Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation
Under modern conditions only North Pacific Intermediate Water is formed in the northwest Pacific Ocean. This situation might have changed in the past. Recent studies with general circulation models indicate a switch to deep-water formation in the northwest Pacific during Heinrich Stadial 1 (17.5–15....
Saved in:
Published in: | Climate of the past Vol. 10; no. 2; pp. 591 - 605 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Katlenburg-Lindau
Copernicus GmbH
21-03-2014
Copernicus Publications |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Under modern conditions only North Pacific Intermediate Water is formed in the northwest Pacific Ocean. This situation might have changed in the past. Recent studies with general circulation models indicate a switch to deep-water formation in the northwest Pacific during Heinrich Stadial 1 (17.5–15.0 ka) of the last glacial termination. Reconstructions of past ventilation changes based on paleoceanographic proxy records are still insufficient to test whether a deglacial mode of deep-water formation in the North Pacific Ocean existed. Here we present deglacial ventilation records based on radiocarbon-derived ventilation ages in combination with epibenthic stable carbon isotopes from the northwest Pacific including the Okhotsk Sea and Bering Sea, the two potential source regions for past North Pacific ventilation changes. Evidence for most rigorous ventilation of the intermediate-depth North Pacific occurred during Heinrich Stadial 1 and the Younger Dryas, simultaneous to significant reductions in Atlantic Meridional Overturning Circulation. Concurrent changes in δ13C and ventilation ages point to the Okhotsk Sea as driver of millennial-scale changes in North Pacific Intermediate Water ventilation during the last deglaciation. Our records additionally indicate that changes in the δ13C intermediate-water (700–1750 m water depth) signature and radiocarbon-derived ventilation ages are in antiphase to those of the deep North Pacific Ocean (>2100 m water depth) during the last glacial termination. Thus, intermediate- and deep-water masses of the northwest Pacific have a differing ventilation history during the last deglaciation. |
---|---|
AbstractList | Under modern conditions only North Pacific Intermediate Water is formed in the northwest Pacific Ocean. This situation might have changed in the past. Recent studies with general circulation models indicate a switch to deep-water formation in the northwest Pacific during Heinrich Stadial 1 (17.5-15.0 ka) of the last glacial termination. Reconstructions of past ventilation changes based on paleoceanographic proxy records are still insufficient to test whether a deglacial mode of deep-water formation in the North Pacific Ocean existed. Here we present deglacial ventilation records based on radiocarbon-derived ventilation ages in combination with epibenthic stable carbon isotopes from the northwest Pacific including the Okhotsk Sea and Bering Sea, the two potential source regions for past North Pacific ventilation changes. Evidence for most rigorous ventilation of the intermediate-depth North Pacific occurred during Heinrich Stadial 1 and the Younger Dryas, simultaneous to significant reductions in Atlantic Meridional Overturning Circulation. Concurrent changes in δ13 C and ventilation ages point to the Okhotsk Sea as driver of millennial-scale changes in North Pacific Intermediate Water ventilation during the last deglaciation. Our records additionally indicate that changes in the δ13 C intermediate-water (700-1750 m water depth) signature and radiocarbon-derived ventilation ages are in antiphase to those of the