Constraints on mechanisms of chondrule formation from chondrule precursors and chronology of transient heating events in the protoplanetary disk
The mineralogy, petrography, and oxygen-isotope compositions of porphyritic chondrules—dominant chondrule type in most chondrite groups—suggest formation by incomplete melting of isotopically diverse precursors during localized transient heating events in dust-rich regions of the protoplanetary disk...
Saved in:
Published in: | GEOCHEMICAL JOURNAL Vol. 51; no. 1; pp. 45 - 68 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
2230 Support
GEOCHEMICAL SOCIETY OF JAPAN
01-01-2017
The Geochemical Society of Japan |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The mineralogy, petrography, and oxygen-isotope compositions of porphyritic chondrules—dominant chondrule type in most chondrite groups—suggest formation by incomplete melting of isotopically diverse precursors during localized transient heating events in dust-rich regions of the protoplanetary disk characterized by 16O-poor compositions (Δ17Odust+gas ~ –7‰ to +4‰) relative to the inferred Sun’s value (Δ17O ~ –28 ± 2‰). The chondrule precursors included Ca,Al-rich inclusions (CAIs), amoeboid olivine aggregates (AOAs), chondrules of earlier generations, fine-grained matrix-like material, and possibly fragments of pre-existing planetesimals. Like porphyritic chondrules, igneous CAIs formed by melting of isotopically diverse precursors during transient heating events, but in an isotopically distinct, solar-like reservoir of the protoplanetary disk (Δ17Odust+gas ~ –24‰), probably near the protoSun. Based on a narrow range of the initial 26Al/27Al ratios inferred from the internal Al-Mg isochrons in igneous CAIs, their melting started at the very beginning of Solar System formation (t0), defined by the CV CAIs with U-corrected Pb-Pb age of 4567.3 ± 0.16 Ma and the canonical 26Al/27Al ratio of (5.25 ± 0.02) × 10–5, and lasted at least 0.3 Ma. The U-corrected Pb-Pb absolute and 26Al-26Mg relative ages of porphyritic chondrules from type 3 ordinary, CO, CV, and CR carbonaceous chondrites (assuming uniform distribution of 26Al in the disk at the canonical level) suggest chondrule formation started at t0 and lasted for about 4 Ma. These observations may preclude formation of the majority of porphyritic chondrules by splashing of differentiated planetesimals and by collisions between planetesimals; instead, they are consistent with melting of dust balls by bow shocks or magnetized turbulence in the disk. Some porphyritic chondrules in equilibrated (petrologic type 4–6) ordinary chondrites contain relict fragments of coarse-grained chromite, ilmenite, phosphates, and albitic plagioclase. The similar mineral assemblage is commonly observed in type 4–6 ordinary chondrites, but is absent in type 3 chondrites, suggesting these chondrules formed by incomplete melting of thermally metamorphosed ordinary chondrite material, possibly by impacts. The CB metal-rich carbonaceous chondrites contain exclusively magnesian non-porphyritic chondrules crystallized from complete melts. These chondrules formed in a gas-melt plume generated by a hypervelocity (≥20 km/s) collision between planetesimals ~4.8 Ma after t0 in a transition or a debris disk. One of the colliding bodies was probably differentiated. The CH metal-rich carbonaceous chondrites contain chondrules formed by different mechanisms. The magnesian non-porphyritic chondrules formed in the CB impact plume ~4.8 Ma after t0. The chemically diverse (magnesian, ferroan, and Al-rich) porphyritic chondrules formed by incomplete melting of isotopically diverse precursors in the protoplanetary disk, most likely prior the CB impact plume event. We conclude that there are multiple mechanisms of chondrule formation that operated over the entire life-time of the disk. |
---|---|
AbstractList | The mineralogy, petrography, and oxygen-isotope compositions of porphyritic chondrules—dominant chondrule type in most chondrite groups—suggest formation by incomplete melting of isotopically diverse precursors during localized transient heating events in dust-rich regions of the protoplanetary disk characterized by 16O-poor compositions (Δ17Odust+gas ~ –7‰ to +4‰) relative to the inferred Sun’s value (Δ17O ~ –28 ± 2‰). The chondrule precursors included Ca,Al-rich inclusions (CAIs), amoeboid olivine aggregates (AOAs), chondrules of earlier generations, fine-grained matrix-like material, and possibly fragments of pre-existing planetesimals. Like porphyritic chondrules, igneous CAIs formed by melting of isotopically diverse precursors during transient heating events, but in an isotopically distinct, solar-like reservoir of the protoplanetary disk (Δ17Odust+gas ~ –24‰), probably near the protoSun. Based on a narrow range of the initial 26Al/27Al ratios inferred from the internal Al-Mg isochrons in igneous CAIs, their melting started at the very beginning of Solar System formation (t0), defined by the CV CAIs with U-corrected Pb-Pb age of 4567.3 ± 0.16 Ma and the canonical 26Al/27Al ratio of (5.25 ± 0.02) × 10–5, and lasted at least 0.3 Ma. The U-corrected Pb-Pb absolute and 26Al-26Mg relative ages of porphyritic chondrules from type 3 ordinary, CO, CV, and CR carbonaceous chondrites (assuming uniform distribution of 26Al in the disk at the canonical level) suggest chondrule formation started at t0 and lasted for about 4 Ma. These observations may preclude formation of the majority of porphyritic chondrules by splashing of differentiated planetesimals and by collisions between planetesimals; instead, they are consistent with melting of dust balls by bow shocks or magnetized turbulence in the disk. Some porphyritic chondrules in equilibrated (petrologic type 4–6) ordinary chondrites contain relict fragments of coarse-grained chromite, ilmenite, phosphates, and albitic plagioclase. The similar mineral assemblage is commonly observed in type 4–6 ordinary chondrites, but is absent in type 3 chondrites, suggesting these chondrules formed by incomplete melting of thermally metamorphosed ordinary chondrite material, possibly by impacts. The CB metal-rich carbonaceous chondrites contain exclusively magnesian non-porphyritic chondrules crystallized from complete melts. These chondrules formed in a gas-melt plume generated by a hypervelocity (≥20 km/s) collision between planetesimals ~4.8 Ma after t0 in a transition or a debris disk. One of the