Impact of geoengineered aerosols on the troposphere and stratosphere
A coupled chemistry climate model, the Whole Atmosphere Community Climate Model was used to perform a transient climate simulation to quantify the impact of geoengineered aerosols on atmospheric processes. In contrast to previous model studies, the impact on stratospheric chemistry, including hetero...
Saved in:
Published in: | Journal of Geophysical Research - Atmospheres Vol. 114; no. D12; pp. D12305 - n/a |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
American Geophysical Union
27-06-2009
Blackwell Publishing Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | A coupled chemistry climate model, the Whole Atmosphere Community Climate Model was used to perform a transient climate simulation to quantify the impact of geoengineered aerosols on atmospheric processes. In contrast to previous model studies, the impact on stratospheric chemistry, including heterogeneous chemistry in the polar regions, is considered in this simulation. In the geoengineering simulation, a constant stratospheric distribution of volcanic‐sized, liquid sulfate aerosols is imposed in the period 2020–2050, corresponding to an injection of 2 Tg S/a. The aerosol cools the troposphere compared to a baseline simulation. Assuming an Intergovernmental Panel on Climate Change A1B emission scenario, global warming is delayed by about 40 years in the troposphere with respect to the baseline scenario. Large local changes of precipitation and temperatures may occur as a result of geoengineering. Comparison with simulations carried out with the Community Atmosphere Model indicates the importance of stratospheric processes for estimating the impact of stratospheric aerosols on the Earth's climate. Changes in stratospheric dynamics and chemistry, especially faster heterogeneous reactions, reduce the recovery of the ozone layer in middle and high latitudes for the Southern Hemisphere. In the geoengineering case, the recovery of the Antarctic ozone hole is delayed by about 30 years on the basis of this model simulation. For the Northern Hemisphere, a onefold to twofold increase of the chemical ozone depletion occurs owing to a simulated stronger polar vortex and colder temperatures compared to the baseline simulation, in agreement with observational estimates. |
---|---|
AbstractList | A coupled chemistry climate model, the Whole Atmosphere Community Climate Model was used to perform a transient climate simulation to quantify the impact of geoengineered aerosols on atmospheric processes. In contrast to previous model studies, the impact on stratospheric chemistry, including heterogeneous chemistry in the polar regions, is considered in this simulation. In the geoengineering simulation, a constant stratospheric distribution of volcanic‐sized, liquid sulfate aerosols is imposed in the period 2020–2050, corresponding to an injection of 2 Tg S/a. The aerosol cools the troposphere compared to a baseline simulation. Assuming an Intergovernmental Panel on Climate Change A1B emission scenario, global warming is delayed by about 40 years in the troposphere with respect to the baseline scenario. Large local changes of precipitation and temperatures may occur as a result of geoengineering. Comparison with simulations carried out with the Community Atmosphere Model indicates the importance of stratospheric processes for estimating the impact of stratospheric aerosols on the Earth's climate. Changes in stratospheric dynamics and chemistry, especially faster heterogeneous reactions, reduce the recovery of the ozone layer in middle and high latitudes for the Southern Hemisphere. In the geoengineering case, the recovery of the Antarctic ozone hole is delayed by about 30 years on the basis of this model simulation. For the Northern Hemisphere, a onefold to twofold increase of the chemical ozone depletion occurs owing to a simulated stronger polar vortex and colder temperatures compared to the baseline simulation, in agreement with observational estimates. |
Author | Kinnison, Douglas E. Garcia, Rolando R. Gettelman, Andrew Tilmes, Simone Rasch, Philip J. |