deep North Pacific Ocean (>2100 m water depth) during the last glacial termination. Thus, intermediate- and deep-water masses of the northwest Pacific have a differing ventilation history during the last deglaciation. Under modern conditions only North Pacific Intermediate Water is formed in the northwest Pacific Ocean. This situation might have changed in the past. Recent studies with general circulation models indicate a switch to deep-water formation in the northwest Pacific during Heinrich Stadial 1 (17.5-15.0 ka) of the last glacial termination. Reconstructions of past ventilation changes based on paleoceanographic proxy records are still insufficient to test whether a deglacial mode of deep-water formation in the North Pacific Ocean existed. Here we present deglacial ventilation records based on radiocarbon-derived ventilation ages in combination with epibenthic stable carbon isotopes from the northwest Pacific including the Okhotsk Sea and Bering Sea, the two potential source regions for past North Pacific ventilation changes. Evidence for most rigorous ventilation of the intermediate-depth North Pacific occurred during Heinrich Stadial 1 and the Younger Dryas, simultaneous to significant reductions in Atlantic Meridional Overturning Circulation. Concurrent changes in delta super(13)C and ventilation ages point to the Okhotsk Sea as driver of millennial-scale changes in North Pacific Intermediate Water ventilation during the last deglaciation. Our records additionally indicate that changes in the delta super(13)C intermediate-water (700-1750 m water depth) signature and radiocarbon-derived ventilation ages are in antiphase to those of the deep North Pacific Ocean (>2100 m water depth) during the last glacial termination. Thus, intermediate- and deep-water masses of the northwest Pacific have a differing ventilation history during the last deglaciation. Under modern conditions only North Pacific Intermediate Water is formed in the northwest Pacific Ocean. This situation might have changed in the past. Recent studies with general circulation models indicate a switch to deep-water formation in the northwest Pacific during Heinrich Stadial 1 (17.5-15.0 ka) of the last glacial termination. Reconstructions of past ventilation changes based on paleoceanographic proxy records are still insufficient to test whether a deglacial mode of deep-water formation in the North Pacific Ocean existed. Here we present deglacial ventilation records based on radiocarbon-derived ventilation ages in combination with epibenthic stable carbon isotopes from the northwest Pacific including the Okhotsk Sea and Bering Sea, the two potential source regions for past North Pacific ventilation changes. Evidence for most rigorous ventilation of the intermediate-depth North Pacific occurred during Heinrich Stadial 1 and the Younger Dryas, simultaneous to significant reductions in Atlantic Meridional Overturning Circulation. Concurrent changes in [delta].sup.13 C and ventilation ages point to the Okhotsk Sea as driver of millennial-scale changes in North Pacific Intermediate Water ventilation during the last deglaciation. Our records additionally indicate that changes in the [delta].sup.13 C intermediate-water (700-1750 m water depth) signature and radiocarbon-derived ventilation ages are in antiphase to those of the deep North Pacific Ocean (>2100 m water depth) during the last glacial termination. Thus, intermediate- and deep-water masses of the northwest Pacific have a differing ventilation history during the last deglaciation. Under modern conditions only North Pacific Intermediate Water is formed in the northwest Pacific Ocean. This situation might have changed in the past. Recent