colliding bodies was probably differentiated. The CH metal-rich carbonaceous chondrites contain chondrules formed by different mechanisms. The magnesian non-porphyritic chondrules formed in the CB impact plume ~4.8 Ma after t0. The chemically diverse (magnesian, ferroan, and Al-rich) porphyritic chondrules formed by incomplete melting of isotopically diverse precursors in the protoplanetary disk, most likely prior the CB impact plume event. We conclude that there are multiple mechanisms of chondrule formation that operated over the entire life-time of the disk. The mineralogy, petrography, and oxygen-isotope compositions of porphyritic chondrules—dominant chondrule type in most chondrite groups—suggest formation by incomplete melting of isotopically diverse precursors during localized transient heating events in dust-rich regions of the protoplanetary disk characterized by 16O-poor compositions (D17Odust+gas~ –7‰ to +4‰) relative to the inferred Sun’s value (D17O ~ –28 ± 2‰). The chondrule precursors included Ca,Al-rich inclusions (CAIs), amoeboid olivine aggregates (AOAs), chondrules of earlier generations, fine-grained matrix-like material, and possibly fragments of pre-existing planetesimals. Like porphyritic chondrules, igneous CAIs formed by melting of isotopically diverse precursors during transient heating events, but in an isotopically distinct, solar-like reservoir of the protoplanetary disk (D17O dust + gas ~ –24‰), probably near the proto Sun. Based on a narrow range of the initial 26Al/27Alratios inferred from the internal Al-Mg isochrons in igneous CAIs, their melting started at the very beginning of Solar System formation (t0), defined by the CV CAIs with U-corrected Pb-Pb age of 4567.3 ± 0.16 Ma and the canonical 26Al/27Al ratio of (5.25 ± 0.02) ¥ 10–5, and lasted at least 0.3 Ma. The U-corrected Pb-Pb absolute and 26Al-26Mg relative ages of porphyritic chondrules from type 3 ordinary, CO, CV, and CR carbonaceous chondrites (assuming uniform distribution of 26Al in the disk at the canonical level) suggest chondrule formation started at t0 and lasted for about 4 Ma. These observations may preclude formation of the majority of porphyritic chondrules by splashing of differentiated planetesimals and by collisions between planetesimals; instead, they are consistent with melting of dust balls by bow shocks or magnetized turbulence in the disk. Some porphyritic chondrules in equilibrated (petrologic type 4–6) ordinary chondrites contain relict fragments of coarse-grained chromite, ilmenite, phosphates, and albitic plagioclase. The similar mineral assemblage is commonly observed in type 4–6 ordinary chondrites, but is absent in type 3 chondrites, suggesting these chondrules formed by incomplete melting of thermally metamorphosed ordinary chondrite material, possibly by impacts. The CB metal-rich carbonaceous chondrites contain exclusively magnesian non-porphyritic chondrules crystallized from complete melts. These chondrules formed in a gas-melt plume generated by a hypervelocity (≥20 km/s) collision between planetesimals ~4.8 Ma after t0 in a transition or a debris disk. One of the colliding bodies was probably differentiated. The CH metal-rich carbonaceous chondrites contain chondrules formed by different mechanisms. The magnesian non-porphyritic chondrules formed in the CB impact plume ~4.8 Ma after t0. The chemically diverse (magnesian, ferroan, and Al-rich) porphyritic chondrules formed by incomplete melting of isotopically diverse precursors in the protoplanetary disk, most likely prior the CB impact plume event. We conclude that there are multiple mechanisms of chondrule formation that operated over the entire life-time of the disk. |