Author_xml | – sequence: 1 givenname: Simone surname: Tilmes fullname: Tilmes, Simone email: tilmes@ucar.edu organization: Atmospheric Chemistry Division, National Center of Atmospheric Research, Colorado, Boulder, USA – sequence: 2 givenname: Rolando R. surname: Garcia fullname: Garcia, Rolando R. organization: Atmospheric Chemistry Division, National Center of Atmospheric Research, Colorado, Boulder, USA – sequence: 3 givenname: Douglas E. surname: Kinnison fullname: Kinnison, Douglas E. organization: Atmospheric Chemistry Division, National Center of Atmospheric Research, Colorado, Boulder, USA – sequence: 4 givenname: Andrew surname: Gettelman fullname: Gettelman, Andrew organization: Atmospheric Chemistry Division, National Center of Atmospheric Research, Colorado, Boulder, USA – sequence: 5 givenname: Philip J. surname: Rasch fullname: Rasch, Philip J. organization: Pacific Northwest National Laboratory, Washington, Richland, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21748063$$DView record in Pascal Francis |
BookMark | eNqFkE1v1DAQhi3USixtb9zJhZ5IGX8lzhE1ZelqBVJVxNGajSfbQDZO7ayg_x5XWbU9wVxGmnnedz7esKPBD8TYWw4XHET1UQCYVQ2cKwGv2EJwXeRCgDhiC-DK5CBE-ZqdxfgTUihdKOALVl_vRmymzLfZljwN224gCuQypOCj72Pmh2y6o2wKfvRxvEvNDAeXxSngdCicsuMW-0hnh3zCvn--ur38kq-_La8vP61zTNNEXsmyhaoAacBpJzfOOGOgQS3QCK2ck0q6yjkHJVKjeeU2SkFT4YaMIYHyhJ3PvmPw93uKk911saG-x4H8PlqpNJhSmf-CAorSJO8EfpjBJl0bA7V2DN0Ow4PlYB_fal--NeHvD74YG-zbgEPTxSeN4Gk4FDJxcuZ-dz09_NPTrpY3NddSi6TKZ1UXJ_rzpMLwyxalLLX98XVp1yVocVOvbJ34dzOP2_3zDi_3_Quv7J84 |
CitedBy_id | crossref_primary_10_5194_gmd_8_43_2015 crossref_primary_10_1029_2023GL103773 crossref_primary_10_1175_2010JAS3433_1 crossref_primary_10_1029_2011JD016690 crossref_primary_10_5194_acp_15_9129_2015 crossref_primary_10_1002_2013JD020648 crossref_primary_10_1007_s00382_017_3810_y crossref_primary_10_1029_2023EF003779 crossref_primary_10_1016_j_atmosenv_2018_05_047 crossref_primary_10_1175_JCLI_D_19_0087_1 crossref_primary_10_3103_S1068373910070010 crossref_primary_10_1525_elementa_2022_00047 crossref_primary_10_1002_2015JD024521 crossref_primary_10_5194_acp_16_2843_2016 crossref_primary_10_5194_acp_14_5251_2014 crossref_primary_10_5194_acp_23_3799_2023 crossref_primary_10_1175_BAMS_D_18_0122_1 crossref_primary_10_5194_acp_19_3417_2019 crossref_primary_10_1175_JAS_D_13_0289_1 crossref_primary_10_1007_s00382_010_0868_1 crossref_primary_10_5194_acp_10_4295_2010 crossref_primary_10_5194_acp_14_7769_2014 crossref_primary_10_1029_2018JD028285 crossref_primary_10_5194_tc_12_2501_2018 crossref_primary_10_1007_s00382_014_2240_3 crossref_primary_10_1029_2011JD016393 crossref_primary_10_1175_AMSMONOGRAPHS_D_19_0001_1 crossref_primary_10_5194_amt_13_1243_2020 crossref_primary_10_1088_2515_7620_ac5229 crossref_primary_10_1038_nclimate1328 crossref_primary_10_1029_2022GL102315 crossref_primary_10_1002_2017JD026888 crossref_primary_10_1002_asl_285 crossref_primary_10_1029_2019JD030943 crossref_primary_10_1029_2020JD033438 crossref_primary_10_1038_463426a crossref_primary_10_1002_2017JD028146 crossref_primary_10_5194_gmd_9_2459_2016 crossref_primary_10_1002_grl_50598 crossref_primary_10_5194_acp_14_4843_2014 crossref_primary_10_1029_2021EF002052 crossref_primary_10_5194_acp_16_4191_2016 crossref_primary_10_1098_rsta_2010_0327 crossref_primary_10_1002_jgrd_50388 crossref_primary_10_5194_acp_12_4775_2012 crossref_primary_10_5194_acp_17_3879_2017 crossref_primary_10_5194_gmd_17_5087_2024 crossref_primary_10_1016_j_crte_2018_06_014 crossref_primary_10_1002_2017JD026912 crossref_primary_10_3389_feart_2020_591150 crossref_primary_10_1002_2017JD026874 crossref_primary_10_5194_esd_11_579_2020 crossref_primary_10_1029_2019GL083680 crossref_primary_10_1038_nature23681 crossref_primary_10_5194_acp_13_3997_2013 crossref_primary_10_5194_acp_17_11913_2017 crossref_primary_10_1029_2009JD013020 crossref_primary_10_1088_1748_9326_4_4_045108 crossref_primary_10_1029_2021GL094058 crossref_primary_10_1002_2013JD020566 crossref_primary_10_1029_2011JD017341 crossref_primary_10_1002_asl_304 crossref_primary_10_1002_2015JD024202 crossref_primary_10_1002_2016GL070701 crossref_primary_10_1029_2019JD030329 crossref_primary_10_5194_amt_14_3597_2021 crossref_primary_10_1029_2011RG000355 crossref_primary_10_5194_angeo_30_1055_2012 crossref_primary_10_1029_2010JD013890 crossref_primary_10_1073_pnas_1619318114 crossref_primary_10_1039_c2cs35181a crossref_primary_10_1002_2014GL062823 