studies with general circulation models indicate a switch to deep-water formation in the northwest Pacific during Heinrich Stadial 1 (17.5–15.0 ka) of the last glacial termination. Reconstructions of past ventilation changes based on paleoceanographic proxy records are still insufficient to test whether a deglacial mode of deep-water formation in the North Pacific Ocean existed. Here we present deglacial ventilation records based on radiocarbon-derived ventilation ages in combination with epibenthic stable carbon isotopes from the northwest Pacific including the Okhotsk Sea and Bering Sea, the two potential source regions for past North Pacific ventilation changes. Evidence for most rigorous ventilation of the intermediate-depth North Pacific occurred during Heinrich Stadial 1 and the Younger Dryas, simultaneous to significant reductions in Atlantic Meridional Overturning Circulation. Concurrent changes in δ13C and ventilation ages point to the Okhotsk Sea as driver of millennial-scale changes in North Pacific Intermediate Water ventilation during the last deglaciation. Our records additionally indicate that changes in the δ13C intermediate-water (700–1750 m water depth) signature and radiocarbon-derived ventilation ages are in antiphase to those of the deep North Pacific Ocean (>2100 m water depth) during the last glacial termination. Thus, intermediate- and deep-water masses of the northwest Pacific have a differing ventilation history during the last deglaciation. |
Audience | Academic |
Author | Lembke-Jene, L Max, L Tiedemann, R Nürnberg, D Kühn, H Mackensen, A Riethdorf, J.-R |
Author_xml | – sequence: 1 fullname: Max, L – sequence: 2 fullname: Lembke-Jene, L – sequence: 3 fullname: Riethdorf, J.-R – sequence: 4 fullname: Tiedemann, R – sequence: 5 fullname: Nürnberg, D – sequence: 6 fullname: Kühn, H – sequence: 7 fullname: Mackensen, A |
BookMark | eNptklFvFCEQxzemJrbVV59JfNGHrbCwy_JYm6qXNLaxGh_JLMzecd2DE1hj3_rR5a5GrWlIYGb4zw8Y5qg68MFjVb1k9KRlSrw125rRulWsbigTT6pD1jNRK86bg3_sZ9VRSmtKRc9Ue1jdXc1TwkTCSNCvwBu05FOIeUWuwLjRGbLwGeMGrYOM5FuZIvmBPrsJsguejDFsSF4hubxZhZxuyDUCAW_JO4zOL_eunffmTjVBysTicir0PeB59XSEcoUXv9fj6uv78y9nH-uLyw-Ls9OLGlrV5dpYpaRpqep60VLWcQNDJwaprFGMSln2uS0elWC7Vg1dA43EBkCZTozDwI-rxT3XBljrbXQbiLc6gNP7QIhLDTE7M6EupaKcdkJ0ahRmaAqVyp5TVChHGGxhvb5nbWP4PmPKeuOSwWkCj2FOmrVc9LTvGS_SV_9J12GOvry0qBrRK8ml-KtaQjnf-THkCGYH1aflo0TDZd8U1ckjqjIsbpwpzTC6En-Q8OZBQtFk_JmXMKekF9efH4WbGFKKOP6pEaN611_abPemYnrXX_wXjxHB-A |
CitedBy_id | crossref_primary_10_1029_2021PA004250 crossref_primary_10_1016_j_chemgeo_2017_08_022 crossref_primary_10_3389_feart_2021_638069 crossref_primary_10_1016_j_quascirev_2022_107661 crossref_primary_10_5194_cp_16_387_2020 crossref_primary_10_1016_j_quascirev_2020_106569 crossref_primary_10_1002_2015GC005871 crossref_primary_10_1016_j_quascirev_2017_01_016 crossref_primary_10_1134_S0001437018060115 crossref_primary_10_1126_sciadv_abb3807 crossref_primary_10_1126_sciadv_abg2906 crossref_primary_10_1016_j_gloplacha_2021_103730 crossref_primary_10_1029_2020PA003946 crossref_primary_10_1016_j_gloplacha_2021_103456 crossref_primary_10_1016_j_quascirev_2016_10_017 crossref_primary_10_1029_2020PA003986 crossref_primary_10_1016_j_quascirev_2016_11_032 crossref_primary_10_1038_s41467_018_06080_w crossref_primary_10_1002_2016PA003062 crossref_primary_10_1002_2016GL070342 crossref_primary_10_5194_essd_12_1053_2020 crossref_primary_10_1016_j_quascirev_2014_11_012 crossref_primary_10_5194_cp_12_1693_2016 crossref_primary_10_1016_j_jseaes_2015_07_020 crossref_primary_10_3389_feart_2021_683984 crossref_primary_10_1002_jqs_2974 crossref_primary_10_1029_2021PA004363 crossref_primary_10_1016_j_gloplacha_2020_103405 crossref_primary_10_1038_ncomms8420 