Sample size determination in geotechnical site investigation considering spatial variation and correlation
Site investigation is a fundamental element in geotechnical engineering practice, but only a small portion of geomaterials is sampled and tested during site investigation. This leads to a question of sample size determination: how many samples are needed to achieve a target level of accuracy for the...
Saved in:
Published in: | Canadian geotechnical journal Vol. 56; no. 7; pp. 992 - 1002 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Ottawa
NRC Research Press
01-07-2019
Canadian Science Publishing NRC Research Press |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Site investigation is a fundamental element in geotechnical engineering practice, but only a small portion of geomaterials is sampled and tested during site investigation. This leads to a question of sample size determination: how many samples are needed to achieve a target level of accuracy for the results inferred from the samples? Sample size determination is a well-known topic in statistics and has many applications in a wide variety of areas. However, conventional statistical methods, which mainly deal with independent data, only have limited applications in geotechnical site investigation because geotechnical data are not independent, but spatially varying and correlated. Existing design codes around the world (e.g., Eurocode 7) only provide conceptual principles on sample size determination. No scientific or quantitative method is available for sample size determination in site investigation considering spatial variation and correlation of geotechnical properties. This study performs an extensive parametric study and develops a statistical chart for sample size determination with consideration of spatial variation and correlation using Bayesian compressive sensing or sampling. Real cone penetration test data and real laboratory test data are used to illustrate application of the proposed statistical chart, and the method is shown to perform well. |
---|---|
AbstractList | Site investigation is a fundamental element in geotechnical engineering practice, but only a small portion of geomaterials is sampled and tested during site investigation. This leads to a question of sample size determination: how many samples are needed to achieve a target level of accuracy for the results inferred from the samples? Sample size determination is a well-known topic in statistics and has many applications in a wide variety of areas. However, conventional statistical methods, which mainly deal with independent data, only have limited applications in geotechnical site investigation because geotechnical data are not independent, but spatially varying and correlated. Existing design codes around the world (e.g., Eurocode 7) only provide conceptual principles on sample size determination. No scientific or quantitative method is available for sample size determination in site investigation considering spatial variation and correlation of geotechnical properties. This study performs an extensive parametric study and develops a statistical chart for sample size determination with consideration of spatial variation and correlation using Bayesian compressive sensing or sampling. Real cone penetration test data and real laboratory test data are used to illustrate application of the proposed statistical chart, and the method is shown to perform well. Site investigation is a fundamental element in geotechnical engineering practice, but only a small portion of geomaterials is sampled and tested during site investigation. This leads to a question of sample size determination: how many samples are needed to achieve a target level of accuracy for the results inferred from the samples? Sample size determination is a well-known topic in statistics and has many applications in a wide variety of areas. However, conventional statistical