crossref_primary_10_1038_climate_2010_135 crossref_primary_10_1039_C7CP08331A crossref_primary_10_5194_acp_22_2955_2022 crossref_primary_10_1029_2019GL083701 crossref_primary_10_1038_ngeo915 crossref_primary_10_5194_acp_17_11209_2017 crossref_primary_10_5194_acp_18_601_2018 crossref_primary_10_5194_acp_22_5757_2022 crossref_primary_10_5194_gmd_14_5525_2021 crossref_primary_10_1038_s41586_021_03737_3 crossref_primary_10_5194_acp_15_11835_2015 crossref_primary_10_5194_acp_21_1287_2021 crossref_primary_10_3390_cli9040066 crossref_primary_10_1038_s41558_019_0564_z crossref_primary_10_1175_AMSMONOGRAPHS_D_19_0003_1 crossref_primary_10_5194_acp_12_10945_2012 crossref_primary_10_5194_acp_23_5467_2023 crossref_primary_10_1039_D3EA00134B crossref_primary_10_5194_acp_18_10133_2018 crossref_primary_10_1007_s10584_011_0102_0 crossref_primary_10_1002_2016EF000454 crossref_primary_10_1029_2011GL049761 crossref_primary_10_1002_2013GL058818 crossref_primary_10_5194_acp_20_14043_2020 crossref_primary_10_1029_2023AV000911 crossref_primary_10_1029_2010GL043975 crossref_primary_10_1146_annurev_earth_042711_105548 crossref_primary_10_5194_acp_18_14867_2018 crossref_primary_10_1029_2010GL044548 crossref_primary_10_1002_2016JD025808 crossref_primary_10_1002_2014JD022734 crossref_primary_10_1029_2023EF003488 crossref_primary_10_3390_atmos12030367 crossref_primary_10_5194_acp_18_2769_2018 crossref_primary_10_1002_2016EF000449 crossref_primary_10_5194_acp_21_2427_2021 crossref_primary_10_1029_2018JD029034 crossref_primary_10_1002_jgrd_50868 crossref_primary_10_1175_2010JAS3527_1 crossref_primary_10_1002_jgrd_50622 crossref_primary_10_5194_acp_9_5759_2009 crossref_primary_10_3390_aerospace9010041 |
Cites_doi | 10.5194/acp-4-1849-2004 10.1029/2006GL026731 10.1029/1999RG900008 10.1029/96JD02962 10.1029/2002JD002090 10.1029/2005GL025232 10.1029/2005GL024481 10.1175/1520-0469(1979)036<0699:AODMDA>2.0.CO;2 10.1029/2005JD006726 10.1029/96JD01162 10.1029/2008JD010050 10.1126/science.1069270 10.1029/2008JD010421 10.1175/JAS-3321.1 10.1029/1999JD900932 10.1175/JCLI3760.1 10.1126/science.1131728 10.1029/94JD03325 10.5194/acp-7-4537-2007 10.1175/2008JAS2712.1 10.1073/pnas.052518199 10.1029/2006JD008334 10.1007/1-4020-3824-0 10.1126/science.1153966 10.1029/2004GL022131 10.1029/2006JD007879 10.1007/s10584-006-9102-x 10.1029/2001GL014206 10.1029/2006JD007485 10.1029/2006JD008306 10.1023/A:1006290927549 10.1017/CBO9780511546013 10.1029/2008GL033317 10.1029/2006GL026925 10.1175/BAMS-86-8-1117 10.1126/science.1155939 10.1029/1998RG000054 10.1029/2007GL032179 10.1038/332501a0 10.1029/SP010 10.1038/363509a0 10.1007/s10584-006-9101-y 10.1029/2006JD007327 10.1039/b418650h 10.1029/95JD03353 |
ContentType | Journal Article |
Copyright | 2008 American Geophysical Union Copyright 2009 by the American Geophysical Union. 2009 INIST-CNRS |
Copyright_xml | – notice: 2008 American Geophysical Union – notice: Copyright 2009 by the American Geophysical Union. – notice: 2009 INIST-CNRS |
DBID | BSCLL IQODW AAYXX CITATION 7TG 7TV C1K KL. 7SM 8FD FR3 H8D KR7 L7M |
DOI | 10.1029/2008JD011420 |
DatabaseName | Istex Pascal-Francis CrossRef Meteorological & Geoastrophysical Abstracts Pollution Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts - Academic Earthquake Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts Pollution Abstracts Meteorological & Geoastrophysical Abstracts - Academic Environmental Sciences and Pollution Management Earthquake Engineering Abstracts Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Meteorological & Geoastrophysical Abstracts Earthquake Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 2169-8996 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2008JD011420 21748063 JGRD15352 ark_67375_WNG_L7052RDJ_D 2008JD011420 |
Genre | article |
GeographicLocations | polar regions Antarctica |
GroupedDBID | 08R 1OC 24P 3V. 7XC 88I 8FE 8FH 8G5 8R4 8R5 A ABUWG ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI DRFUL DRSTM DU5 DWQXO FH7 G-S GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MBDVC MEWTI MRJOP MSFUL MSSTM MXFUL MXSTM OA P-X Q2X RNS WIN WYJ 12K AANLZ AAXRX ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG AMYDB BSCLL DCZOG WHG WXSBR XSW ~OA ~~A IQODW AAYXX CITATION 05W 0R~ 33P 50Y 52M 5VS 702 7TG 7TV 8-1 8FG A00 AAESR AAIHA AASGY AAZKR ABJCF ACIWK ACPOU ACXQS ADKYN ADOZA ADXAS ADZMN AFKRA AFRAH AIURR ARAPS AZQEC AZVAB BFHJK BGLVJ BMXJE C1K CCPQU DPXWK EBS FEDTE HGLYW HVGLF HZ~ K6- KL. L6V LEEKS LK5 M7R M7S MY~ O9- P2W P62 PATMY PCBAR PQQKQ PROAC PTHSS PYCSY R.K SUPJJ WBKPD 7SM 8FD FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-a5642-937f0960380d5d3bd8d880ca52a8254dd343d9ddd07aec519db440c9abe88e2a3 |
