Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation

Under modern conditions only North Pacific Intermediate Water is formed in the northwest Pacific Ocean. This situation might have changed in the past. Recent studies with general circulation models indicate a switch to deep-water formation in the northwest Pacific during Heinrich Stadial 1 (17.5–15....

Full description

Saved in:
Bibliographic Details
Published in:Climate of the past Vol. 10; no. 2; pp. 591 - 605
Main Authors: Max, L, Lembke-Jene, L, Riethdorf, J.-R, Tiedemann, R, Nürnberg, D, Kühn, H, Mackensen, A
Format: Journal Article
Language:English
Published: Katlenburg-Lindau Copernicus GmbH 21-03-2014
Copernicus Publications
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Under modern conditions only North Pacific Intermediate Water is formed in the northwest Pacific Ocean. This situation might have changed in the past. Recent studies with general circulation models indicate a switch to deep-water formation in the northwest Pacific during Heinrich Stadial 1 (17.5–15.0 ka) of the last glacial termination. Reconstructions of past ventilation changes based on paleoceanographic proxy records are still insufficient to test whether a deglacial mode of deep-water formation in the North Pacific Ocean existed. Here we present deglacial ventilation records based on radiocarbon-derived ventilation ages in combination with epibenthic stable carbon isotopes from the northwest Pacific including the Okhotsk Sea and Bering Sea, the two potential source regions for past North Pacific ventilation changes. Evidence for most rigorous ventilation of the intermediate-depth North Pacific occurred during Heinrich Stadial 1 and the Younger Dryas, simultaneous to significant reductions in Atlantic Meridional Overturning Circulation. Concurrent changes in δ13C and ventilation ages point to the Okhotsk Sea as driver of millennial-scale changes in North Pacific Intermediate Water ventilation during the last deglaciation. Our records additionally indicate that changes in the δ13C intermediate-water (700–1750 m water depth) signature and radiocarbon-derived ventilation ages are in antiphase to those of the deep North Pacific Ocean (>2100 m water depth) during the last glacial termination. Thus, intermediate- and deep-water masses of the northwest Pacific have a differing ventilation history during the last deglaciation.
AbstractList Under modern conditions only North Pacific Intermediate Water is formed in the northwest Pacific Ocean. This situation might have changed in the past. Recent studies with general circulation models indicate a switch to deep-water formation in the northwest Pacific during Heinrich Stadial 1 (17.5-15.0 ka) of the last glacial termination. Reconstructions of past ventilation changes based on paleoceanographic proxy records are still insufficient to test whether a deglacial mode of deep-water formation in the North Pacific Ocean existed. Here we present deglacial ventilation records based on radiocarbon-derived ventilation ages in combination with epibenthic stable carbon isotopes from the northwest Pacific including the Okhotsk Sea and Bering Sea, the two potential source regions for past North Pacific ventilation changes. Evidence for most rigorous ventilation of the intermediate-depth North Pacific occurred during Heinrich Stadial 1 and the Younger Dryas, simultaneous to significant reductions in Atlantic Meridional Overturning Circulation. Concurrent changes in δ13 C and ventilation ages point to the Okhotsk Sea as driver of millennial-scale changes in North Pacific Intermediate Water ventilation during the last deglaciation. Our records additionally indicate that changes in the δ13 C intermediate-water (700-1750 m water depth) signature and radiocarbon-derived ventilation ages are in antiphase to those of the deep North Pacific Ocean (>2100 m water depth) during the last glacial termination. Thus, intermediate- and deep-water masses of the northwest Pacific have a differing ventilation history during the last deglaciation.
Under modern conditions only North Pacific Intermediate Water is formed in the northwest Pacific Ocean. This situation might have changed in the past. Recent studies with general circulation models indicate a switch to deep-water formation in the northwest Pacific during Heinrich Stadial 1 (17.5-15.0 ka) of the last glacial termination. Reconstructions of past ventilation changes based on paleoceanographic proxy records are still insufficient to test whether a deglacial mode of deep-water formation in the North Pacific Ocean existed. Here we present deglacial ventilation records based on radiocarbon-derived ventilation ages in combination with epibenthic stable carbon isotopes from the northwest Pacific including the Okhotsk Sea and Bering Sea, the two potential source regions for past North Pacific ventilation changes. Evidence for most rigorous ventilation of the intermediate-depth North Pacific occurred during Heinrich Stadial 1 and the Younger Dryas, simultaneous to significant reductions in Atlantic Meridional Overturning Circulation. Concurrent changes in delta super(13)C and ventilation ages point to the Okhotsk Sea as driver of millennial-scale changes in North Pacific Intermediate Water ventilation during the last deglaciation. Our records additionally indicate that changes in the delta super(13)C intermediate-water (700-1750 m water depth) signature and radiocarbon-derived ventilation ages are in antiphase to those of the deep North Pacific Ocean (>2100 m water depth) during the last glacial termination. Thus, intermediate- and deep-water masses of the northwest Pacific have a differing ventilation history during the last deglaciation.