crossref_primary_10_1016_j_quascirev_2022_107412 crossref_primary_10_1016_j_quascirev_2020_106732 crossref_primary_10_1038_s43017_020_00106_y crossref_primary_10_1016_j_marmicro_2015_09_004 crossref_primary_10_1016_j_epsl_2019_06_028 crossref_primary_10_1016_j_gloplacha_2018_09_014 crossref_primary_10_1002_2014PA002763 crossref_primary_10_1016_j_epsl_2015_05_032 crossref_primary_10_1038_s41561_018_0108_6 crossref_primary_10_1016_j_earscirev_2024_104782 crossref_primary_10_1016_j_margeo_2023_107004 crossref_primary_10_5194_cp_19_2177_2023 crossref_primary_10_1016_j_dsr2_2015_03_007 crossref_primary_10_1016_j_margeo_2022_106875 crossref_primary_10_5194_cp_13_1063_2017 crossref_primary_10_5194_cp_19_159_2023 crossref_primary_10_1002_2017PA003265 crossref_primary_10_1016_j_jseaes_2018_01_032 crossref_primary_10_1038_s41597_023_02024_2 crossref_primary_10_1016_j_quascirev_2020_106549 crossref_primary_10_1126_science_aba7096 crossref_primary_10_1016_j_palaeo_2022_111109 crossref_primary_10_1134_S0024490219020068 crossref_primary_10_1175_JCLI_D_19_0065_1 crossref_primary_10_1016_j_geogeo_2022_100124 crossref_primary_10_1038_ncomms11998 crossref_primary_10_3389_feart_2021_712415 crossref_primary_10_1002_2016PA002994 crossref_primary_10_1029_2020RG000720 crossref_primary_10_1016_j_quascirev_2017_03_012 crossref_primary_10_1016_j_gloplacha_2020_103315 crossref_primary_10_1029_2021PA004312 crossref_primary_10_1016_j_marmicro_2021_101978 crossref_primary_10_1016_j_quascirev_2021_106918 crossref_primary_10_1007_s00367_016_0450_x crossref_primary_10_1126_sciadv_abd1654 crossref_primary_10_1002_2017PA003174 crossref_primary_10_1029_2022AV000853 crossref_primary_10_1029_2022PA004480 crossref_primary_10_1002_2017PA003133 crossref_primary_10_1029_2018PA003386 crossref_primary_10_1002_2015PA002877 crossref_primary_10_3233_JCM_191032 crossref_primary_10_1016_j_epsl_2014_04_004 crossref_primary_10_5194_essd_14_2553_2022 crossref_primary_10_1029_2021GL095312 crossref_primary_10_5575_geosoc_2017_0066 crossref_primary_10_1038_s41467_019_08606_2 crossref_primary_10_5194_cp_10_2215_2014 crossref_primary_10_1002_2015PA002840 crossref_primary_10_1016_j_jseaes_2015_08_004 crossref_primary_10_3389_fmars_2022_945110 crossref_primary_10_1016_j_marmicro_2017_04_004 |
Cites_doi | 10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2 10.1017/S0033822200010389 10.1029/2005JD006079 10.1016/S0198-0149(12)80001-X 10.1016/j.nimb.2007.01.308 10.1029/2011PA002205 10.1016/j.palaeo.2013.12.013 10.2458/azu_js_rc.55.16947 10.1029/2006PA001384 10.1016/S0377-8398(00)00040-2 10.1023/A:1015830313175 10.1016/j.dsr2.2011.03.005 10.1016/j.dsr2.2005.07.004 10.1029/98PA00874 10.1016/j.dsr2.2011.12.007 10.1029/2001JC001058 10.1017/S0033822200038364 10.1126/science.1190612 10.1029/2004PA001021 10.1016/j.gloplacha.2011.08.004 10.1029/2012PA002292 10.5194/cp-9-1345-2013 10.1126/science.1102293 10.1357/002224083788520207 10.1029/96JC02938 10.1016/0033-5894(84)90099-1 10.1038/ngeo1272 10.1038/387384a0 10.1017/S003382220001208X 10.5194/cp-9-2595-2013 10.1017/S0033822200003672 10.1038/ngeo1352 10.1029/PA003i003p00317 10.1016/0031-0182(81)90039-0 10.1130/G30225.1 10.1130/G22200.1 10.1016/j.dsr2.2011.12.002 10.1016/j.epsl.2013.08.032 10.5194/cp-8-17-2012 10.1175/2008JCLI2511.1 10.1029/2003GL018287 10.1038/nature02494 10.1029/96JC01849 10.1017/S0033822200013904 10.1029/2012GL054118 10.1029/2008GL035133 10.1029/2011PA002126 10.1016/j.dsr2.2005.07.002 10.1175/1520-0442(2003)016<3213:DMOSFT>2.0.CO;2 10.1016/0198-0149(85)90017-2 10.1029/97PA00379 10.1038/nature06227 10.1175/JCLI4296.1 10.1038/379243a0 10.1016/j.nimb.2007.01.225 10.1175/1520-0442(2004)017<2033:TAS>2.0.CO;2 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2014 Copernicus GmbH Copyright Copernicus GmbH 2014 |