ISSN | 0148-0227 2169-897X |
IngestDate | Fri Aug 16 23:29:31 EDT 2024 Fri Jun 28 03:46:54 EDT 2024 Thu Nov 21 20:54:12 EST 2024 Sun Oct 22 16:05:02 EDT 2023 Sat Aug 24 00:49:32 EDT 2024 Wed Oct 30 09:55:15 EDT 2024 Tue Jan 05 21:14:23 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | D12 |
Keywords | stratospheric chemistry stratospheric aerosols geoengineering atmosphere Atmosphere model atmospheric precipitation simulation climate warming Model study Climate models climate baseline recovery sulfates troposphere Stratospheric aerosol Earth dynamics global warming global change temperature Polar region transient phenomena injection stratosphere climate change Heterogeneous reaction |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a5642-937f0960380d5d3bd8d880ca52a8254dd343d9ddd07aec519db440c9abe88e2a3 |
Notes | ark:/67375/WNG-L7052RDJ-D ArticleID:2008JD011420 istex:C2417DCDF80AF659ED05BEDDD6308FF202ACAF3A ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://doi.org/10.1029/2008jd011420 |
PQID | 20678440 |
PQPubID | 23462 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_20678440 pascalfrancis_primary_21748063 wiley_primary_10_1029_2008JD011420_JGRD15352 istex_primary_ark_67375_WNG_L7052RDJ_D crossref_primary_10_1029_2008JD011420 agu_primary_2008JD011420 proquest_miscellaneous_34508748 |
PublicationCentury | 2000 |
PublicationDate | 27 June 2009 |
PublicationDateYYYYMMDD | 2009-06-27 |
PublicationDate_xml | – month: 06 year: 2009 text: 27 June 2009 day: 27 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC |
PublicationTitle | Journal of Geophysical Research - Atmospheres |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2009 |
Publisher | American Geophysical Union Blackwell Publishing Ltd |
Publisher_xml | – name: American Geophysical Union – name: Blackwell Publishing Ltd |
References | Tilmes, S., D. Kinnisen, R. Müller, F. Sassi, D. Marsh, B. Boville, and R. Garcia (2007), Evaluation of heterogeneous processes in the polar lower stratosphere in the Whole Atmosphere Community Climate Model, J. Geophys. Res., 112, D24301, doi:10.1029/2006JD008334. Tabazadeh, A., K. Drdla, M. R. Schoeberl, P. Hamill, and O. B. Toon (2002), Arctic "ozone hole" in a cold volcanic stratosphere, Proc. Natl. Acad. Sci. U. S. A., 99(5), 2609-2612. Eyring, V., et al. (2005), A strategy for process-oriented validation of coupled chemistry-climate models, Bull. Am. Meteorol. Soc., 86(8), 1117-1133. Newman, P. A., E. R. Nash, S. R. Kawa, S. A. Montzka, and S. M. Schauffler (2006), When will the Antarctic ozone hole recover? Geophys. Res. Lett., 33, L12814, doi:10.1029/2005GL025232. Rex, M., et al. (2006), Arctic winter 2005: Implications for stratospheric ozone loss and climate change, Geophys. Res. Lett., 33, L23808, doi:10.1029/2006GL026731. Solomon, S., R. Portmann, R. R. Garcia, L. Thomason, L. R. Poole, and M. P. McCormick (1996), The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes, J. Geophys. Res., 101, 6713-6727. Turco, R. P., P. Hamill, O. B. Toon, R. C. Whitten, and C. S. Kiang (1979), The NASA-Ames Research Center stratospheric aerosol model, I, Physical processes and mathematical analogs, J. Atmos. Sci., 36, 699-717. Bodeker, G. E., H. Struthers, and B. J. Connor (2002), Dynamical containment of Antarctic ozone depletion, Geophys. Res. Lett., 29(7), 1098, doi:10.1029/2001GL014206. Rasch, P. J., S. Tilmes, R. P. Turco, A. Robock, L. Oman, and C.