Under modern conditions only North Pacific Intermediate Water is formed in the northwest Pacific Ocean. This situation might have changed in the past. Recent studies with general circulation models indicate a switch to deep-water formation in the northwest Pacific during Heinrich Stadial 1 (17.5-15.0 ka) of the last glacial termination. Reconstructions of past ventilation changes based on paleoceanographic proxy records are still insufficient to test whether a deglacial mode of deep-water formation in the North Pacific Ocean existed. Here we present deglacial ventilation records based on radiocarbon-derived ventilation ages in combination with epibenthic stable carbon isotopes from the northwest Pacific including the Okhotsk Sea and Bering Sea, the two potential source regions for past North Pacific ventilation changes. Evidence for most rigorous ventilation of the intermediate-depth North Pacific occurred during Heinrich Stadial 1 and the Younger Dryas, simultaneous to significant reductions in Atlantic Meridional Overturning Circulation. Concurrent changes in [delta].sup.13 C and ventilation ages point to the Okhotsk Sea as driver of millennial-scale changes in North Pacific Intermediate Water ventilation during the last deglaciation. Our records additionally indicate that changes in the [delta].sup.13 C intermediate-water (700-1750 m water depth) signature and radiocarbon-derived ventilation ages are in antiphase to those of the deep North Pacific Ocean (>2100 m water depth) during the last glacial termination. Thus, intermediate- and deep-water masses of the northwest Pacific have a differing ventilation history during the last deglaciation.
Under modern conditions only North Pacific Intermediate Water is formed in the northwest Pacific Ocean. This situation might have changed in the past. Recent studies with general circulation models indicate a switch to deep-water formation in the northwest Pacific during Heinrich Stadial 1 (17.5–15.0 ka) of the last glacial termination. Reconstructions of past ventilation changes based on paleoceanographic proxy records are still insufficient to test whether a deglacial mode of deep-water formation in the North Pacific Ocean existed. Here we present deglacial ventilation records based on radiocarbon-derived ventilation ages in combination with epibenthic stable carbon isotopes from the northwest Pacific including the Okhotsk Sea and Bering Sea, the two potential source regions for past North Pacific ventilation changes. Evidence for most rigorous ventilation of the intermediate-depth North Pacific occurred during Heinrich Stadial 1 and the Younger Dryas, simultaneous to significant reductions in Atlantic Meridional Overturning Circulation. Concurrent changes in δ13C and ventilation ages point to the Okhotsk Sea as driver of millennial-scale changes in North Pacific Intermediate Water ventilation during the last deglaciation. Our records additionally indicate that changes in the δ13C intermediate-water (700–1750 m water depth) signature and radiocarbon-derived ventilation ages are in antiphase to those of the deep North Pacific Ocean (>2100 m water depth) during the last glacial termination. Thus, intermediate- and deep-water masses of the northwest Pacific have a differing ventilation history during the last deglaciation.