methods, which mainly deal with independent data, only have limited applications in geotechnical site investigation because geotechnical data are not independent, but spatially varying and correlated. Existing design codes around the world (e.g., Eurocode 7) only provide conceptual principles on sample size determination. No scientific or quantitative method is available for sample size determination in site investigation considering spatial variation and correlation of geotechnical properties. This study performs an extensive parametric study and develops a statistical chart for sample size determination with consideration of spatial variation and correlation using Bayesian compressive sensing or sampling. Real cone penetration test data and real laboratory test data are used to illustrate application of the proposed statistical chart, and the method is shown to perform well. Key words: geotechnical site investigation, sample size, Bayesian method, compressive sensing, random field. L'etude du site est un element fondamental de la pratique de l'ingenierie geotechnique, mais seule une petite partie des geomateriaux est echantillonnee et testee au cours de l'etude du site. Cela conduit a une question de determination de la taille de l'echantillon : combien faut-il d'echantillons pour atteindre un niveau cible d'exactitude pour les resultats deduits des echantillons? La determination de la taille des echantillons est un sujet bien connu en statistique et a de nombreuses applications dans de nombreux domaines. Cependant, les methodes statistiques conventionnelles, qui traitent principalement de donnees independantes, n'ont que des applications limitees dans l'etude geotechnique de sites, car les donnees geotechniques ne sont pas independantes, mais varient dans l'espace et en correlation. Les codes de conception existants dans le monde (Eurocode 7, par exemple) ne fournissent que des principes conceptuels pour la determination de la taille de l'echantillon. Aucune methode scientifique ou quantitative n'est disponible pour la determination de la taille de l'echantillon dans l'etude du site, compte tenu de la variation spatiale et de la correlation des proprietes geotechniques. Cette etude realise une evaluation parametrique approfondie et developpe un tableau statistique pour la determination de la taille de l'echantillon en prenant en compte la variation et la correlation spatiales a l'aide de la detection ou de l'echantillonnage bayesien en compression. Les donnees des tests de penetration au cone reel et les donnees des tests de laboratoire reels sont utilisees pour illustrer l'application du diagramme statistique propose, et il est demontre que la methode donne de bons resultats. [Traduit par la Redaction] Mots-cles: etude geotechnique du site, taille de l'echantillon, methode bayesienne, detection de compression, champ aleatoire. |
Abstract_FL | L’étude du site est un élément fondamental de la pratique de l’ingénierie géotechnique, mais seule une petite partie des géomatériaux est échantillonnée et testée au cours de l’étude du site. Cela conduit à une question de détermination de la taille de l’échantillon : combien faut-il d’échantillons pour atteindre un niveau cible d’exactitude pour les résultats déduits des échantillons? La détermination de la taille des échantillons est un sujet bien connu en statistique et a de nombreuses applications dans de nombreux domaines. Cependant, les méthodes statistiques conventionnelles, qui traitent principalement de données indépendantes, n’ont que des applications limitées dans l’étude géotechnique de sites, car les données géotechniques ne sont pas indépendantes, mais varient dans l’espace et en corrélation. Les codes de conception existants dans le monde (Eurocode 7, par exemple) ne fournissent que des principes conceptuels pour la détermination de la taille de l’échantillon. Aucune méthode scientifique ou quantitative n’est disponible pour la détermination