Constraints on mechanisms of chondrule formation from chondrule precursors and chronology of transient heating events in the protoplanetary disk

The mineralogy, petrography, and oxygen-isotope compositions of porphyritic chondrules—dominant chondrule type in most chondrite groups—suggest formation by incomplete melting of isotopically diverse precursors during localized transient heating events in dust-rich regions of the protoplanetary disk...

Full description

Saved in:
Bibliographic Details
Published in:GEOCHEMICAL JOURNAL Vol. 51; no. 1; pp. 45 - 68
Main Authors: Krot, Alexander N., Nagashima, Kazuhide
Format: Journal Article
Language:English
Published: 2230 Support GEOCHEMICAL SOCIETY OF JAPAN 01-01-2017
The Geochemical Society of Japan
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The mineralogy, petrography, and oxygen-isotope compositions of porphyritic chondrules—dominant chondrule type in most chondrite groups—suggest formation by incomplete melting of isotopically diverse precursors during localized transient heating events in dust-rich regions of the protoplanetary disk characterized by 16O-poor compositions (Δ17Odust+gas ~ –7‰ to +4‰) relative to the inferred Sun’s value (Δ17O ~ –28 ± 2‰). The chondrule precursors included Ca,Al-rich inclusions (CAIs), amoeboid olivine aggregates (AOAs), chondrules of earlier generations, fine-grained matrix-like material, and possibly fragments of pre-existing planetesimals. Like porphyritic chondrules, igneous CAIs formed by melting of isotopically diverse precursors during transient heating events, but in an isotopically distinct, solar-like reservoir of the protoplanetary disk (Δ17Odust+gas ~ –24‰), probably near the protoSun. Based on a narrow range of the initial 26Al/27Al ratios inferred from the internal Al-Mg isochrons in igneous CAIs, their melting started at the very beginning of Solar System formation (t0), defined by the CV CAIs with U-corrected Pb-Pb age of 4567.3 ± 0.16 Ma and the canonical 26Al/27Al ratio of (5.25 ± 0.02) × 10–5, and lasted at least 0.3 Ma. The U-corrected Pb-Pb absolute and 26Al-26Mg relative ages of porphyritic chondrules from type 3 ordinary, CO, CV, and CR carbonaceous chondrites (assuming uniform distribution of 26Al in the disk at the canonical level) suggest chondrule formation started at t0 and lasted for about 4 Ma. These observations may preclude formation of the majority of porphyritic chondrules by splashing of differentiated planetesimals and by collisions between planetesimals; instead, they are consistent with melting of dust balls by bow shocks or magnetized turbulence in the disk. Some porphyritic chondrules in equilibrated (petrologic type 4–6) ordinary chondrites contain relict fragments of coarse-grained chromite, ilmenite, phosphates, and albitic plagioclase. The similar mineral assemblage is commonly observed in type 4–6 ordinary chondrites, but is absent in type 3 chondrites, suggesting these chondrules formed by incomplete melting of thermally metamorphosed ordinary chondrite material, possibly by impacts. The CB metal-rich carbonaceous chondrites contain exclusively magnesian non-porphyritic chondrules crystallized from complete melts. These chondrules formed in a gas-melt plume generated by a hypervelocity (≥20 km/s) collision between planetesimals ~4.8 Ma after t0 in a transition or a debris disk. One of the colliding bodies was probably differentiated. The CH metal-rich carbonaceous chondrites contain chondrules formed by different mechanisms. The magnesian non-porphyritic chondrules formed in the CB impact plume ~4.8 Ma after t0. The chemically diverse (magnesian, ferroan, and Al-rich) porphyritic chondrules formed by incomplete melting of isotopically diverse precursors in the protoplanetary disk, most likely prior the CB impact plume event. We conclude that there are multiple mechanisms of chondrule formation that operated over the entire life-time of the disk.