-C. Chen (2008a), An overview of geoengineering of climate using stratospheric sulphate aerosols, Proc. R. Soc., Ser. A, 366, 4007-4037. Fahey, D. W., et al. (1993), In situ measurements constraining the role of sulphate aerosols in mid-latitude ozone depletion, Nature, 363, 509-514. Garcia, R. R., and W. J. Randel (2008), Acceleration of Brewer-Dobson circulation due to increase in greenhouse gases, J. Atmos. Sci., 65, 2731-2739. Randel, W. J., et al. (2009), An update of observed stratospheric temperature trend, J. Geophys. Res., 114, D02107, doi:10.1029/2008JD010421. Wigley, T. M. (2006), A combined mitigation/geoengineering approach to climate stabilization, Science, 314, 452-454. Considine, D. B., A. R. Douglass, D. E. Kinnison, P. S. Connell, and D. A. Rotman (2000), A polar stratospheric cloud parameterization for the three-dimensional model of the global modeling initiative and its response to stratospheric aircraft emissions, J. Geophys. Res., 105, 3955-3975. Newman, P. A., J. S. Daniel, D. W. Waugh, and E. R. Nash (2007), A new formulation of equivalent effective stratospheric chlorine (EESC), Atmos. Chem. Phys., 7, 4537-4552. Drdla, K. (2005), Temperature thresholds for polar stratospheric ozone loss, Eos Trans. AGU, 86(52), Fall Meet. Suppl., Abstract A31D-03. Perlwitz, J., S. Pawson, R. Fogt, J. Nielsen, and W. Neff (2008), Impact of stratospheric ozone hole recovery on Antarctic climate, Geophys. Res. Lett., 35, L08714, doi:10.1029/2008GL033317. Robock, A. (2000), Volcanic eruptions and climate, Rev. Geophys., 38, 191-219. Tilmes, S., R. Müller, A. Engel, M. Rex, and J. Russel III (2006a), Chemical ozone loss in the Arctic and Antarctic stratosphere between 1992 and 2005, Geophys. Res. Lett., 33, L20812, doi:10.1029/2006GL026925. Cicerone, R. J. (2006), Geoengineering: Encouraging research and overseeing implementaion, Clim. Change, 77, 221-226. Intergovernmental Panel on Climate Change (2007), Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, U. K. Solomon, S. (1999), Stratospheric ozone depletion: A review of concepts and history, Rev. Geophys., 37, 275-316. Eyring, V., et al. (2006), Assessment of temperature, trace species and ozone in chemistry-climate simulations of the recent past, J. Geophys. Res., 111, D22308, doi:10.1029/2006JD007327. Thompson, D. W. J., M. P. Baldwin, and S. Solomon (2005), Stratosphere-troposphere coupling in the Southern Hemisphere, J. Atmos. Sci., 62, 708-715. Sassi, F., B. A. Boville, D. Kinnison, and R. Garcia (2005), The effects of interactive ozone chemistry on simulations of the middle atmosphere, Geophys. Res. Lett., 32, L07811, doi:10.1029/2004GL022131. Robock, A., L. Oman, and G. Stenchikov (2008), Regional climate response to geoengineering with tropical and arctic SO2 injection, J. Geophys. Res., 113, D16101, doi:10.1029/2008JD010050. Rasch, R. J., C. P. J., and D. B. Coleman (2008b), Exploring the geoengineering of climate using stratospheric sulfate aerosols: The role of particle size, Geophys. Res. Lett., 35, L02809, doi:10.1029/2007GL032179. Brasseur, G., and S. Solomon (2005), Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, 3rd ed., Springer, Heidelberg, Germany. Zhao, J., R. P. Turco, and O. B. Toon (1995), A model simulation of Pinatubo volcanic aerosols in the stratosphere, J. Geophys. Res., 100, 7315-7328. Stenchikov, G. L., A. Robock, V. Ramaswamy, M. D. Schwarzkopf, K. Hamilton, and S. Ramachandran (2002), Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depetion, J. Geophys. Res., 107(D24), 4803, doi:10.1029/2002JD002090. Thomason, L. W., L. R. Poole, and T. Deshler (1997), A global climatoloy of stratospheric aerosol surface area density deduced from Stratospheric Aerosol and Gas Experiment II measurements: 1984-1994, J. Geophys. Res., 102, 8967-8976. Russell, P. B., et al. (1996), Global to microscale evolution of the Pinatubo volcanic aerosol derived from diverse measurements and analyses, J. Geophys. Res., 101, 18,745-18,763. Collins, W. J., et al. (2006), The formulation and atmospheric simulation of the community atmosphere model (CAM3), J. Clim., 19, 2144-2161. Grooß, J.-U., R. Müller, G. Becker, D. S. McKenna, and P. J. Crutzen (1999), The upper stratospheric ozone budget: An update of calculations based on HALOE data, J. Atmos. Chem., 34, 171-183. Tilmes, S., R. Müller, J.