Audience Academic
Author Lembke-Jene, L
Max, L
Tiedemann, R
Nürnberg, D
Kühn, H
Mackensen, A
Riethdorf, J.-R
Author_xml – sequence: 1
  fullname: Max, L
– sequence: 2
  fullname: Lembke-Jene, L
– sequence: 3
  fullname: Riethdorf, J.-R
– sequence: 4
  fullname: Tiedemann, R
– sequence: 5
  fullname: Nürnberg, D
– sequence: 6
  fullname: Kühn, H
– sequence: 7
  fullname: Mackensen, A
BookMark eNptklFvFCEQxzemJrbVV59JfNGHrbCwy_JYm6qXNLaxGh_JLMzecd2DE1hj3_rR5a5GrWlIYGb4zw8Y5qg68MFjVb1k9KRlSrw125rRulWsbigTT6pD1jNRK86bg3_sZ9VRSmtKRc9Ue1jdXc1TwkTCSNCvwBu05FOIeUWuwLjRGbLwGeMGrYOM5FuZIvmBPrsJsguejDFsSF4hubxZhZxuyDUCAW_JO4zOL_eunffmTjVBysTicir0PeB59XSEcoUXv9fj6uv78y9nH-uLyw-Ls9OLGlrV5dpYpaRpqep60VLWcQNDJwaprFGMSln2uS0elWC7Vg1dA43EBkCZTozDwI-rxT3XBljrbXQbiLc6gNP7QIhLDTE7M6EupaKcdkJ0ahRmaAqVyp5TVChHGGxhvb5nbWP4PmPKeuOSwWkCj2FOmrVc9LTvGS_SV_9J12GOvry0qBrRK8ml-KtaQjnf-THkCGYH1aflo0TDZd8U1ckjqjIsbpwpzTC6En-Q8OZBQtFk_JmXMKekF9efH4WbGFKKOP6pEaN611_abPemYnrXX_wXjxHB-A
CitedBy_id crossref_primary_10_1029_2021PA004250
crossref_primary_10_1016_j_chemgeo_2017_08_022
crossref_primary_10_3389_feart_2021_638069
crossref_primary_10_1016_j_quascirev_2022_107661
crossref_primary_10_5194_cp_16_387_2020
crossref_primary_10_1016_j_quascirev_2020_106569
crossref_primary_10_1002_2015GC005871
crossref_primary_10_1016_j_quascirev_2017_01_016
crossref_primary_10_1134_S0001437018060115
crossref_primary_10_1126_sciadv_abb3807
crossref_primary_10_1126_sciadv_abg2906
crossref_primary_10_1016_j_gloplacha_2021_103730
crossref_primary_10_1029_2020PA003946
crossref_primary_10_1016_j_gloplacha_2021_103456
crossref_primary_10_1016_j_quascirev_2016_10_017
crossref_primary_10_1029_2020PA003986
crossref_primary_10_1016_j_quascirev_2016_11_032
crossref_primary_10_1038_s41467_018_06080_w
crossref_primary_10_1002_2016PA003062
crossref_primary_10_1002_2016GL070342
crossref_primary_10_5194_essd_12_1053_2020
crossref_primary_10_1016_j_quascirev_2014_11_012
crossref_primary_10_5194_cp_12_1693_2016
crossref_primary_10_1016_j_jseaes_2015_07_020
crossref_primary_10_3389_feart_2021_683984
crossref_primary_10_1002_jqs_2974
crossref_primary_10_1029_2021PA004363
crossref_primary_10_1016_j_gloplacha_2020_103405
crossref_primary_10_1038_ncomms8420
crossref_primary_10_1016_j_quascirev_2022_107412
crossref_primary_10_1016_j_quascirev_2020_106732
crossref_primary_10_1038_s43017_020_00106_y
crossref_primary_10_1016_j_marmicro_2015_09_004
crossref_primary_10_1016_j_epsl_2019_06_028
crossref_primary_10_1016_j_gloplacha_2018_09_014
crossref_primary_10_1002_2014PA002763
crossref_primary_10_1016_j_epsl_2015_05_032
crossref_primary_10_1038_s41561_018_0108_6
crossref_primary_10_1016_j_earscirev_2024_104782
crossref_primary_10_1016_j_margeo_2023_107004
crossref_primary_10_5194_cp_19_2177_2023
crossref_primary_10_1016_j_dsr2_2015_03_007
crossref_primary_10_1016_j_margeo_2022_106875
crossref_primary_10_5194_cp_13_1063_2017
crossref_primary_10_5194_cp_19_159_2023
crossref_primary_10_1002_2017PA003265
crossref_primary_10_1016_j_jseaes_2018_01_032
crossref_primary_10_1038_s41597_023_02024_2
crossref_primary_10_1016_j_quascirev_2020_106549
crossref_primary_10_1126_science_aba7096
crossref_primary_10_1016_j_palaeo_2022_111109
crossref_primary_10_1134_S0024490219020068
crossref_primary_10_1175_JCLI_D_19_0065_1
crossref_primary_10_1016_j_geogeo_2022_100124
crossref_primary_10_1038_ncomms11998
crossref_primary_10_3389_feart_2021_712415
crossref_primary_10_1002_2016PA002994
crossref_primary_10_1029_2020RG000720
crossref_primary_10_1016_j_quascirev_2017_03_012