Audience | PUBLIC |
Author | Krot, Alexander N. Nagashima, Kazuhide |
Author_xml | – sequence: 1 fullname: Krot, Alexander N. organization: Hawai‘i Institute of Geophysics and Planetology, School of Ocean, Earth Science and Technology, University of Hawai‘i at Manoa – sequence: 2 fullname: Nagashima, Kazuhide organization: Hawai‘i Institute of Geophysics and Planetology, School of Ocean, Earth Science and Technology, University of Hawai‘i at Manoa |
BookMark | eNpNkMtu3CAUhlGUSJ1Ms-6mC17Ak8PFAZbRKJdKkbpp1wgzx2NPbRgBiZS3yCMHa9K0G47Qd_4P9F-S8xADEvKNwYYLKa73GP2A82HDNyBbc0ZWTGtoWqPEOVkBsJtGAfAv5DLnA4CQptUr8raNIZfkxlAyjYHO6AcXxjzXW0_9EMMuPU9I-5hmV8a60ac4_weOCf1zyjFl6sKughRDnOL-dclXccgjhkIHrOmwp_iCy0tjoGVYwrHE4-QCFpde6W7Mf76Si95NGa8-5pr8vr_7tX1snn4-_NjePjWu1bw0nTOdMqzT3jjgmgknZK9175Vve9kp6Y1RUqMWnHn0gCA76UBo3YIRTIk1uT55fYo5J-ztMY1z_YVlYJdC7d9CLbdLoTXx_ZQILjsbSsqWA-cAoNSNrvjuhA-5uD1-6lwqo5_wn65lli3HSfvJa-_JYhDvi06TTQ |
CitedBy_id | crossref_primary_10_1016_j_epsl_2022_117552 crossref_primary_10_1016_j_epsl_2018_09_030 crossref_primary_10_1016_j_gca_2020_09_003 crossref_primary_10_1016_j_gca_2021_02_031 crossref_primary_10_1016_j_gca_2024_04_011 crossref_primary_10_1016_j_gca_2021_02_012 crossref_primary_10_1111_maps_13128 crossref_primary_10_2343_geochemj_2_0464 crossref_primary_10_1016_j_gca_2020_05_014 crossref_primary_10_2138_gselements_14_2_113 crossref_primary_10_1016_j_gca_2018_02_040 crossref_primary_10_1146_annurev_earth_082719_055815 crossref_primary_10_3847_1538_4357_aafe79 crossref_primary_10_1016_j_gca_2021_12_022 crossref_primary_10_1016_j_gca_2017_12_014 crossref_primary_10_3847_1538_4357_aaa5a5 |
Cites_doi | 10.1016/j.gca.2016.01.008 10.1016/j.gca.2004.02.006 10.1073/pnas.1300383110 10.1016/j.epsl.2010.03.008 10.1016/S0016-7037(00)00526-3 10.1007/s11038-010-9370-3 10.1111/maps.12008 10.1016/S0016-7037(01)00794-3 10.1016/j.gca.2016.10.002 10.1016/j.gca.2009.01.042 10.1016/j.epsl.2008.02.013 10.1073/pnas.1524980113 10.2307/j.ctv1v7zdmm.34 10.1126/science.1204636 10.1016/S0016-7037(99)00284-7 10.1016/j.gca.2004.01.013 10.1016/j.icarus.2010.02.010 10.1016/j.gca.2010.08.017 10.1111/j.1945-5100.2008.tb00649.x 10.1016/j.gca.2016.04.018 10.1111/maps.12031 10.1016/0016-7037(67)90135-4 10.1016/j.epsl.2006.11.013 10.1016/j.epsl.2008.07.004 10.1016/S0012-821X(00)00309-5 10.1016/j.gca.2014.09.025 10.1111/j.1945-5100.2011.01308.x 10.1016/0016-7037(91)90107-G 10.1088/0004-637X/725/1/692 10.1088/0004-637X/752/1/27 10.1038/327689a0 10.1111/maps.12489 10.1016/0016-7037(94)00366-T 10.1038/nature10201 10.1016/j.epsl.2008.05.003 10.1111/maps.12567 10.1016/0012-821X(93)90063-F 10.1088/2041-8205/735/2/L37 10.1016/j.gca.2016.05.014 10.1016/S0016-7037(96)00374-2 10.1016/j.epsl.2008.05.008 10.1016/j.gca.2016.09.031 