-U. Grooß, H. Nakajima, and Y. Sasano (2006b), Development of tracer relations and chemical ozone loss during the setup phase of the polar vortex, J. Geophys. Res., 111, D24S90, doi:10.1029/2005JD006726. Marsh, D., R. R. Garcia, D. E. Kinnison, B. A. Bouville, F. Sassi, S. C. Solomon, and K. Matthes (2007), Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing, J. Geophys. Res., 112, D23306, doi:10.1029/2006JD008306. Tilmes, S., R. Müller, and R. J. Salawitch (2008), The sensitivity of polar ozone depletion to proposed geoengineering schemes, Science, 320, 1201-1204. Cai, M. (2005), Dynamical amplification of polar warming, Geophys. Res. Lett., 32, L22710, doi:10.1029/2005GL024481. Kiehl, J. T., B. A. Boville, and B. P. Briegleb (1988), Response of a general circulation model to a prescribed Antarctic ozone hole, Nature, 332, 501-504. Metz, B., et al. (Eds.) (2005), Special Report on Safeguarding the Ozone Layer and the Global Climate System: Issues Related to Hydrofluorocarbons and Perfluorocarbons, Cambridge Univ. Press, Cambridge, U. K. Budyko, M. I. (1977), Climatic Changes, translated from Russian by R. Zolina, AGU, Washington, D. C. United Nations Environment Programme and Environmental Effects Assessment Panel (2005), Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2004, Photochem. Photobiol. Sci., 4(2), 177-184. Knudsen, B. M., N. R. P. Harris, S. B. Andersen, B. Christiansen, N. Larsen, M. Rex, and B. Naujokat (2004), Extrapolating future Arctic ozone losses, Atmos. Chem. Phys., 4, 1849-1856. Seinfeld, J. H., and S. N. Pandis (1998), Atmospheric Chemistry and Physics, John Wiley, Hoboken, N. J. Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi (2007), Simulation of secular trends in the middle atmosphere, J. Geophys. Res., 112, D09301, doi:10.1029/2006JD007485. Kinnison, D. E., et al. (2007), Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model, J. Geophys. Res., 112, D20302, doi:10.1029/2006JD007879. Crutzen, P. J. (2006), Albedo enhancements by stratospheric sulfur injections: A contribution to resolve a policy dilemma? An editorial essay, Clim. Change, 77, 211-219. Thompson, D., and S. Solomon (2002), Interpretation of recent Southern Hemisphere climate change, Science, 296, 895-899. Son, S.-W., et al. (2008), The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet, Science, 320, 1486-1489. 1979; 36 2002; 296 2006; 77 2006; 33 2002; 99 2004; 4 1998 2005; 62 2005; 86 2007 1996 2006; 19 2008; 35 2006 2005 2008; 366 2006; 314 2008; 320 1996; 101 1993; 363 2009; 114 2006; 111 1977 1997; 102 2007; 112 2002; 29 2000; 38 2000; 105 1999; 37 1999; 34 2002; 107 2005; 4 1988; 332 2005; 32 2007; 7 2008; 65 1995; 100 2008; 113 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 Rasch P. J. (e_1_2_9_29_1) 2008; 366 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 Seinfeld J. H. (e_1_2_9_36_1) 1998 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 Metz B. (e_1_2_9_23_1) 2005 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Drdla K. (e_1_2_9_10_1) 2005; 86 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 |
References_xml | – volume: 34 start-page: 171 year: 1999 end-page: 183 article-title: The upper stratospheric ozone budget: An update of calculations based on HALOE data publication-title: J. Atmos. Chem. – volume: 7 start-page: 4537 year: 2007 end-page: 4552 article-title: A new formulation of equivalent effective stratospheric chlorine (EESC) publication-title: Atmos. Chem. Phys. – year: 2005 – volume: 86 start-page: 1117 issue: 8 year: 2005 end-page: 1133 article-title: A strategy for process‐oriented validation of coupled chemistry‐climate models publication-title: Bull. Am. Meteorol. Soc. – volume: 35 year: 2008 article-title: Impact of stratospheric ozone hole recovery on Antarctic climate publication-title: Geophys. Res. Lett. – volume: 101 start-page: 18,745 year: 1996 end-page: 18,763 article-title: Global to microscale evolution of the Pinatubo volcanic aerosol derived from diverse measurements and analyses publication-title: J. Geophys. Res. – volume: 332 start-page: 501 year: 1988 end-page: 504 article-title: Response of a general circulation model to a prescribed Antarctic ozone hole publication-title: Nature – volume: 114 year: 2009 article-title: An update of observed stratospheric temperature trend publication-title: J. Geophys. Res. – year: 1998 – volume: 33 year: 2006 article-title: Chemical ozone loss in the Arctic and Antarctic stratosphere between 1992 and 2005 publication-title: Geophys. Res. Lett. – volume: 320 start-page: 1201 year: 2008 end-page: 1204 article-title: The sensitivity of polar ozone depletion to proposed geoengineering schemes publication-title: Science – volume: 32 year: 2005 article-title: Dynamical