crossref_primary_10_1016_j_gloplacha_2020_103315
crossref_primary_10_1029_2021PA004312
crossref_primary_10_1016_j_marmicro_2021_101978
crossref_primary_10_1016_j_quascirev_2021_106918
crossref_primary_10_1007_s00367_016_0450_x
crossref_primary_10_1126_sciadv_abd1654
crossref_primary_10_1002_2017PA003174
crossref_primary_10_1029_2022AV000853
crossref_primary_10_1029_2022PA004480
crossref_primary_10_1002_2017PA003133
crossref_primary_10_1029_2018PA003386
crossref_primary_10_1002_2015PA002877
crossref_primary_10_3233_JCM_191032
crossref_primary_10_1016_j_epsl_2014_04_004
crossref_primary_10_5194_essd_14_2553_2022
crossref_primary_10_1029_2021GL095312
crossref_primary_10_5575_geosoc_2017_0066
crossref_primary_10_1038_s41467_019_08606_2
crossref_primary_10_5194_cp_10_2215_2014
crossref_primary_10_1002_2015PA002840
crossref_primary_10_1016_j_jseaes_2015_08_004
crossref_primary_10_3389_fmars_2022_945110
crossref_primary_10_1016_j_marmicro_2017_04_004
Cites_doi 10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2
10.1017/S0033822200010389
10.1029/2005JD006079
10.1016/S0198-0149(12)80001-X
10.1016/j.nimb.2007.01.308
10.1029/2011PA002205
10.1016/j.palaeo.2013.12.013
10.2458/azu_js_rc.55.16947
10.1029/2006PA001384
10.1016/S0377-8398(00)00040-2
10.1023/A:1015830313175
10.1016/j.dsr2.2011.03.005
10.1016/j.dsr2.2005.07.004
10.1029/98PA00874
10.1016/j.dsr2.2011.12.007
10.1029/2001JC001058
10.1017/S0033822200038364
10.1126/science.1190612
10.1029/2004PA001021
10.1016/j.gloplacha.2011.08.004
10.1029/2012PA002292
10.5194/cp-9-1345-2013
10.1126/science.1102293
10.1357/002224083788520207
10.1029/96JC02938
10.1016/0033-5894(84)90099-1
10.1038/ngeo1272
10.1038/387384a0
10.1017/S003382220001208X
10.5194/cp-9-2595-2013
10.1017/S0033822200003672
10.1038/ngeo1352
10.1029/PA003i003p00317
10.1016/0031-0182(81)90039-0
10.1130/G30225.1
10.1130/G22200.1
10.1016/j.dsr2.2011.12.002
10.1016/j.epsl.2013.08.032
10.5194/cp-8-17-2012
10.1175/2008JCLI2511.1
10.1029/2003GL018287
10.1038/nature02494
10.1029/96JC01849
10.1017/S0033822200013904
10.1029/2012GL054118
10.1029/2008GL035133
10.1029/2011PA002126
10.1016/j.dsr2.2005.07.002
10.1175/1520-0442(2003)016<3213:DMOSFT>2.0.CO;2
10.1016/0198-0149(85)90017-2
10.1029/97PA00379
10.1038/nature06227
10.1175/JCLI4296.1
10.1038/379243a0
10.1016/j.nimb.2007.01.225
10.1175/1520-0442(2004)017<2033:TAS>2.0.CO;2
ContentType Journal Article
Copyright COPYRIGHT 2014 Copernicus GmbH
Copyright Copernicus GmbH 2014
Copyright_xml – notice: COPYRIGHT 2014 Copernicus GmbH
– notice: Copyright Copernicus GmbH 2014
DBID AAYXX
CITATION
ISR
7TG
7TN
7UA
ABUWG
AFKRA
AZQEC
BENPR
BFMQW
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H96
H97
HCIFZ
KL.
L.G
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
7QH
DOA
DOI 10.5194/cp-10-591-2014
DatabaseName CrossRef
Gale In Context: Science
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Aqualine
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Continental Europe Database
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
Aqualine
DatabaseTitleList Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1814-9332
EndPage 605
ExternalDocumentID oai_doaj_org_article_81403064469f4cb29d007830e9e7fabd
3305267751
A481423782
10_5194_cp_10_591_2014
GeographicLocations IN, North Pacific, North Pacific Intermediate Water
INW, Okhotsk Sea
IN, Bering Sea
IN, North Pacific
GeographicLocations_xml – name: IN, Bering Sea
– name: IN, North Pacific
– name: IN, North Pacific, North Pacific Intermediate Water
– name: INW, Okhotsk Sea
GroupedDBID 29B
2WC
2XV
3V.