10.1016/j.gca.2016.09.001 10.1016/j.gca.2014.12.012 10.1016/j.icarus.2010.03.005 10.1016/j.epsl.2014.11.033 10.1016/0016-7037(93)90573-F 10.1111/j.1945-5100.2012.01353.x 10.1111/j.1945-5100.2002.tb00805.x 10.1016/j.gca.2014.09.027 10.1016/j.gca.2013.01.045 10.1126/science.289.5483.1334 10.1038/337238a0 10.1088/2041-8205/801/2/L22 10.1016/j.gca.2014.01.034 10.1111/j.1945-5100.2012.01396.x 10.1086/343109 10.1088/2041-8205/767/1/L2 10.1002/sia.968 10.1111/j.1945-5100.2008.tb01090.x 10.1038/nature03470 10.1016/B978-0-08-095975-7.00102-9 10.1038/nature04834 10.1016/j.gca.2015.07.037 10.1016/j.epsl.2015.09.049 10.1038/nature03830 10.1016/j.icarus.2010.03.004 10.1086/498610 10.1088/2041-8205/711/2/L117 10.1126/science.1226919 10.1111/j.1945-5100.2001.tb01954.x 10.1111/j.1945-5100.2004.tb00088.x 10.1126/science.1180871 10.1088/0004-637X/719/1/166 10.1016/j.gca.2015.10.007 10.1016/j.gca.2009.12.013 10.1016/j.epsl.2007.11.003 10.1016/j.gca.2010.08.011 10.1016/j.gca.2009.11.009 10.1016/j.gca.2005.08.028 10.1073/pnas.0501885102 10.1016/j.gca.2009.02.039 10.1016/j.gca.2015.03.033 10.2138/rmg.2008.68.8 10.1016/j.epsl.2010.10.015 10.1038/nature01699 10.1016/S0016-7037(96)00332-8 10.1111/maps.12461 10.1016/0016-7037(94)00376-W 10.1016/j.gca.2012.02.015 10.1016/j.gca.2004.07.024 10.1016/0016-7037(67)90105-6 10.1016/j.gca.2008.05.038 10.1088/2041-8205/776/1/L1 10.1073/pnas.1518183113 10.1029/JB088iS01p0B331 10.1126/science.1135840 10.1126/science.1156561 10.1016/j.gca.2011.11.045 10.1016/S0016-7037(03)00107-8 10.1016/j.epsl.2007.02.007 10.1016/0016-7037(88)90150-0 10.1038/nature14105 10.1016/B978-0-08-095975-7.00105-4 10.1016/j.epsl.2015.11.028 10.1016/B978-0-08-095975-7.00104-2 10.1111/j.1945-5100.2001.tb01882.x 10.1016/j.chemer.2014.06.003 10.1016/S0016-7037(03)00098-X 10.1016/j.gca.2015.05.022 10.1016/j.gca.2009.01.033 10.1016/j.epsl.2011.06.007 10.1016/j.gca.2011.09.035 10.1016/0016-7037(95)00337-1 10.1111/maps.12141 10.1086/521973 10.1016/j.epsl.2012.03.010 10.1111/j.1945-5100.2005.tb00138.x 10.1016/j.gca.2008.11.044 10.1016/j.chemer.2004.05.001 10.1016/S0016-7037(00)00488-9 10.1016/j.gca.2004.06.046 10.2343/geochemj.2.0346 |
ContentType | Journal Article |
Copyright | 2017 by The Geochemical Society of Japan Copyright Determination: PUBLIC_USE_PERMITTED |
Copyright_xml | – notice: 2017 by The Geochemical Society of Japan – notice: Copyright Determination: PUBLIC_USE_PERMITTED |
DBID | CYE CYI AAYXX CITATION |
DOI | 10.2343/geochemj.2.0459 |
DatabaseName | NASA Scientific and Technical Information NASA Technical Reports Server CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1880-5973 |
EndPage | 68 |
ExternalDocumentID | 10_2343_geochemj_2_0459 20220007768 article_geochemj_51_1_51_2_0459_article_char_en |
GrantInformation | NNX17AE22G NNX15AH38G NNX10AH76G |
GroupedDBID | -DZ -~X 2WC 3K4 5GY 7.U ACGFO ACGFS AENEX ALMA_UNASSIGNED_HOLDINGS CS3 E3Z EBS EJD F5P FRP HH5 JSF JSH OK1 P2P RJT RZJ SJN TN5 TR2 ~02 ABJNI CYE CYI AAYXX AI. C1A CITATION TKC VH1 |
ID | FETCH-LOGICAL-a582t-ba9b791b8c9a02813a34f88fc7c5f4b74c99748e8321cec0e04b4a03885093173 |
ISSN | 0016-7002 |
IngestDate | Fri Aug 23 03:25:56 EDT 2024 Fri Nov 15 15:14:14 EST 2024 Thu Aug 17 20:28:32 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Chondrules Refractory Inclusions Transient Heating Chondrule Precursors |