AbstractList The mineralogy, petrography, and oxygen-isotope compositions of porphyritic chondrules—dominant chondrule type in most chondrite groups—suggest formation by incomplete melting of isotopically diverse precursors during localized transient heating events in dust-rich regions of the protoplanetary disk characterized by 16O-poor compositions (Δ17Odust+gas ~ –7‰ to +4‰) relative to the inferred Sun’s value (Δ17O ~ –28 ± 2‰). The chondrule precursors included Ca,Al-rich inclusions (CAIs), amoeboid olivine aggregates (AOAs), chondrules of earlier generations, fine-grained matrix-like material, and possibly fragments of pre-existing planetesimals. Like porphyritic chondrules, igneous CAIs formed by melting of isotopically diverse precursors during transient heating events, but in an isotopically distinct, solar-like reservoir of the protoplanetary disk (Δ17Odust+gas ~ –24‰), probably near the protoSun. Based on a narrow range of the initial 26Al/27Al ratios inferred from the internal Al-Mg isochrons in igneous CAIs, their melting started at the very beginning of Solar System formation (t0), defined by the CV CAIs with U-corrected Pb-Pb age of 4567.3 ± 0.16 Ma and the canonical 26Al/27Al ratio of (5.25 ± 0.02) × 10–5, and lasted at least 0.3 Ma. The U-corrected Pb-Pb absolute and 26Al-26Mg relative ages of porphyritic chondrules from type 3 ordinary, CO, CV, and CR carbonaceous chondrites (assuming uniform distribution of 26Al in the disk at the canonical level) suggest chondrule formation started at t0 and lasted for about 4 Ma. These observations may preclude formation of the majority of porphyritic chondrules by splashing of differentiated planetesimals and by collisions between planetesimals; instead, they are consistent with melting of dust balls by bow shocks or magnetized turbulence in the disk. Some porphyritic chondrules in equilibrated (petrologic type 4–6) ordinary chondrites contain relict fragments of coarse-grained chromite, ilmenite, phosphates, and albitic plagioclase. The similar mineral assemblage is commonly observed in type 4–6 ordinary chondrites, but is absent in type 3 chondrites, suggesting these chondrules formed by incomplete melting of thermally metamorphosed ordinary chondrite material, possibly by impacts. The CB metal-rich carbonaceous chondrites contain exclusively magnesian non-porphyritic chondrules crystallized from complete melts. These chondrules formed in a gas-melt plume generated by a hypervelocity (≥20 km/s) collision between planetesimals ~4.8 Ma after t0 in a transition or a debris disk. One of the colliding bodies was probably differentiated. The CH metal-rich carbonaceous chondrites contain chondrules formed by different mechanisms. The magnesian non-porphyritic chondrules formed in the CB impact plume ~4.8 Ma after t0. The chemically diverse (magnesian, ferroan, and Al-rich) porphyritic chondrules formed by incomplete melting of isotopically diverse precursors in the protoplanetary disk, most likely prior the CB impact plume event. We conclude that there are multiple mechanisms of chondrule formation that operated over the entire life-time of the disk.