4P2
5GY
5VS
8FE
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ADBBV
AENEX
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BBORY
BCNDV
BENPR
BFMQW
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IEP
IPNFZ
ISR
ITC
K6-
KQ8
LK5
M7R
M~E
OK1
P2P
PCBAR
PIMPY
PQQKQ
PROAC
Q2X
RIG
RKB
RNS
TR2
~02
7TG
7TN
7UA
AZQEC
C1K
DWQXO
F1W
H96
H97
KL.
L.G
PQEST
PQUKI
7QH
ID FETCH-LOGICAL-a596t-cd997c50968450163cab64b79dc91077cd93d79d07ad659b62a27e2aa9c64fbb3
IEDL.DBID DOA
ISSN 1814-9332
1814-9324
IngestDate Tue Oct 22 15:16:13 EDT 2024
Fri Jun 28 06:43:19 EDT 2024
Thu Oct 10 19:34:42 EDT 2024
Tue Nov 19 21:00:51 EST 2024
Tue Nov 12 22:49:48 EST 2024
Thu Aug 01 20:11:37 EDT 2024
Thu Nov 21 21:13:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a596t-cd997c50968450163cab64b79dc91077cd93d79d07ad659b62a27e2aa9c64fbb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6873-8533
OpenAccessLink https://doaj.org/article/81403064469f4cb29d007830e9e7fabd
PQID 1524897374
PQPubID 105735
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_81403064469f4cb29d007830e9e7fabd
proquest_miscellaneous_1534808813
proquest_journals_1524897374
gale_infotracmisc_A481423782
gale_infotracacademiconefile_A481423782
gale_incontextgauss_ISR_A481423782
crossref_primary_10_5194_cp_10_591_2014
PublicationCentury 2000
PublicationDate 2014-03-21
PublicationDateYYYYMMDD 2014-03-21
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-21
  day: 21
PublicationDecade 2010
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Climate of the past
PublicationYear 2014
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref59
  doi: 10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2
– ident: ref56
  doi: 10.1017/S0033822200010389
– ident: ref5
– ident: ref20
– ident: ref46
  doi: 10.1029/2005JD006079
– ident: ref60
  doi: 10.1016/S0198-0149(12)80001-X
– ident: ref31
  doi: 10.1016/j.nimb.2007.01.308
– ident: ref48
  doi: 10.1029/2011PA002205
– ident: ref44
  doi: 10.1016/j.palaeo.2013.12.013
– ident: ref47
  doi: 10.2458/azu_js_rc.55.16947
– ident: ref54
  doi: 10.1029/2006PA001384
– ident: ref35
  doi: 10.1016/S0377-8398(00)00040-2
– ident: ref26
  doi: 10.1023/A:1015830313175
– ident: ref17
– ident: ref38
  doi: 10.1016/j.dsr2.2011.03.005
– ident: ref13
– ident: ref9
  doi: 10.1016/j.dsr2.2005.07.004
– ident: ref25
  doi: 10.1029/98PA00874
– ident: ref21
  doi: 10.1016/j.dsr2.2011.12.007
– ident: ref16
  doi: 10.1029/2001JC001058
– ident: ref30
  doi: 10.1017/S0033822200038364
– ident: ref42
  doi: 10.1126/science.1190612
– ident: ref10
  doi: 10.1029/2004PA001021
– ident: ref27
  doi: 10.1016/j.gloplacha.2011.08.004
– ident: ref36
  doi: 10.1029/2012PA002292
– ident: ref49
  doi: 10.5194/cp-9-1345-2013
– ident: ref6
  doi: 10.1126/science.1102293
– ident: ref64
  doi: 10.1357/002224083788520207
– ident: ref65
  doi: 10.1029/96JC02938
– ident: ref14
  doi: 10.1016/0033-5894(84)90099-1
– ident: ref33
  doi: 10.1038/ngeo1272
– ident: ref39
  doi: 10.1038/387384a0
– ident: ref15
  doi: 10.1017/S003382220001208X
– ident: ref53
  doi: 10.5194/cp-9-2595-2013
– ident: ref57
  doi: 10.1017/S0033822200003672
