GoodPoint: unsupervised learning of keypoint detection and description

This paper introduces a new algorithm for unsupervised learning of keypoint detectors and descriptors, which demonstrates fast convergence and good performance across different datasets. The training procedure uses homographic transformation of images. The proposed model learns to detect points and...

Full description

Saved in:
Bibliographic Details
Main Authors: Belikov, Anatoly, Potapov, Alexey
Format: Journal Article
Language:English
Published: 01-06-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper introduces a new algorithm for unsupervised learning of keypoint detectors and descriptors, which demonstrates fast convergence and good performance across different datasets. The training procedure uses homographic transformation of images. The proposed model learns to detect points and generate descriptors on pairs of transformed images, which are easy for it to distinguish and repeatedly detect. The trained model follows SuperPoint architecture for ease of comparison, and demonstrates similar performance on natural images from HPatches dataset, and better performance on retina images from Fundus Image Registration Dataset, which contain low number of corner-like features. For HPatches and other datasets, coverage was also computed to provide better estimation of model quality.
AbstractList This paper introduces a new algorithm for unsupervised learning of keypoint detectors and descriptors, which demonstrates fast convergence and good performance across different datasets. The training procedure uses homographic transformation of images. The proposed model learns to detect points and generate descriptors on pairs of transformed images, which are easy for it to distinguish and repeatedly detect. The trained model follows SuperPoint architecture for ease of comparison, and demonstrates similar performance on natural images from HPatches dataset, and better performance on retina images from Fundus Image Registration Dataset, which contain low number of corner-like features. For HPatches and other datasets, coverage was also computed to provide better estimation of model quality.
Author Belikov, Anatoly
Potapov, Alexey
Author_xml – sequence: 1
  givenname: Anatoly
  surname: Belikov
  fullname: Belikov, Anatoly
– sequence: 2
  givenname: Alexey
  surname: Potapov
  fullname: Potapov, Alexey
BackLink https://doi.org/10.48550/arXiv.2006.01030$$DView paper in arXiv
BookMark eNotj01OwzAQhb2ABZQeoCt8gYSJE8cJO1TRUqkSLLqPRuMxsih25KQVvT1JYfX09H6k717chBhYiFUBedVoDU-Yfvw5VwB1DgWUcCc22xjtR_RhfJanMJx6Tmc_sJVHxhR8-JTRyS--9HNFWh6ZRh-DxGAnN1Dy_ewfxK3D48DLf12Iw-b1sH7L9u_b3fpln2FtIGNqHLcKscCCTQNGVcbZWrWNIa7JGV1poJaQmIGaKWCnWFuAaUPalQvx-Hd7Ben65L8xXboZqLsClb9ly0lk
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKY
GOX
DOI 10.48550/arxiv.2006.01030
DatabaseName arXiv Computer Science
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2006_01030
GroupedDBID AKY
GOX
ID FETCH-LOGICAL-a670-ec8fe92aa1a1e7807247fd62987ce6cf75450c9cacee0c8629ef2e5d002aac5f3
IEDL.DBID GOX
IngestDate Mon Jan 08 05:50:06 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a670-ec8fe92aa1a1e7807247fd62987ce6cf75450c9cacee0c8629ef2e5d002aac5f3
OpenAccessLink https://arxiv.org/abs/2006.01030
ParticipantIDs arxiv_primary_2006_01030
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationYear 2020
Score 1.7720584
SecondaryResourceType preprint
Snippet This paper introduces a new algorithm for unsupervised learning of keypoint detectors and descriptors, which demonstrates fast convergence and good performance...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Computer Vision and Pattern Recognition
Computer Science - Learning
Title GoodPoint: unsupervised learning of keypoint detection and description
URI https://arxiv.org/abs/2006.01030
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07T8MwED7RTiwIBKg85YE1InWb2GFD0JQJkOjQrTrbZ9QlqZoG8fM5O-GxMNq-xWef7z6ffR_AjbOBjDxTyZQ8MkDBLDFZPuG9rA1J51xmInXCm3pe6sdZKJMjvv_C4PZz_dHVBzbNbZcrCExYAxhIGZ5szV-WXXIyluLq5X_lOMaMXX-cRHkIB310J-675TiCPaqOoZzXtXut19XuTrRV026CeTbkRM_Y8C5qL9iWNkFEONrF11GVYIzPrR-zPoFFOVs8PCU9fUGCuUoTstpTIRHHOCalUyWnyrtcMsi3lFuvOHZJbWGR3VRqGVgU5CVljo8oRJv5ySkMq7qiEQg78exqCjSocaqLsQmux5pUK-7gGOIMRnHSq01XoSJwS-arqI_z_4cuYF8G8BivFC5huNu2dAWDxrXXUc1fOqJ85w
link.rule.ids 228,230,782,887
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GoodPoint%3A+unsupervised+learning+of+keypoint+detection+and+description&rft.au=Belikov%2C+Anatoly&rft.au=Potapov%2C+Alexey&rft.date=2020-06-01&rft_id=info:doi/10.48550%2Farxiv.2006.01030&rft.externalDocID=2006_01030