de la taille de l’échantillon dans l’étude du site, compte tenu de la variation spatiale et de la corrélation des propriétés géotechniques. Cette étude réalise une évaluation paramétrique approfondie et développe un tableau statistique pour la détermination de la taille de l’échantillon en prenant en compte la variation et la corrélation spatiales à l’aide de la détection ou de l’échantillonnage bayésien en compression. Les données des tests de pénétration au cône réel et les données des tests de laboratoire réels sont utilisées pour illustrer l’application du diagramme statistique proposé, et il est démontré que la méthode donne de bons résultats. [Traduit par la Rédaction] |
Audience | Academic |
Author | Wang, Yu Zhao, Tengyuan Guan, Zheng |
Author_xml | – sequence: 1 givenname: Yu surname: Wang fullname: Wang, Yu – sequence: 2 givenname: Zheng surname: Guan fullname: Guan, Zheng organization: Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong – sequence: 3 givenname: Tengyuan surname: Zhao fullname: Zhao, Tengyuan organization: Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong |
BookMark | eNqV0s1LHDEUAPAgFrpaj70P9uRhbL7HHEW0CtJCbc8hk3kZs8xkxiQr2r_ebLdQhYFSckjy8nv54h2g_TAFQOgjwaeEMPXZ9uuaYnJWY97wPbQiFJ_VEhO8j1YYlzGTDX-PDlJaY0w4p3SF1ndmnAeokv8FVQcZ4uiDyX4KlQ9VD1MGex-8NUMhGUrwEVL2_Y7YKSTfQfShr9JcYoU9muh3qyZ0RcQIw-_5B_TOmSHB0Z_-EP28uvxxcV3ffvtyc3F-WxuhRK5lawXjpOVSOdUKBpYJ6bjCwrKmFZQwbix1ippOSQLAJVgi25YT4ih2DTtEn3b7znF62JTb6vW0iaEcqSkVWDREcfZX9WYA7YObcjR29Mnqc6HK5yhKZFH1guohQDRD-X3nS_iNP17wdvYP-jU6XUCldTB6u7jryZuEYjI85d5sUtI3d9__w35dfJ2NU0oRnJ6jH0181gTrbUnpUlJ6W1J6W1LF450P0UZIYKK9_0fKC9clzW8 |
CitedBy_id | crossref_primary_10_1016_j_compgeo_2020_103898 crossref_primary_10_1016_j_compgeo_2021_104504 crossref_primary_10_1139_cgj_2023_0289 crossref_primary_10_1139_cgj_2020_0440 crossref_primary_10_1139_cgj_2020_0640 crossref_primary_10_1016_j_tust_2020_103771 crossref_primary_10_1016_j_jrmge_2021_09_007 crossref_primary_10_1016_j_jrmge_2022_01_011 crossref_primary_10_1016_j_conbuildmat_2023_134519 crossref_primary_10_1080_17499518_2023_2188464 crossref_primary_10_1016_j_compgeo_2023_106064 crossref_primary_10_1016_j_ress_2022_108377 crossref_primary_10_1080_17499518_2021_1971258 crossref_primary_10_1680_jgeot_18_P_315 crossref_primary_10_1139_cgj_2022_0356 crossref_primary_10_1016_j_enggeo_2020_105711 crossref_primary_10_1016_j_jrmge_2023_02_024 crossref_primary_10_3390_agriculture12071045 crossref_primary_10_1016_j_soildyn_2021_106710 crossref_primary_10_2478_amns_2023_2_01155 crossref_primary_10_1061_JGGEFK_GTENG_12408 crossref_primary_10_1016_j_compgeo_2020_103681 crossref_primary_10_1016_j_enggeo_2021_106348 crossref_primary_10_1016_j_ress_2023_109476 crossref_primary_10_1139_cgj_2019_0131 crossref_primary_10_1155_2022_6450780 |
Cites_doi | 10.1137/1.9781611970104 10.1016/j.enggeo.2015.08.017 10.1002/9781118398050 10.1002/nme.255 10.1002/9780470517277 10.1002/cpa.20124 10.1080/17499518.2016.1265653 10.1109/TIT.2007.909108 10.1002/9780470284704 10.1139/cgj-2016-0218 10.2113/gsecongeo.58.8.1246 10.1061/(ASCE)GT.1943-5606.0000723 10.1016/0167-4730(86)90002-0 10.1061/AJGEB6.0000517 10.1139/cgj-2015-0545 10.1061/(ASCE)0733-9410(1994)120:10(1704) 10.1109/TIT.2006.871582 10.1061/(ASCE)0733-9399(1994)120:12(2660) 10.1139/cgj-2013-0478 10.1016/j.enggeo.2015.08.018 10.1109/TSP.2007.914345 10.1016/j.enggeo.2017.10.019 10.1016/j.sandf.2018.05.002 10.1016/j.enggeo.2004.10.005 10.1139/cgj-2017-0219 10.1080/17499510701697377 10.1016/j.enggeo.2018.02.009 10.1016/0148-9062(70)90013-6 10.1080/17499518.2016.1235711 10.1016/j.ymssp.2018.04.042 10.1109/TSP.2008.2005866 10.1680/jgeot.16.P.143 10.1139/cgj-2017-0254 10.1139/t99-038 10.1016/j.enggeo.2017.03.023 10.1177/001316447003000308 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 NRC Research Press 2019 Published by NRC Research Press |
Copyright_xml | – notice: COPYRIGHT 2019 NRC Research Press – notice: 2019 Published by NRC Research Press |