– ident: ref12
– ident: ref23
  doi: 10.1038/ngeo1352
– ident: ref11
  doi: 10.1029/PA003i003p00317
– ident: ref4
  doi: 10.1016/0031-0182(81)90039-0
– ident: ref41
– ident: ref22
  doi: 10.1130/G30225.1
– ident: ref52
  doi: 10.1130/G22200.1
– ident: ref8
  doi: 10.1016/j.dsr2.2011.12.002
– ident: ref34
  doi: 10.1016/j.epsl.2013.08.032
– ident: ref43
  doi: 10.5194/cp-8-17-2012
– ident: ref45
  doi: 10.1175/2008JCLI2511.1
– ident: ref2
  doi: 10.1029/2003GL018287
– ident: ref32
– ident: ref55
– ident: ref37
  doi: 10.1038/nature02494
– ident: ref63
  doi: 10.1029/96JC01849
– ident: ref58
  doi: 10.1017/S0033822200013904
– ident: ref24
  doi: 10.1029/2012GL054118
– ident: ref51
  doi: 10.1029/2008GL035133
– ident: ref7
  doi: 10.1029/2011PA002126
– ident: ref62
  doi: 10.1016/j.dsr2.2005.07.002
– ident: ref61
  doi: 10.1175/1520-0442(2003)016<3213:DMOSFT>2.0.CO;2
– ident: ref29
  doi: 10.1016/0198-0149(85)90017-2
– ident: ref1
  doi: 10.1029/97PA00379
– ident: ref19
  doi: 10.1038/nature06227
– ident: ref28
  doi: 10.1175/JCLI4296.1
– ident: ref3
  doi: 10.1038/379243a0
– ident: ref18
– ident: ref40
  doi: 10.1016/j.nimb.2007.01.225
– ident: ref50
  doi: 10.1175/1520-0442(2004)017<2033:TAS>2.0.CO;2
SSID ssj0048195
Score 2.3923073
Snippet Under modern conditions only North Pacific Intermediate Water is formed in the northwest Pacific Ocean. This situation might have changed in the past. Recent...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 591
SubjectTerms Marine
Title Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation
URI https://www.proquest.com/docview/1524897374
https://search.proquest.com/docview/1534808813
https://doaj.org/article/81403064469f4cb29d007830e9e7fabd
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagJy4IWhALbWUQglPUPPw8tqVVe-AhFgQ3y09aFSWrTXLnp3fGya60B8SFSxTHEyn2TGa-icdfCHkLQTSoMrDCK18WzJfgBzlXRRKJ8yRsKnOV79VSfvqpPlwgTc72V19YEzbRA08Td4KMTIiSIY1LzLtaB4xqTRl1lMm6kL1vKTbJ1OSDGa4OYaoFdxeAUNhE1whohZ34FboeriswkIrthKPM2v8335wDzuUT8nhGivR0esKn5EFs98niI4Dcbp2_hdN39Pz3LSDO3Dogf76MEOd62iUa25u8sk_zsgydK-9o_vyX94oMkf6Aw5rmcsepHo7iVhMKgJB-vrvphv6OLqOltg30LPMV5ua0rTFLAe4eaIiAv2f9PiPfLy--nV8V8w8WCsu1GAoftJYeCWAU44D9Gm-dYE7q4AFFSAn9TYBWKW0QXDtR21rG2lrtBUvONc_JXtu18QWhzsmEa6pVbSGjid42wisugnBCW-_1grzfzLNZTTwaBvIP1Ijxq3yqK4MaWZAzVMNWCvmv8wWwCjNbhfmXVSzIG1SiQYaLFktoftmx78318qs5BePAWiBVwzPNQqkb1tbbeUcCjAhJsXYkD3ck4RX0u90bWzGzC-gNACOmtGwkjOj1thvvxLK2NnYjyjRMgZ-vmpf_Y9SvyCOcQSyRq6tDsjesx3hEHvZhPM6vxz2iQRD3
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pulses+of+enhanced+North+Pacific+Intermediate+Water+ventilation+from+the+Okhotsk+Sea+and+Bering+Sea+during+the+last+deglaciation&rft.jtitle=Climate+of+the+past&rft.au=Max%2C+L&rft.au=Lembke-Jene%2C+L&rft.au=Riethdorf%2C+J-R&rft.au=Tiedemann%2C+R&rft.date=2014-03-21&rft.issn=1814-9324&rft.eissn=1814-9332&rft.volume=10&rft.issue=2&rft.spage=591&rft.epage=605&rft_id=info:doi/10.5194%2Fcp-10-591-2014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1814-9332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1814-9332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1814-9332&client=summon