FETCH-LOGICAL-a671-90282287fed263632b01308491b690e5b86e0aa41880a610cc963541716c82993
IEDL.DBID GOX
IngestDate Mon Jan 08 05:49:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a671-90282287fed263632b01308491b690e5b86e0aa41880a610cc963541716c82993
OpenAccessLink https://arxiv.org/abs/2211.04111
ParticipantIDs arxiv_primary_2211_04111
PublicationCentury 2000
PublicationDate 2022-11-08
PublicationDateYYYYMMDD 2022-11-08
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-08
  day: 08
PublicationDecade 2020
PublicationYear 2022
Score 1.8632807
SecondaryResourceType preprint
Snippet In this paper, we study the action of special $n\times n $ linear (resp. symplectic) matrices which are homotopic to identity on the right invertible $n\times...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Mathematics - K-Theory and Homology
Title Generalised homotopy and commutativity principle
URI https://arxiv.org/abs/2211.04111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07T8MwED7RTiwIBKg85YE1wjk7sT0iaOkEAx26RU5siy4QNS2Cf1-fkwoWVtvL2dY9v_sO4M57zm2OUfsJ5TJZRD1oat5kihdOCFRcp-r5_E29LPXTlGhy2L4Xxq6_V189P3Dd3SMSw6bMqXl3hEiQrefXZV-cTFRcw_nfc9HHTEt_jMTsGI4G74499M9xAgf-4xT4QO286rxj74R--2x_WIzgWUPdGZthgANr93nvM1jMpovHeTYMKshsqQjhQFhMrYJ3WIpSIOUWuZYmr2Ps6Ytal55bK4n6zEZ3pWniry8kEdU0OpoDcQ7jGOv7CTAXbDCukMiDldJ4E7Q1ImBJM3KswAuYJPGqtueiqEjyKkl--f_WFRwiofZTNvQaxpv11t_AqHPb23ShO4mkcSU
link.rule.ids 228,230,782,887
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalised+homotopy+and+commutativity+principle&rft.au=Rao%2C+Ravi+A&rft.au=Sharma%2C+Sampat&rft.date=2022-11-08&rft_id=info:doi/10.48550%2Farxiv.2211.04111&rft.externalDocID=2211_04111