The mineralogy, petrography, and oxygen-isotope compositions of porphyritic chondrules—dominant chondrule type in most chondrite groups—suggest formation by incomplete melting of isotopically diverse precursors during localized transient heating events in dust-rich regions of the protoplanetary disk characterized by 16O-poor compositions (D17Odust+gas~ –7‰ to +4‰) relative to the inferred Sun’s value (D17O ~ –28 ± 2‰). The chondrule precursors included Ca,Al-rich inclusions (CAIs), amoeboid olivine aggregates (AOAs), chondrules of earlier generations, fine-grained matrix-like material, and possibly fragments of pre-existing planetesimals. Like porphyritic chondrules, igneous CAIs formed by melting of isotopically diverse precursors during transient heating events, but in an isotopically distinct, solar-like reservoir of the protoplanetary disk (D17O dust + gas ~ –24‰), probably near the proto Sun. Based on a narrow range of the initial 26Al/27Alratios inferred from the internal Al-Mg isochrons in igneous CAIs, their melting started at the very beginning of Solar System formation (t0), defined by the CV CAIs with U-corrected Pb-Pb age of 4567.3 ± 0.16 Ma and the canonical 26Al/27Al ratio of (5.25 ± 0.02) ¥ 10–5, and lasted at least 0.3 Ma. The U-corrected Pb-Pb absolute and 26Al-26Mg relative ages of porphyritic chondrules from type 3 ordinary, CO, CV, and CR carbonaceous chondrites (assuming uniform distribution of 26Al in the disk at the canonical level) suggest chondrule formation started at t0 and lasted for about 4 Ma. These observations may preclude formation of the majority of porphyritic chondrules by splashing of differentiated planetesimals and by collisions between planetesimals; instead, they are consistent with melting of dust balls by bow shocks or magnetized turbulence in the disk. Some porphyritic chondrules in equilibrated (petrologic type 4–6) ordinary chondrites contain relict fragments of coarse-grained chromite, ilmenite, phosphates, and albitic plagioclase. The similar mineral assemblage is commonly observed in type 4–6 ordinary chondrites, but is absent in type 3 chondrites, suggesting these chondrules formed by incomplete melting of thermally metamorphosed ordinary chondrite material, possibly by impacts. The CB metal-rich carbonaceous chondrites contain exclusively magnesian non-porphyritic chondrules crystallized from complete melts. These chondrules formed in a gas-melt plume generated by a hypervelocity (≥20 km/s) collision between planetesimals ~4.8 Ma after t0 in a transition or a debris disk. One of the colliding bodies was probably differentiated. The CH metal-rich carbonaceous chondrites contain chondrules formed by different mechanisms. The magnesian non-porphyritic chondrules formed in the CB impact plume ~4.8 Ma after t0. The chemically diverse (magnesian, ferroan, and Al-rich) porphyritic chondrules formed by incomplete melting of isotopically diverse precursors in the protoplanetary disk, most likely prior the CB impact plume event. We conclude that there are multiple mechanisms of chondrule formation that operated over the entire life-time of the disk.
Audience PUBLIC
Author Krot, Alexander N.
Nagashima, Kazuhide
Author_xml – sequence: 1
  fullname: Krot, Alexander N.