amplification of polar warming publication-title: Geophys. Res. Lett. – volume: 77 start-page: 211 year: 2006 end-page: 219 article-title: Albedo enhancements by stratospheric sulfur injections: A contribution to resolve a policy dilemma? An editorial essay publication-title: Clim. Change – volume: 296 start-page: 895 year: 2002 end-page: 899 article-title: Interpretation of recent Southern Hemisphere climate change publication-title: Science – volume: 33 year: 2006 article-title: When will the Antarctic ozone hole recover? publication-title: Geophys. Res. Lett. – volume: 37 start-page: 275 year: 1999 end-page: 316 article-title: Stratospheric ozone depletion: A review of concepts and history publication-title: Rev. Geophys. – volume: 314 start-page: 452 year: 2006 end-page: 454 article-title: A combined mitigation/geoengineering approach to climate stabilization publication-title: Science – volume: 363 start-page: 509 year: 1993 end-page: 514 article-title: In situ measurements constraining the role of sulphate aerosols in mid‐latitude ozone depletion publication-title: Nature – volume: 4 start-page: 1849 year: 2004 end-page: 1856 article-title: Extrapolating future Arctic ozone losses publication-title: Atmos. Chem. Phys. – volume: 111 year: 2006 article-title: Development of tracer relations and chemical ozone loss during the setup phase of the polar vortex publication-title: J. Geophys. Res. – volume: 77 start-page: 221 year: 2006 end-page: 226 article-title: Geoengineering: Encouraging research and overseeing implementaion publication-title: Clim. Change – volume: 38 start-page: 191 year: 2000 end-page: 219 article-title: Volcanic eruptions and climate publication-title: Rev. Geophys. – volume: 366 start-page: 4007 year: 2008 end-page: 4037 article-title: An overview of geoengineering of climate using stratospheric sulphate aerosols publication-title: Proc. R. Soc., Ser. A – year: 2007 – year: 1996 – volume: 4 start-page: 177 issue: 2 year: 2005 end-page: 184 article-title: Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2004 publication-title: Photochem. Photobiol. Sci. – volume: 19 start-page: 2144 year: 2006 end-page: 2161 article-title: The formulation and atmospheric simulation of the community atmosphere model (CAM3) publication-title: J. Clim. – volume: 99 start-page: 2609 issue: 5 year: 2002 end-page: 2612 article-title: Arctic “ozone hole” in a cold volcanic stratosphere publication-title: Proc. Natl. Acad. Sci. U. S. A. – year: 1977 – volume: 101 start-page: 6713 year: 1996 end-page: 6727 article-title: The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes publication-title: J. Geophys. Res. – volume: 65 start-page: 2731 year: 2008 end-page: 2739 article-title: Acceleration of Brewer‐Dobson circulation due to increase in greenhouse gases publication-title: J. Atmos. Sci. – volume: 112 year: 2007 article-title: Sensitivity of chemical tracers to meteorological parameters in the MOZART‐3 chemical transport model publication-title: J. Geophys. Res. – volume: 320 start-page: 1486 year: 2008 end-page: 1489 article-title: The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet publication-title: Science – volume: 112 year: 2007 article-title: Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing publication-title: J. Geophys. Res. – volume: 113 year: 2008 article-title: Regional climate response to geoengineering with tropical and arctic SO injection publication-title: J. Geophys. Res. – volume: 29 issue: 7 year: 2002 article-title: Dynamical containment of Antarctic ozone depletion publication-title: Geophys. Res. Lett. – volume: 111 year: 2006 article-title: Assessment of temperature, trace species and ozone in chemistry‐climate simulations of the recent past publication-title: J. Geophys. Res. – volume: 32 year: 2005 article-title: The effects of interactive ozone chemistry on simulations of the middle atmosphere publication-title: Geophys. Res. Lett. – volume: 112 year: 2007 article-title: Simulation of secular trends in the middle atmosphere publication-title: J. Geophys. Res. – volume: 33 year: 2006 article-title: Arctic winter 2005: Implications for stratospheric ozone loss and climate change publication-title: Geophys. Res. Lett. – year: 2006 – volume: 102 start-page: 8967 year: 1997 