Copyright_xml | – notice: COPYRIGHT 2014 Copernicus GmbH – notice: Copyright Copernicus GmbH 2014 |
DBID | AAYXX CITATION ISR 7TG 7TN 7UA ABUWG AFKRA AZQEC BENPR BFMQW BHPHI BKSAR C1K CCPQU DWQXO F1W H96 H97 HCIFZ KL. L.G PCBAR PIMPY PQEST PQQKQ PQUKI 7QH DOA |
DOI | 10.5194/cp-10-591-2014 |
DatabaseName | CrossRef Gale In Context: Science Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Continental Europe Database ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Aqualine Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Continental Europe Database Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic Aqualine |
DatabaseTitleList | Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1814-9332 |
EndPage | 605 |
ExternalDocumentID | oai_doaj_org_article_81403064469f4cb29d007830e9e7fabd 3305267751 A481423782 10_5194_cp_10_591_2014 |
GeographicLocations | IN, North Pacific, North Pacific Intermediate Water INW, Okhotsk Sea IN, Bering Sea IN, North Pacific |
GeographicLocations_xml | – name: IN, Bering Sea – name: IN, North Pacific – name: IN, North Pacific, North Pacific Intermediate Water – name: INW, Okhotsk Sea |
GroupedDBID | 29B 2WC 2XV 3V. 4P2 5GY 5VS 8FE 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ADBBV AENEX AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS BBORY BCNDV BENPR BFMQW BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD GROUPED_DOAJ H13 HCIFZ IAO IEA IEP IPNFZ ISR ITC K6- KQ8 LK5 M7R M~E OK1 P2P PCBAR PIMPY PQQKQ PROAC Q2X RIG RKB RNS TR2 ~02 7TG 7TN 7UA AZQEC C1K DWQXO F1W H96 H97 KL. L.G PQEST PQUKI 7QH |
ID | FETCH-LOGICAL-a596t-cd997c50968450163cab64b79dc91077cd93d79d07ad659b62a27e2aa9c64fbb3 |
IEDL.DBID | DOA |
ISSN | 1814-9332 1814-9324 |
IngestDate | Tue Oct 22 15:16:13 EDT 2024 Fri Jun 28 06:43:19 EDT 2024 Thu Oct 10 19:34:42 EDT 2024 Tue Nov 19 21:00:51 EST 2024 Tue Nov 12 22:49:48 EST 2024 Thu Aug 01 20:11:37 EDT 2024 Thu Nov 21 21:13:18 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a596t-cd997c50968450163cab64b79dc91077cd93d79d07ad659b62a27e2aa9c64fbb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6873-8533 |
OpenAccessLink | https://doaj.org/article/81403064469f4cb29d007830e9e7fabd |
PQID | 1524897374 |
PQPubID | 105735 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_81403064469f4cb29d007830e9e7fabd proquest_miscellaneous_1534808813 proquest_journals_1524897374 gale_infotracmisc_A481423782 gale_infotracacademiconefile_A481423782 gale_incontextgauss_ISR_A481423782 crossref_primary_10_5194_cp_10_591_2014 |
PublicationCentury | 2000 |
PublicationDate | 2014-03-21 |
PublicationDateYYYYMMDD | 2014-03-21 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Climate of the past |
PublicationYear | 2014 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref64 ref63 ref22 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref59 doi: 10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2 – ident: ref56 doi: 10.1017/S0033822200010389 – ident: ref5 – ident: ref20 – ident: ref46 doi: 10.1029/2005JD006079 – ident: ref60 doi: 10.1016/S0198-0149(12)80001-X – ident: ref31 doi: 10.1016/j.nimb.2007.01.308 – ident: ref48 doi: 10.1029/2011PA002205 – ident: ref44 doi: 10.1016/j.palaeo.2013.12.013 – ident: ref47 doi: 10.2458/azu_js_rc.55.16947 – ident: ref54 doi: 10.1029/2006PA001384 – ident: ref35 doi: 10.1016/S0377-8398(00)00040-2 – ident: ref26 doi: 10.1023/A:1015830313175 – ident: ref17 – ident: ref38 doi: 10.1016/j.dsr2.2011.03.005 – ident: ref13 – ident: ref9 doi: 10.1016/j.dsr2.2005.07.004 – ident: ref25 doi: 10.1029/98PA00874 – ident: ref21 doi: 10.1016/j.dsr2.2011.12.007 – ident: ref16 doi: 10.1029/2001JC001058 – ident: ref30 doi: 