  organization: Hawai‘i Institute of Geophysics and Planetology, School of Ocean, Earth Science and Technology, University of Hawai‘i at Manoa
– sequence: 2
  fullname: Nagashima, Kazuhide
  organization: Hawai‘i Institute of Geophysics and Planetology, School of Ocean, Earth Science and Technology, University of Hawai‘i at Manoa
BookMark eNpNkMtu3CAUhlGUSJ1Ms-6mC17Ak8PFAZbRKJdKkbpp1wgzx2NPbRgBiZS3yCMHa9K0G47Qd_4P9F-S8xADEvKNwYYLKa73GP2A82HDNyBbc0ZWTGtoWqPEOVkBsJtGAfAv5DLnA4CQptUr8raNIZfkxlAyjYHO6AcXxjzXW0_9EMMuPU9I-5hmV8a60ac4_weOCf1zyjFl6sKughRDnOL-dclXccgjhkIHrOmwp_iCy0tjoGVYwrHE4-QCFpde6W7Mf76Si95NGa8-5pr8vr_7tX1snn4-_NjePjWu1bw0nTOdMqzT3jjgmgknZK9175Vve9kp6Y1RUqMWnHn0gCA76UBo3YIRTIk1uT55fYo5J-ztMY1z_YVlYJdC7d9CLbdLoTXx_ZQILjsbSsqWA-cAoNSNrvjuhA-5uD1-6lwqo5_wn65lli3HSfvJa-_JYhDvi06TTQ
CitedBy_id crossref_primary_10_1016_j_epsl_2022_117552
crossref_primary_10_1016_j_epsl_2018_09_030
crossref_primary_10_1016_j_gca_2020_09_003
crossref_primary_10_1016_j_gca_2021_02_031
crossref_primary_10_1016_j_gca_2024_04_011
crossref_primary_10_1016_j_gca_2021_02_012
crossref_primary_10_1111_maps_13128
crossref_primary_10_2343_geochemj_2_0464
crossref_primary_10_1016_j_gca_2020_05_014
crossref_primary_10_2138_gselements_14_2_113
crossref_primary_10_1016_j_gca_2018_02_040
crossref_primary_10_1146_annurev_earth_082719_055815
crossref_primary_10_3847_1538_4357_aafe79
crossref_primary_10_1016_j_gca_2021_12_022
crossref_primary_10_1016_j_gca_2017_12_014
crossref_primary_10_3847_1538_4357_aaa5a5
Cites_doi 10.1016/j.gca.2016.01.008
10.1016/j.gca.2004.02.006
10.1073/pnas.1300383110
10.1016/j.epsl.2010.03.008
10.1016/S0016-7037(00)00526-3
10.1007/s11038-010-9370-3
10.1111/maps.12008
10.1016/S0016-7037(01)00794-3
10.1016/j.gca.2016.10.002
10.1016/j.gca.2009.01.042
10.1016/j.epsl.2008.02.013
10.1073/pnas.1524980113
10.2307/j.ctv1v7zdmm.34
10.1126/science.1204636
10.1016/S0016-7037(99)00284-7
10.1016/j.gca.2004.01.013
10.1016/j.icarus.2010.02.010
10.1016/j.gca.2010.08.017
10.1111/j.1945-5100.2008.tb00649.x
10.1016/j.gca.2016.04.018
10.1111/maps.12031
10.1016/0016-7037(67)90135-4
10.1016/j.epsl.2006.11.013
10.1016/j.epsl.2008.07.004
10.1016/S0012-821X(00)00309-5
10.1016/j.gca.2014.09.025
10.1111/j.1945-5100.2011.01308.x
10.1016/0016-7037(91)90107-G
10.1088/0004-637X/725/1/692
10.1088/0004-637X/752/1/27
10.1038/327689a0
10.1111/maps.12489
10.1016/0016-7037(94)00366-T
10.1038/nature10201
10.1016/j.epsl.2008.05.003
10.1111/maps.12567
10.1016/0012-821X(93)90063-F
10.1088/2041-8205/735/2/L37
10.1016/j.gca.2016.05.014
10.1016/S0016-7037(96)00374-2
10.1016/j.epsl.2008.05.008
10.1016/j.gca.2016.09.031
10.1016/j.gca.2016.09.001
10.1016/j.gca.2014.12.012
10.1016/j.icarus.2010.03.005
10.1016/j.epsl.2014.11.033
10.1016/0016-7037(93)90573-F
10.1111/j.1945-5100.2012.01353.x
10.1111/j.1945-5100.2002.tb00805.x
10.1016/j.gca.2014.09.027
10.1016/j.gca.2013.01.045
10.1126/science.289.5483.1334
10.1038/337238a0
10.1088/2041-8205/801/2/L22
10.1016/j.gca.2014.01.034
10.1111/j.1945-5100.2012.01396.x
10.1086/343109
10.1088/2041-8205/767/1/L2
10.1002/sia.968
10.1111/j.1945-5100.2008.tb01090.x
10.1038/nature03470
10.1016/B978-0-08-095975-7.00102-9
10.1038/nature04834
10.1016/j.gca.2015.07.037
10.1016/j.epsl.2015.09.049
10.1038/nature03830
10.1016/j.icarus.2010.03.004