Language | English |
License | Creative Commons License: OPEN_ACCESS |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a582t-ba9b791b8c9a02813a34f88fc7c5f4b74c99748e8321cec0e04b4a03885093173 |
Notes | 2230 Support 2230 |
OpenAccessLink | https://ntrs.nasa.gov/citations/20220007768 |
PageCount | 24 |
ParticipantIDs | crossref_primary_10_2343_geochemj_2_0459 nasa_ntrs_20220007768 jstage_primary_article_geochemj_51_1_51_2_0459_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | 2230 Support |
PublicationPlace_xml | – name: 2230 Support |
PublicationTitle | GEOCHEMICAL JOURNAL |
PublicationTitleAlternate | Geochem. J. |
PublicationYear | 2017 |
Publisher | GEOCHEMICAL SOCIETY OF JAPAN The Geochemical Society of Japan |
Publisher_xml | – name: GEOCHEMICAL SOCIETY OF JAPAN – name: The Geochemical Society of Japan |
References | 88 89 110 111 112 113 114 115 116 90 117 91 118 92 119 93 94 95 96 97 10 98 11 99 12 13 14 15 16 17 18 19 120 121 1 122 2 123 3 124 4 125 5 126 6 127 7 128 8 129 9 20 21 22 23 24 25 26 27 28 29 130 131 132 133 134 135 136 137 138 139 30 31 32 33 34 35 36 37 38 39 140 141 142 143 144 145 146 147 148 149 40 41 42 43 44 45 46 47 48 49 150 151 152 153 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 100 101 102 103 104 105 106 80 107 81 108 82 109 83 84 85 86 87 |
References_xml | – ident: 122 doi: 10.1016/j.gca.2016.01.008 – ident: 92 doi: 10.1016/j.gca.2004.02.006 – ident: 41 doi: 10.1073/pnas.1300383110 – ident: 39 doi: 10.1016/j.epsl.2010.03.008 – ident: 19 doi: 10.1016/S0016-7037(00)00526-3 – ident: 56 doi: 10.1007/s11038-010-9370-3 – ident: 83 doi: 10.1111/maps.12008 – ident: 16 – ident: 20 doi: 10.1016/S0016-7037(01)00794-3 – ident: 125 doi: 10.1016/j.gca.2016.10.002 – ident: 105 – ident: 103 doi: 10.1016/j.gca.2009.01.042 – ident: 128 – ident: 147 doi: 10.1016/j.epsl.2008.02.013 – ident: 15 doi: 10.1073/pnas.1524980113 – ident: 45 doi: 10.2307/j.ctv1v7zdmm.34 – ident: 106 doi: 10.1126/science.1204636 – ident: 113 – ident: 30 doi: 10.1016/S0016-7037(99)00284-7 – ident: 59 doi: 10.1016/j.gca.2004.01.013 – ident: 22 doi: 10.1016/j.icarus.2010.02.010 – ident: 10 doi: 10.1016/j.gca.2010.08.017 – ident: 40 doi: 10.1111/j.1945-5100.2008.tb00649.x – ident: 68 doi: 10.1016/j.gca.2016.04.018 – ident: 148 – ident: 52 doi: 10.1111/maps.12031 – ident: 66 – ident: 126 doi: 10.1016/0016-7037(67)90135-4 – ident: 98 doi: 10.1016/j.epsl.2006.11.013 – ident: 130 doi: 10.1016/j.epsl.2008.07.004 – ident: 132 doi: 10.1016/S0012-821X(00)00309-5 – ident: 139 doi: 10.1016/j.gca.2014.09.025 – ident: 133 – ident: 2 doi: 10.1111/j.1945-5100.2011.01308.x – ident: 37 – ident: 23 doi: 10.1016/0016-7037(91)90107-G – ident: 117 – ident: 28 doi: 10.1088/0004-637X/725/1/692 – ident: 108 doi: 10.1088/0004-637X/752/1/27 – ident: 49 doi: 10.1038/327689a0 – ident: 53 doi: 10.1111/maps.12489 – ident: 85 – ident: 145 doi: 10.1016/0016-7037(94)00366-T – ident: 143 doi: 10.1038/nature10201 – ident: 54 doi: 10.1016/j.epsl.2008.05.003 – ident: 13 doi: 10.1111/maps.12567 – ident: 71 doi: 10.1016/0012-821X(93)90063-F – ident: 95 doi: 10.1088/2041-8205/735/2/L37 – ident: 67 doi: 10.1016/j.gca.2016.05.014 – ident: 97 doi: 10.1016/S0016-7037(96)00374-2 – ident: 24 doi: 10.1016/j.epsl.2008.05.008 – ident: 90 doi: 10.1016/j.gca.2016.09.031 – ident: 88 – ident: 91 doi: 10.1016/j.gca.2016.09.001 – ident: 116 doi: 10.1016/j.gca.2014.12.012 – ident: 111 – ident: 27 doi: 10.1016/j.icarus.2010.03.005 – ident: 124 doi: 10.1016/j.epsl.2014.11.033 – ident: 153 – ident: 29 – ident: 61 doi: 10.1016/0016-7037(93)90573-F – ident: 36 doi: 10.1111/j.1945-5100.2012.01353.x – ident: 73 doi: 10.1111/j.1945-5100.2002.tb00805.x – ident: 86 doi: 10.1016/j.gca.2014.09.027 – ident: 140 doi: 10.1016/j.gca.2013.01.045 – ident: 104 doi: 10.1126/science.289.5483.1334 – ident: 46 doi: 10.1038/337238a0 – ident: 109 doi: 10.1088/2041-8205/801/2/L22 – ident: 134 doi: 10.1016/j.gca.2014.01.034 – ident: 17 doi: 10.1111/j.1945-5100.2012.01396.x – ident: 150 doi: 10.1086/343109 – ident: 107 doi: 10.1088/2041-8205/767/1/L2 – ident: 110 doi: 10.1002/sia.968 – ident: 51 doi: 10.1111/j.1945-5100.2008.tb01090.x – ident: 77 doi: 10.1038/nature03470 – ident: 135 – ident: 87 doi: 10.1016/B978-0-08-095975-7.00102-9 – ident: 138 – ident: 26 doi: 10.1038/nature04834 – ident: 60 doi: 10.1016/j.gca.2015.07.037 – ident: 55 – ident: 112 – ident: 6 doi: 10.1016/j.epsl.2015.09.049 – ident: 76 doi: 10.1038/nature03830 – ident: 21 doi: 10.1016/j.icarus.2010.03.004 – ident: 80 doi: 10.1086/498610 – ident: 101 doi: 10.1088/2041-8205/711/2/L117 – ident: 25 doi: 10.1126/science.1226919 – ident: 72 doi: 10.1111/j.1945-5100.2001.tb01954.x – ident: 74 doi: 10.1111/j.1945-5100.2004.tb00088.x – ident: 12 doi: 10.1126/science.1180871 – ident: 119 doi: 10.1088/0004-637X/719/1/166 – ident: 31 doi: 10.1016/j.gca.2015.10.007 – ident: 82 doi: 10.1016/j.gca.2009.12.013 – ident: 38 doi: 10.1016/j.epsl.2007.11.003 – ident: 63 doi: 10.1016/j.gca.2010.08.011 – ident: 1 doi: 10.1016/j.gca.2009.11.009 – ident: 79 doi: 10.1016/j.gca.2005.08.028 – ident: 69 – ident: 7 doi: 10.1073/pnas.0501885102 – ident: 99 doi: 10.1016/j.gca.2009.02.039 – ident: 142 doi: 10.1016/j.gca.2015.03.033 – ident: 151 doi: 10.2138/rmg.2008.68.8 – ident: 4 doi: 10.1016/j.epsl.2010.10.015 – ident: 50 doi: 10.1038/nature01699 – ident: 58 – ident: 35 doi: 10.1016/S0016-7037(96)00332-8 – ident: 8 – ident: 9 doi: 10.1111/maps.12461 – ident: 43 doi: 10.1016/0016-7037(94)00376-W – ident: 44 – ident: 64 doi: 10.1016/j.gca.2012.02.015 – ident: 93 doi: 10.1016/j.gca.2004.07.024 – ident: 18 doi: 10.1016/0016-7037(67)90105-6 – ident: 94 doi: 10.1016/j.gca.2008.05.038 – ident: 89 – ident: 121 doi: 10.1088/2041-8205/776/1/L1 – ident: 141 doi: 10.1073/pnas.1518183113 – ident: 120 doi: 10.1029/JB088iS01p0B331 – ident: 14 doi: 10.1126/science.1135840 – ident: 137 – ident: 3 doi: 10.1126/science.1156561 – ident: 152 – ident: 84 doi: 10.1016/j.gca.2011.11.045 – ident: 127 doi: 10.1016/S0016-7037(03)00107-8 – ident: 34 doi: 10.1016/j.epsl.2007.02.007 – ident: 48 doi: 10.1016/0016-7037(88)90150-0 – ident: 57 doi: 10.1038/nature14105 – ident: 100 doi: 10.1016/B978-0-08-095975-7.00105-4 – ident: 47 – ident: 96 doi: 10.1016/j.epsl.2015.11.028 – ident: 136 doi: 10.1016/B978-0-08-095975-7.00104-2 – ident: 42 – ident: 146 doi: 10.1111/j.1945-5100.2001.tb01882.x – ident: 123 doi: 10.1016/j.chemer.2014.06.003 – ident: 129 doi: 10.1016/S0016-7037(03)00098-X – ident: 32 doi: 10.1016/j.gca.2015.05.022 – ident: 33 doi: 10.1016/j.gca.2009.01.033 – ident: 11 – ident: 5 doi: 10.1016/j.epsl.2011.06.007 – ident: 131 doi: 10.1016/j.gca.2011.09.035 – ident: 70 doi: 10.1016/0016-7037(95)00337-1 – ident: 118 – ident: 65 doi: 10.1111/maps.12141 – ident: 81 doi: 10.1086/521973 – ident: 102 doi: 10.1016/j.epsl.2012.03.010 – ident: 149 doi: 10.1111/j.1945-5100.2005.tb00138.x – ident: 115 – ident: 144 doi: 10.1016/j.gca.2008.11.044 – ident: 75 doi: 10.1016/j.chemer.2004.05.001 – ident: 62 doi: 10.1016/S0016-7037(00)00488-9 – ident: 78 doi: 10.1016/j.gca.2004.06.046 – ident: 114 doi: 10.2343/geochemj.2.0346 |
SSID | ssj0034958 ssib002484450 |
Score | 2.267225 |
Snippet | The mineralogy, petrography, and oxygen-isotope compositions of porphyritic chondrules—dominant chondrule type in most chondrite groups—suggest formation by... |
SourceID | crossref nasa jstage |
SourceType | Aggregation Database Publisher |
StartPage | 45 |
SubjectTerms | chondrule precursors chondrules Lunar And Planetary Science And Exploration refractory inclusions transient heating |
Title | Constraints on mechanisms of chondrule formation from chondrule precursors and chronology of transient heating events in the protoplanetary disk |
URI | https://www.jstage.jst.go.jp/article/geochemj/51/1/51_2.0459/_article/-char/en https://ntrs.nasa.gov/citations/20220007768 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | GEOCHEMICAL JOURNAL, 2017/01/31, Vol.51(1), pp.45-68 |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6AdIuiI8hOhjygQMSSkkcJ7EvSNMWNnbokFokOEWJ44xua1o17QH-Cv5k3oudj_bEhLhYlRMnqd8vz-857_0eIW9DP48i32NOKGTo8ELgO1cUThrIPOdZKsII850vJtH4mziLeTwYNByuXd9_lTT0gawxc_Ye0m4vCh3wG2QOLUgd2r-SO1bgrOs-mA8Bc42pvbNqXodsgK4r89XmTndJiybBpDuwXOEOfIU1eOqUNyTPNTxNGE2AKxtmUKKBWQdM1wRQVRMtiawPiyXGz64xGi-fVbd96_c8vmopGGzUUavwYeRWws378ajdqE6vseTT3Gav_dr8mOW6v13hRTvbFf0bTa5OP8fT7xjedHnyxZLXWj3thU7kukZPa6OaQdM44P74fd1tyWr7GDWK2HBU2iXdFO7ZXSyYz5G04lpjabL5zYiNwLyV3brYRitaWSbNmUngJR42LMERSXMc8-QAgnvkAQOth0p3cjnu2UKCc_yEbMwEHzxTayaYv2p4p_ChPuw80pbJ9PAGvAakg9gv04aEvbaFpk_IY-vE0BPzRE_JQJfPyKPzukj0z-fkdw-DdFHSDoN0UdAWarTFIEUM9g50GKSABdphEMe3GKQWg9RgkM5KChik2xikiMFD8vVTPD29cGzlD9ARgq2dLJVZJL1MKJmCAez5qQ9qRBQqUkHBs4grCX6w0FhmS2nlapdnPEViI7B_wSL2X8D0LEr9klAk_FPglAmJZHxMSOX5QrmZzlWgAyaH5F0zucnSELwk4BijHDqBG0EPyUcz-e2J90TGkByi0JJyvaoShjnuNZuWOPrXC78iB9279prsr1cbfUz2qnzzpgbhH5vtydo |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Multiple Vendors |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraints+on+mechanisms+of+chondrule+formation+from+chondrule+precursors+and+chronology+of+transient+heating+events+in+the+protoplanetary+disk&rft.jtitle=GEOCHEMICAL+JOURNAL&rft.au=Krot%2C+Alexander+N.&rft.au=Nagashima%2C+Kazuhide&rft.date=2017-01-01&rft.pub=GEOCHEMICAL+SOCIETY+OF+JAPAN&rft.issn=0016-7002&rft.eissn=1880-5973&rft.volume=51&rft.issue=1&rft.spage=45&rft.epage=68&rft_id=info:doi/10.2343%2Fgeochemj.2.0459&rft.externalDocID=article_geochemj_51_1_51_2_0459_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7002&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7002&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7002&client=summon |