10.1017/S0033822200038364 – ident: ref42 doi: 10.1126/science.1190612 – ident: ref10 doi: 10.1029/2004PA001021 – ident: ref27 doi: 10.1016/j.gloplacha.2011.08.004 – ident: ref36 doi: 10.1029/2012PA002292 – ident: ref49 doi: 10.5194/cp-9-1345-2013 – ident: ref6 doi: 10.1126/science.1102293 – ident: ref64 doi: 10.1357/002224083788520207 – ident: ref65 doi: 10.1029/96JC02938 – ident: ref14 doi: 10.1016/0033-5894(84)90099-1 – ident: ref33 doi: 10.1038/ngeo1272 – ident: ref39 doi: 10.1038/387384a0 – ident: ref15 doi: 10.1017/S003382220001208X – ident: ref53 doi: 10.5194/cp-9-2595-2013 – ident: ref57 doi: 10.1017/S0033822200003672 – ident: ref12 – ident: ref23 doi: 10.1038/ngeo1352 – ident: ref11 doi: 10.1029/PA003i003p00317 – ident: ref4 doi: 10.1016/0031-0182(81)90039-0 – ident: ref41 – ident: ref22 doi: 10.1130/G30225.1 – ident: ref52 doi: 10.1130/G22200.1 – ident: ref8 doi: 10.1016/j.dsr2.2011.12.002 – ident: ref34 doi: 10.1016/j.epsl.2013.08.032 – ident: ref43 doi: 10.5194/cp-8-17-2012 – ident: ref45 doi: 10.1175/2008JCLI2511.1 – ident: ref2 doi: 10.1029/2003GL018287 – ident: ref32 – ident: ref55 – ident: ref37 doi: 10.1038/nature02494 – ident: ref63 doi: 10.1029/96JC01849 – ident: ref58 doi: 10.1017/S0033822200013904 – ident: ref24 doi: 10.1029/2012GL054118 – ident: ref51 doi: 10.1029/2008GL035133 – ident: ref7 doi: 10.1029/2011PA002126 – ident: ref62 doi: 10.1016/j.dsr2.2005.07.002 – ident: ref61 doi: 10.1175/1520-0442(2003)016<3213:DMOSFT>2.0.CO;2 – ident: ref29 doi: 10.1016/0198-0149(85)90017-2 – ident: ref1 doi: 10.1029/97PA00379 – ident: ref19 doi: 10.1038/nature06227 – ident: ref28 doi: 10.1175/JCLI4296.1 – ident: ref3 doi: 10.1038/379243a0 – ident: ref18 – ident: ref40 doi: 10.1016/j.nimb.2007.01.225 – ident: ref50 doi: 10.1175/1520-0442(2004)017<2033:TAS>2.0.CO;2 |
SSID | ssj0048195 |
Score | 2.3923073 |
Snippet | Under modern conditions only North Pacific Intermediate Water is formed in the northwest Pacific Ocean. This situation might have changed in the past. Recent... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 591 |
SubjectTerms | Marine |
Title | Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation |
URI | https://www.proquest.com/docview/1524897374 https://search.proquest.com/docview/1534808813 https://doaj.org/article/81403064469f4cb29d007830e9e7fabd |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagJy4IWhALbWUQglPUPPw8tqVVe-AhFgQ3y09aFSWrTXLnp3fGya60B8SFSxTHEyn2TGa-icdfCHkLQTSoMrDCK18WzJfgBzlXRRKJ8yRsKnOV79VSfvqpPlwgTc72V19YEzbRA08Td4KMTIiSIY1LzLtaB4xqTRl1lMm6kL1vKTbJ1OSDGa4OYaoFdxeAUNhE1whohZ34FboeriswkIrthKPM2v8335wDzuUT8nhGivR0esKn5EFs98niI4Dcbp2_hdN39Pz3LSDO3Dogf76MEOd62iUa25u8sk_zsgydK-9o_vyX94oMkf6Aw5rmcsepHo7iVhMKgJB-vrvphv6OLqOltg30LPMV5ua0rTFLAe4eaIiAv2f9PiPfLy--nV8V8w8WCsu1GAoftJYeCWAU44D9Gm-dYE7q4AFFSAn9TYBWKW0QXDtR21rG2lrtBUvONc_JXtu18QWhzsmEa6pVbSGjid42wisugnBCW-_1grzfzLNZTTwaBvIP1Ijxq3yqK4MaWZAzVMNWCvmv8wWwCjNbhfmXVSzIG1SiQYaLFktoftmx78318qs5BePAWiBVwzPNQqkb1tbbeUcCjAhJsXYkD3ck4RX0u90bWzGzC-gNACOmtGwkjOj1thvvxLK2NnYjyjRMgZ-vmpf_Y9SvyCOcQSyRq6tDsjesx3hEHvZhPM6vxz2iQRD3 |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pulses+of+enhanced+North+Pacific+Intermediate+Water+ventilation+from+the+Okhotsk+Sea+and+Bering+Sea+during+the+last+deglaciation&rft.jtitle=Climate+of+the+past&rft.au=Max%2C+L&rft.au=Lembke-Jene%2C+L&rft.au=Riethdorf%2C+J-R&rft.au=Tiedemann%2C+R&rft.date=2014-03-21&rft.issn=1814-9324&rft.eissn=1814-9332&rft.volume=10&rft.issue=2&rft.spage=591&rft.epage=605&rft_id=info:doi/10.5194%2Fcp-10-591-2014&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1814-9332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1814-9332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1814-9332&client=summon |