10.1086/498610
10.1088/2041-8205/711/2/L117
10.1126/science.1226919
10.1111/j.1945-5100.2001.tb01954.x
10.1111/j.1945-5100.2004.tb00088.x
10.1126/science.1180871
10.1088/0004-637X/719/1/166
10.1016/j.gca.2015.10.007
10.1016/j.gca.2009.12.013
10.1016/j.epsl.2007.11.003
10.1016/j.gca.2010.08.011
10.1016/j.gca.2009.11.009
10.1016/j.gca.2005.08.028
10.1073/pnas.0501885102
10.1016/j.gca.2009.02.039
10.1016/j.gca.2015.03.033
10.2138/rmg.2008.68.8
10.1016/j.epsl.2010.10.015
10.1038/nature01699
10.1016/S0016-7037(96)00332-8
10.1111/maps.12461
10.1016/0016-7037(94)00376-W
10.1016/j.gca.2012.02.015
10.1016/j.gca.2004.07.024
10.1016/0016-7037(67)90105-6
10.1016/j.gca.2008.05.038
10.1088/2041-8205/776/1/L1
10.1073/pnas.1518183113
10.1029/JB088iS01p0B331
10.1126/science.1135840
10.1126/science.1156561
10.1016/j.gca.2011.11.045
10.1016/S0016-7037(03)00107-8
10.1016/j.epsl.2007.02.007
10.1016/0016-7037(88)90150-0
10.1038/nature14105
10.1016/B978-0-08-095975-7.00105-4
10.1016/j.epsl.2015.11.028
10.1016/B978-0-08-095975-7.00104-2
10.1111/j.1945-5100.2001.tb01882.x
10.1016/j.chemer.2014.06.003
10.1016/S0016-7037(03)00098-X
10.1016/j.gca.2015.05.022
10.1016/j.gca.2009.01.033
10.1016/j.epsl.2011.06.007
10.1016/j.gca.2011.09.035
10.1016/0016-7037(95)00337-1
10.1111/maps.12141
10.1086/521973
10.1016/j.epsl.2012.03.010
10.1111/j.1945-5100.2005.tb00138.x
10.1016/j.gca.2008.11.044
10.1016/j.chemer.2004.05.001
10.1016/S0016-7037(00)00488-9
10.1016/j.gca.2004.06.046
10.2343/geochemj.2.0346
ContentType Journal Article
Copyright 2017 by The Geochemical Society of Japan
Copyright Determination: PUBLIC_USE_PERMITTED
Copyright_xml – notice: 2017 by The Geochemical Society of Japan
– notice: Copyright Determination: PUBLIC_USE_PERMITTED
DBID CYE
CYI
AAYXX
CITATION
DOI 10.2343/geochemj.2.0459
DatabaseName NASA Scientific and Technical Information
NASA Technical Reports Server
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1880-5973
EndPage 68
ExternalDocumentID 10_2343_geochemj_2_0459
20220007768
article_geochemj_51_1_51_2_0459_article_char_en
GrantInformation NNX17AE22G
NNX15AH38G
NNX10AH76G
GroupedDBID -DZ
-~X
2WC
3K4
5GY
7.U
ACGFO
ACGFS
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
E3Z
EBS
EJD
F5P
FRP
HH5
JSF
JSH
OK1
P2P
RJT
RZJ
SJN
TN5
TR2
~02
ABJNI
CYE
CYI
AAYXX
AI.
C1A
CITATION
TKC
VH1
ID FETCH-LOGICAL-a582t-ba9b791b8c9a02813a34f88fc7c5f4b74c99748e8321cec0e04b4a03885093173
ISSN 0016-7002
IngestDate Fri Aug 23 03:25:56 EDT 2024
Fri Nov 15 15:14:14 EST 2024
Thu Aug 17 20:28:32 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Chondrules
Refractory Inclusions
Transient Heating
Chondrule Precursors
Language English
License Creative Commons License: OPEN_ACCESS
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a582t-ba9b791b8c9a02813a34f88fc7c5f4b74c99748e8321cec0e04b4a03885093173
Notes 2230 Support
2230
OpenAccessLink https://ntrs.nasa.gov/citations/20220007768
PageCount 24
ParticipantIDs crossref_primary_10_2343_geochemj_2_0459
nasa_ntrs_20220007768
jstage_primary_article_geochemj_51_1_51_2_0459_article_char_en
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace 2230 Support
PublicationPlace_xml – name: 2230 Support
PublicationTitle GEOCHEMICAL JOURNAL
PublicationTitleAlternate Geochem. J.