DBID | AAYXX CITATION ISN ISR 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G |
DOI | 10.1139/cgj-2018-0474 |
DatabaseName | CrossRef Gale In Context: Canada Gale in Context: Science Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics |
EISSN | 1208-6010 |
EndPage | 1002 |
ExternalDocumentID | A594429216 10_1139_cgj_2018_0474 cgj-2018-0474 |
GroupedDBID | 02 08R 0R 1AW 29B 2XV 3V. 4.4 4P2 4S 5GY 5RP 88I 8AF 8FE 8FG 8FH 8FQ AAIKC ABDBF ABJCF ABPTK ABUWG ACGFS ACGOD ACIWK AENEX AFKRA AFRAH ALMA_UNASSIGNED_HOLDINGS ARCSS AZQEC BCR BENPR BGLVJ BHPHI BKSAR BLC BPHCQ CAG COF CS3 D8U DU5 DWQXO EAD EAP EAS EBS ECC EDH EDO EJD EMK EPL ESX GNUQQ HCIFZ HZ H~9 I-F IAO ICQ IEA IGS IOF ISN ISR ITC L6V L7B L8X LK5 M2P M2Q M3C M3G M7R M7S MM- MV1 NMEPN NRXXU NYCZX O9- OVD P2P PCBAR PQEST PQQKQ PQUKI PRINS PROAC PTHSS QF4 QM1 QN7 QO4 QRP RIG RRCRK RRP RWL SJN TAE TUS U5U X XHC -~X ..I .4S .DC 00T 0R~ 6J9 AAMNW AAYXX ABJNI ACGFO ADNWM AEGXH AIAGR CCPQU CITATION DATHI HZ~ IPNFZ ONR P-S PV9 RZL TEORI VQG ~02 ML. 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G |
ID | FETCH-LOGICAL-a595t-6bc5341b469f9b53ec356f4905c37b52134ac2f92ad961ee46ec16bb411f20f73 |
ISSN | 0008-3674 |
IngestDate | Sun Nov 10 05:04:30 EST 2024 Tue Nov 19 21:24:15 EST 2024 Thu Nov 14 21:12:27 EST 2024 Tue Dec 12 21:18:13 EST 2023 Tue Nov 12 22:50:16 EST 2024 Thu Aug 01 20:28:24 EDT 2024 Thu Aug 01 19:14:45 EDT 2024 Thu Nov 21 22:29:28 EST 2024 Wed Nov 11 00:35:13 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a595t-6bc5341b469f9b53ec356f4905c37b52134ac2f92ad961ee46ec16bb411f20f73 |
PQID | 2250571943 |
PQPubID | 47495 |
PageCount | 11 |
ParticipantIDs | gale_incontextgauss_ISR_A594429216 gale_infotracgeneralonefile_A594429216 proquest_journals_2250571943 gale_incontextgauss_ISN_A594429216 gale_infotraccpiq_594429216 gale_infotracacademiconefile_A594429216 nrcresearch_primary_10_1139_cgj_2018_0474 gale_infotracmisc_A594429216 crossref_primary_10_1139_cgj_2018_0474 |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Ottawa |
PublicationPlace_xml | – name: Ottawa |
PublicationTitle | Canadian geotechnical journal |
PublicationYear | 2019 |
Publisher | NRC Research Press Canadian Science Publishing NRC Research Press |
Publisher_xml | – name: NRC Research Press – name: Canadian Science Publishing NRC Research Press |
References | refg40/ref40 refg20/ref20 refg22/ref22 refg36/ref36 refg38/ref38 Vanmarcke E.H. (refg32/ref32) 1977; 103 refg31/ref31 refg9/ref9 refg11/ref11 refg25/ref25 refg6/ref6 refg15/ref15 refg29/ref29 refg43/ref43 refg34/ref34 refg26/ref26 refg14/ref14 refg5/ref5 refg2/ref2 refg23/ref23 refg37/ref37 refg17/ref17 refg30/ref30 refg21/ref21 refg7/ref7 refg4/ref4 refg10/ref10 refg12/ref12 refg1/ref1 refg28/ref28 refg41/ref41 refg35/ref35 refg39/ref39 refg3/ref3 refg42/ref42 refg44/ref44 refg24/ref24 refg16/ref16 refg33/ref33 refg13/ref13 refg27/ref27 |
References_xml | – ident: refg11/ref11 doi: 10.1137/1.9781611970104 – ident: refg36/ref36 doi: 10.1016/j.enggeo.2015.08.017 – ident: refg1/ref1 doi: 10.1002/9781118398050 – ident: refg17/ref17 doi: 10.1002/nme.255 – ident: refg39/ref39 doi: 10.1002/9780470517277 – ident: refg7/ref7 – ident: refg26/ref26 – ident: refg5/ref5 doi: 10.1002/cpa.20124 – ident: refg28/ref28 doi: 10.1080/17499518.2016.1265653 – ident: refg31/ref31 doi: 10.1109/TIT.2007.909108 – ident: refg13/ref13 doi: 10.1002/9780470284704 – ident: refg24/ref24 doi: 10.1139/cgj-2016-0218 – ident: refg25/ref25 doi: 10.2113/gsecongeo.58.8.1246 – ident: refg30/ref30 doi: 10.1061/(ASCE)GT.1943-5606.0000723 – ident: refg33/ref33 doi: 10.1016/0167-4730(86)90002-0 – volume: 103 start-page: 1227 issue: 11 year: 1977 ident: refg32/ref32 publication-title: Journal of the Geotechnical Engineering Division, ASCE doi: 10.1061/AJGEB6.0000517 contributor: fullname: Vanmarcke E.H. – ident: refg34/ref34 doi: 10.1139/cgj-2015-0545 – ident: refg3/ref3 doi: 10.1061/(ASCE)0733-9410(1994)120:10(1704) – ident: refg12/ref12 doi: 10.1109/TIT.2006.871582 – ident: refg41/ref41 doi: 10.1061/(ASCE)0733-9399(1994)120:12(2660) – ident: refg14/ref14 doi: 10.1139/cgj-2013-0478 – ident: refg6/ref6 doi: 10.1016/j.enggeo.2015.08.018 – ident: refg20/ref20 doi: 10.1109/TSP.2007.914345 – ident: refg37/ref37 doi: 10.1016/j.enggeo.2017.10.019 – ident: refg42/ref42 doi: 10.1016/j.sandf.2018.05.002 – ident: refg15/ref15 doi: 10.1016/j.enggeo.2004.10.005 – ident: refg44/ref44 doi: 10.1139/cgj-2017-0219 – ident: refg16/ref16 doi: 10.1080/17499510701697377 – ident: refg4/ref4 doi: 10.1016/j.enggeo.2018.02.009 – ident: refg40/ref40 doi: 10.1016/0148-9062(70)90013-6 – ident: refg27/ref27 doi: 10.1080/17499518.2016.1235711 – ident: refg43/ref43 doi: 10.1016/j.ymssp.2018.04.042 – ident: refg21/ref21 doi: 10.1109/TSP.2008.2005866 – ident: refg23/ref23 – ident: refg35/ref35 doi: 10.1680/jgeot.16.P.143 – ident: refg38/ref38 doi: 10.1139/cgj-2017-0254 – ident: refg29/ref29 doi: 10.1139/t99-038 – ident: refg9/ref9 – ident: refg10/ref10 doi: 10.1016/j.enggeo.2017.03.023 – ident: refg22/ref22 doi: 10.1177/001316447003000308 – ident: refg2/ref2 |
SSID | ssj0014422 |
Score | 2.4412613 |
Snippet | Site investigation is a fundamental element in geotechnical engineering practice, but only a small portion of geomaterials is sampled and tested during site... |
SourceID | proquest gale crossref nrcresearch |
SourceType | Aggregation Database Publisher |
StartPage | 992 |
SubjectTerms | Accuracy Bayesian analysis Bayesian method Building codes champ aléatoire Compression Compression tests compressive sensing Cone penetration tests Correlation Correlation analysis détection de compression Engineering Geomaterials Geotechnical data Geotechnical engineering geotechnical site investigation Geotechnology Investigations Laboratory tests méthode bayésienne Probability theory Questions random field Sample size Samples Site planning Size determination Soil properties Spatial variations Statistical methods Statistics Studies taille de l’échantillon Variation étude géotechnique du site |
Title | Sample size determination in geotechnical site investigation considering spatial variation and correlation |
URI | http://www.nrcresearchpress.com/doi/abs/10.1139/cgj-2018-0474 https://www.proquest.com/docview/2250571943 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe68bI9IBggxgqyEBpCKNAkzocfq61TB6hCa5GAFytxnK57SEfbTBp_PXexk9lifD3wElX2ybZ8P5_t693PhLwYDIqkCGWGKcqRx0LGvTyPc1jxRZmmEfNLH3OHx9Nk8jk9HrFRr9e-1HRT9l81DWWga8yc_Qdtd41CAfwGncMXtA7fv9L7NEO-39frxXfMiDKxLm1E41wtNWlrkwsJp00o7Hg2lhiRrp_vbJwMGGsNYldwm9a1OgVutTLxc_a5tiM5cHqwB9w47bVh-VJ3UT-19r9-PVdmB9U-7MZ_O4Oy69qg1zgmmlwo2zHRddwaKcuvNjk76iILnVgTbaNTL4z12z1vlDbLAZTh1dG225qQ3OAzsYww16_rmf0cOWZv3ytCpFqV8wvAj596A9Z2aXNyj4dT8fH4RHw4nbzfIncCMGdoTafvJt1_VYwZTnoz7pbJNeRvncadk4_Z_3erlTSsTuc_nQaaI87sHrlr7iZ0qEF1n_RUtUd2LcbKPbKDlxPN7f2AXGisUcQadbBGFxW1kUARa9TBGrWwRg3WaIc1ClijFtYekk8no9nR2DNvd3hZxKONF-cyggNSzmJe8jwKlQyjuGR8EMkwySPkEcxkUPIgK3jsK8ViJf04z5nvl8GgTMJHZLtaVuoxoZEEY5JIlfKCsSJJM9iGUlX4MpdlHAdsnxy28youNUWLaK62IRegAIEKEKiAffIcZ10g7UmFcVXzrF6vxel0IoYRZ_hwmx__UujMEXpphMrlZpXJzOSywICRTs2RPHAk5eXim7BqD53auaaav62ZviMIe4B0ql9ZQPrTLPRbmAljBtYiwJtQ4nMWPvl99QHZuVnrfbK9WdXqKdlaF_WzZlX8AOtP6CM |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Multiple Vendors |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sample+size+determination+in+geotechnical+site+investigation+considering+spatial+variation+and+correlation&rft.jtitle=Canadian+geotechnical+journal&rft.au=Wang%2C+Yu&rft.au=Guan%2C+Zheng&rft.au=Zhao%2C+Tengyuan&rft.date=2019-07-01&rft.pub=Canadian+Science+Publishing+NRC+Research+Press&rft.issn=0008-3674&rft.eissn=1208-6010&rft.volume=56&rft.issue=7&rft.spage=992&rft.epage=1002&rft_id=info:doi/10.1139%2Fcgj-2018-0474&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-3674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-3674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-3674&client=summon |