PublicationYear 2017
Publisher GEOCHEMICAL SOCIETY OF JAPAN
The Geochemical Society of Japan
Publisher_xml – name: GEOCHEMICAL SOCIETY OF JAPAN
– name: The Geochemical Society of Japan
References 88
89
110
111
112
113
114
115
116
90
117
91
118
92
119
93
94
95
96
97
10
98
11
99
12
13
14
15
16
17
18
19
120
121
1
122
2
123
3
124
4
125
5
126
6
127
7
128
8
129
9
20
21
22
23
24
25
26
27
28
29
130
131
132
133
134
135
136
137
138
139
30
31
32
33
34
35
36
37
38
39
140
141
142
143
144
145
146
147
148
149
40
41
42
43
44
45
46
47
48
49
150
151
152
153
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
100
101
102
103
104
105
106
80
107
81
108
82
109
83
84
85
86
87
References_xml – ident: 122
  doi: 10.1016/j.gca.2016.01.008
– ident: 92
  doi: 10.1016/j.gca.2004.02.006
– ident: 41
  doi: 10.1073/pnas.1300383110
– ident: 39
  doi: 10.1016/j.epsl.2010.03.008
– ident: 19
  doi: 10.1016/S0016-7037(00)00526-3
– ident: 56
  doi: 10.1007/s11038-010-9370-3
– ident: 83
  doi: 10.1111/maps.12008
– ident: 16
– ident: 20
  doi: 10.1016/S0016-7037(01)00794-3
– ident: 125
  doi: 10.1016/j.gca.2016.10.002
– ident: 105
– ident: 103
  doi: 10.1016/j.gca.2009.01.042
– ident: 128
– ident: 147
  doi: 10.1016/j.epsl.2008.02.013
– ident: 15
  doi: 10.1073/pnas.1524980113
– ident: 45
  doi: 10.2307/j.ctv1v7zdmm.34
– ident: 106
  doi: 10.1126/science.1204636
– ident: 113
– ident: 30
  doi: 10.1016/S0016-7037(99)00284-7
– ident: 59
  doi: 10.1016/j.gca.2004.01.013
– ident: 22
  doi: 10.1016/j.icarus.2010.02.010
– ident: 10
  doi: 10.1016/j.gca.2010.08.017
– ident: 40
  doi: 10.1111/j.1945-5100.2008.tb00649.x
– ident: 68
  doi: 10.1016/j.gca.2016.04.018
– ident: 148
– ident: 52
  doi: 10.1111/maps.12031
– ident: 66
– ident: 126
  doi: 10.1016/0016-7037(67)90135-4
– ident: 98
  doi: 10.1016/j.epsl.2006.11.013
– ident: 130
  doi: 10.1016/j.epsl.2008.07.004
– ident: 132
  doi: 10.1016/S0012-821X(00)00309-5
– ident: 139
  doi: 10.1016/j.gca.2014.09.025
– ident: 133
– ident: 2
  doi: 10.1111/j.1945-5100.2011.01308.x
– ident: 37
– ident: 23
  doi: 10.1016/0016-7037(91)90107-G
– ident: 117
– ident: 28
  doi: 10.1088/0004-637X/725/1/692
– ident: 108
  doi: 10.1088/0004-637X/752/1/27
– ident: 49
  doi: 10.1038/327689a0
– ident: 53
  doi: 10.1111/maps.12489
– ident: 85
– ident: 145
  doi: 10.1016/0016-7037(94)00366-T
– ident: 143
  doi: 10.1038/nature10201
– ident: 54
  doi: 10.1016/j.epsl.2008.05.003
– ident: 13
  doi: 10.1111/maps.12567
– ident: 71
  doi: 10.1016/0012-821X(93)90063-F
– ident: 95
  doi: 10.1088/2041-8205/735/2/L37
– ident: 67
  doi: 10.1016/j.gca.2016.05.014
– ident: 97
  doi: 10.1016/S0016-7037(96)00374-2
– ident: 24
  doi: 10.1016/j.epsl.2008.05.008
– ident: 90
  doi: 10.1016/j.gca.2016.09.031
– ident: 88
– ident: 91
  doi: 10.1016/j.gca.2016.09.001
– ident: 116
  doi: 10.1016/j.gca.2014.12.012
– ident: 111
– ident: 27
  doi: 10.1016/j.icarus.2010.03.005
– ident: 124
  doi: 10.1016/j.epsl.2014.11.033
– ident: 153
– ident: 29
– ident: 61
  doi: 10.1016/0016-7037(93)90573-F
– ident: 36
  doi: 10.1111/j.1945-5100.2012.01353.x
– ident: 73
  doi: 10.1111/j.1945-5100.2002.tb00805.x
– ident: 86
  doi: 10.1016/j.gca.2014.09.027
– ident: 140
  doi: 10.1016/j.gca.2013.01.045
– ident: 104
  doi: 10.1126/science.289.5483.1334
– ident: 46
  doi: 10.1038/337238a0
– ident: 109
  doi: 10.1088/2041-8205/801/2/L22
– ident: 134
  doi: 10.1016/j.gca.2014.01.034
– ident: 17
  doi: 10.1111/j.1945-5100.2012.01396.x
– ident: 150
  doi: 10.1086/343109
– ident: 107
  doi: 10.1088/2041-8205/767/1/L2
– ident: 110
  doi: 10.1002/sia.968
– ident: 51
  doi: 10.1111/j.1945-5100.2008.tb01090.x
– ident: 77
  doi: 10.1038/nature03470
– ident: 135
– ident: 87
  doi: 10.1016/B978-0-08-095975-7.00102-9
– ident: 138
– ident: 26
  doi: 10.1038/nature04834
– ident: 60
  doi: 10.1016/j.gca.2015.07.037
– ident: 55
– ident: 112
– ident: 6
  doi: 10.1016/j.epsl.2015.09.049
– ident: 76
  doi: 10.1038/nature03830
– ident: 21
  doi: 10.1016/j.icarus.2010.03.004
– ident: 80
  doi: 10.1086/498610
– ident: 101
  doi: 10.1088/2041-8205/711/2/L117
– ident: 25
  doi: 10.1126/science.1226919
– ident: 72
  doi: 10.1111/j.1945-5100.2001.tb01954.x
– ident: 74
  doi: 10.1111/j.1945-5100.2004.tb00088.x
– ident: 12
  doi: 10.1126/science.1180871
– ident: 119
  doi: 10.1088/0004-637X/719/1/166
– ident: 31
  doi: 10.1016/j.gca.2015.10.007
– ident: 82
  doi: 10.1016/j.gca.2009.12.013
– ident: 38
  doi: 10.1016/j.epsl.2007.11.003
– ident: 63
  doi: 10.1016/j.gca.2010.08.011
– ident: 1
  doi: 10.1016/j.gca.2009.11.009
– ident: 79
  doi: 10.1016/j.gca.2005.08.028
– ident: 69
– ident: 7
  doi: 10.1073/pnas.0501885102
– ident: 99
  doi: 10.1016/j.gca.2009.02.039
– ident: 142
  doi: 10.1016/j.gca.2015.03.033
– ident: 151
  doi: 10.2138/rmg.2008.68.8
– ident: 4
  doi: 10.1016/j.epsl.2010.10.015
– ident: 50
  doi: 10.1038/nature01699
– ident: 58
– ident: 35
  doi: 10.1016/S0016-7037(96)00332-8
– ident: 8
– ident: 9
  doi: 10.1111/maps.12461
– ident: 43
  doi: 10.1016/0016-7037(94)00376-W
– ident: 44
– ident: 64
  doi: 10.1016/j.gca.2012.02.015
– ident: 93
  doi: 10.1016/j.gca.2004.07.024
– ident: 18
  doi: 10.1016/0016-7037(67)90105-6
– ident: 94
  doi: 10.1016/j.gca.2008.05.038
– ident: 89
– ident: 121
  doi: 10.1088/2041-8205/776/1/L1
– ident: 141
  doi: 10.1073/pnas.1518183113
– ident: 120
  doi: 10.1029/JB088iS01p0B331
– ident: 14
  doi: 10.1126/science.1135840
– ident: 137
– ident: 3
  doi: 10.1126/science.1156561
– ident: 152
– ident: 84
  doi: 10.1016/j.gca.2011.11.045
– ident: 127
  doi: 10.1016/S0016-7037(03)00107-8
– ident: 34
  doi: 10.1016/j.epsl.2007.02.007
– ident: 48
  doi: 10.1016/0016-7037(88)90150-0
– ident: 57
  doi: 10.1038/nature14105
– ident: 100
  doi: 10.1016/B978-0-08-095975-7.00105-4
– ident: 47
– ident: 96
  doi: 10.1016/j.epsl.2015.11.028
– ident: 136
  doi: 10.1016/B978-0-08-095975-7.00104-2
– ident: 42
– ident: 146
  doi: 10.1111/j.1945-5100.2001.tb01882.x
– ident: 123
  doi: 10.1016/j.chemer.2014.06.003
– ident: 129
  doi: 10.1016/S0016-7037(03)00098-X
– ident: 32
  doi: 10.1016/j.gca.2015.05.022
– ident: 33
  doi: 10.1016/j.gca.2009.01.033
– ident: 11
– ident: 5
  doi: 10.1016/j.epsl.2011.06.007
– ident: 131
  doi: 10.1016/j.gca.2011.09.035
– ident: 70
  doi: 10.1016/0016-7037(95)00337-1
– ident: 118
– ident: 65
  doi: 10.1111/maps.12141
– ident: 81
  doi: 10.1086/521973
– ident: 102
  doi: 10.1016/j.epsl.2012.03.010
– ident: 149
  doi: 10.1111/j.1945-5100.2005.tb00138.x
– ident: 115
– ident: 144
  doi: 10.1016/j.gca.2008.11.044
– ident: 75
  doi: 10.1016/j.chemer.2004.05.001
– ident: 62
  doi: 10.1016/S0016-7037(00)00488-9
– ident: 78
  doi: 10.1016/j.gca.2004.06.046
– ident: 114
  doi: 10.2343/geochemj.2.0346
SSID ssj0034958
ssib002484450
Score 2.267225
Snippet The mineralogy, petrography, and oxygen-isotope compositions of porphyritic chondrules—dominant chondrule type in most chondrite groups—suggest formation by...
SourceID crossref
nasa
jstage
SourceType Aggregation Database
Publisher
StartPage 45
SubjectTerms chondrule precursors
chondrules
Lunar And Planetary Science And Exploration
refractory inclusions
transient heating
Title Constraints on mechanisms of chondrule formation from chondrule precursors and chronology of transient heating events in the protoplanetary disk
URI https://www.jstage.jst.go.jp/article/geochemj/51/1/51_2.0459/_article/-char/en
https://ntrs.nasa.gov/citations/20220007768
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX GEOCHEMICAL JOURNAL, 2017/01/31, Vol.51(1), pp.45-68
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6AdIuiI8hOhjygQMSSkkcJ7EvSNMWNnbokFokOEWJ44xua1o17QH-Cv5k3oudj_bEhLhYlRMnqd8vz-857_0eIW9DP48i32NOKGTo8ELgO1cUThrIPOdZKsII850vJtH4mziLeTwYNByuXd9_lTT0gawxc_Ye0m4vCh3wG2QOLUgd2r-SO1bgrOs-mA8Bc42pvbNqXodsgK4r89XmTndJiybBpDuwXOEOfIU1eOqUNyTPNTxNGE2AKxtmUKKBWQdM1wRQVRMtiawPiyXGz64xGi-fVbd96_c8vmopGGzUUavwYeRWws378ajdqE6vseTT3Gav_dr8mOW6v13hRTvbFf0bTa5OP8fT7xjedHnyxZLXWj3thU7kukZPa6OaQdM44P74fd1tyWr7GDWK2HBU2iXdFO7ZXSyYz5G04lpjabL5zYiNwLyV3brYRitaWSbNmUngJR42LMERSXMc8-QAgnvkAQOth0p3cjnu2UKCc_yEbMwEHzxTayaYv2p4p_ChPuw80pbJ9PAGvAakg9gv04aEvbaFpk_IY-vE0BPzRE_JQJfPyKPzukj0z-fkdw-DdFHSDoN0UdAWarTFIEUM9g50GKSABdphEMe3GKQWg9RgkM5KChik2xikiMFD8vVTPD29cGzlD9ARgq2dLJVZJL1MKJmCAez5qQ9qRBQqUkHBs4grCX6w0FhmS2nlapdnPEViI7B_wSL2X8D0LEr9klAk_FPglAmJZHxMSOX5QrmZzlWgAyaH5F0zucnSELwk4BijHDqBG0EPyUcz-e2J90TGkByi0JJyvaoShjnuNZuWOPrXC78iB9279prsr1cbfUz2qnzzpgbhH5vtydo
link.rule.ids 315,782,786,27933,27934
linkProvider Multiple Vendors
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraints+on+mechanisms+of+chondrule+formation+from+chondrule+precursors+and+chronology+of+transient+heating+events+in+the+protoplanetary+disk&rft.jtitle=GEOCHEMICAL+JOURNAL&rft.au=Krot%2C+Alexander+N.&rft.au=Nagashima%2C+Kazuhide&rft.date=2017-01-01&rft.pub=GEOCHEMICAL+SOCIETY+OF+JAPAN&rft.issn=0016-7002&rft.eissn=1880-5973&rft.volume=51&rft.issue=1&rft.spage=45&rft.epage=68&rft_id=info:doi/10.2343%2Fgeochemj.2.0459&rft.externalDocID=article_geochemj_51_1_51_2_0459_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7002&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7002&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7002&client=summon