end-page: 8976 article-title: A global climatoloy of stratospheric aerosol surface area density deduced from Stratospheric Aerosol and Gas Experiment II measurements: 1984–1994 publication-title: J. Geophys. Res. – volume: 105 start-page: 3955 year: 2000 end-page: 3975 article-title: A polar stratospheric cloud parameterization for the three‐dimensional model of the global modeling initiative and its response to stratospheric aircraft emissions publication-title: J. Geophys. Res. – volume: 86 issue: 52 year: 2005 article-title: Temperature thresholds for polar stratospheric ozone loss publication-title: Eos Trans. AGU – volume: 112 year: 2007 article-title: Evaluation of heterogeneous processes in the polar lower stratosphere in the Whole Atmosphere Community Climate Model publication-title: J. Geophys. Res. – volume: 100 start-page: 7315 year: 1995 end-page: 7328 article-title: A model simulation of Pinatubo volcanic aerosols in the stratosphere publication-title: J. Geophys. Res. – volume: 35 year: 2008 article-title: Exploring the geoengineering of climate using stratospheric sulfate aerosols: The role of particle size publication-title: Geophys. Res. Lett. – volume: 107 issue: D24 year: 2002 article-title: Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depetion publication-title: J. Geophys. Res. – volume: 62 start-page: 708 year: 2005 end-page: 715 article-title: Stratosphere‐troposphere coupling in the Southern Hemisphere publication-title: J. Atmos. Sci. – volume: 36 start-page: 699 year: 1979 end-page: 717 article-title: The NASA‐Ames Research Center stratospheric aerosol model, I, Physical processes and mathematical analogs publication-title: J. Atmos. Sci. – ident: e_1_2_9_42_1 – volume-title: Special Report on Safeguarding the Ozone Layer and the Global Climate System: Issues Related to Hydrofluorocarbons and Perfluorocarbons year: 2005 ident: e_1_2_9_23_1 contributor: fullname: Metz B. – ident: e_1_2_9_20_1 doi: 10.5194/acp-4-1849-2004 – ident: e_1_2_9_31_1 doi: 10.1029/2006GL026731 – ident: e_1_2_9_37_1 doi: 10.1029/1999RG900008 – ident: e_1_2_9_43_1 doi: 10.1029/96JD02962 – ident: e_1_2_9_40_1 doi: 10.1029/2002JD002090 – ident: e_1_2_9_25_1 doi: 10.1029/2005GL025232 – ident: e_1_2_9_5_1 doi: 10.1029/2005GL024481 – ident: e_1_2_9_24_1 – ident: e_1_2_9_50_1 doi: 10.1175/1520-0469(1979)036<0699:AODMDA>2.0.CO;2 – ident: e_1_2_9_47_1 doi: 10.1029/2005JD006726 – ident: e_1_2_9_34_1 doi: 10.1029/96JD01162 – volume-title: Atmospheric Chemistry and Physics year: 1998 ident: e_1_2_9_36_1 contributor: fullname: Seinfeld J. H. – ident: e_1_2_9_33_1 doi: 10.1029/2008JD010050 – ident: e_1_2_9_44_1 doi: 10.1126/science.1069270 – ident: e_1_2_9_28_1 doi: 10.1029/2008JD010421 – ident: e_1_2_9_45_1 doi: 10.1175/JAS-3321.1 – ident: e_1_2_9_8_1 doi: 10.1029/1999JD900932 – ident: e_1_2_9_7_1 doi: 10.1175/JCLI3760.1 – ident: e_1_2_9_52_1 doi: 10.1126/science.1131728 – ident: e_1_2_9_53_1 doi: 10.1029/94JD03325 – ident: e_1_2_9_26_1 doi: 10.5194/acp-7-4537-2007 – ident: e_1_2_9_14_1 doi: 10.1175/2008JAS2712.1 – ident: e_1_2_9_41_1 doi: 10.1073/pnas.052518199 – ident: e_1_2_9_48_1 doi: 10.1029/2006JD008334 – ident: e_1_2_9_3_1 doi: 10.1007/1-4020-3824-0 – ident: e_1_2_9_49_1 doi: 10.1126/science.1153966 – ident: e_1_2_9_35_1 doi: 10.1029/2004GL022131 – ident: e_1_2_9_19_1 doi: 10.1029/2006JD007879 – ident: e_1_2_9_6_1 doi: 10.1007/s10584-006-9102-x – ident: e_1_2_9_2_1 doi: 10.1029/2001GL014206 – ident: e_1_2_9_15_1 doi: 10.1029/2006JD007485 – ident: e_1_2_9_21_1 – ident: e_1_2_9_22_1 doi: 10.1029/2006JD008306 – ident: e_1_2_9_16_1 doi: 10.1023/A:1006290927549 – ident: e_1_2_9_17_1 doi: 10.1017/CBO9780511546013 – ident: e_1_2_9_27_1 doi: 10.1029/2008GL033317 – ident: e_1_2_9_46_1 doi: 10.1029/2006GL026925 – ident: e_1_2_9_11_1 doi: 10.1175/BAMS-86-8-1117 – ident: e_1_2_9_39_1 doi: 10.1126/science.1155939 – ident: e_1_2_9_32_1 doi: 10.1029/1998RG000054 – ident: e_1_2_9_30_1 doi: 10.1029/2007GL032179 – ident: e_1_2_9_18_1 doi: 10.1038/332501a0 – ident: e_1_2_9_4_1 doi: 10.1029/SP010 – volume: 86 issue: 52 year: 2005 ident: e_1_2_9_10_1 article-title: Temperature thresholds for polar stratospheric ozone loss publication-title: Eos Trans. AGU contributor: fullname: Drdla K. – ident: e_1_2_9_13_1 doi: 10.1038/363509a0 – ident: e_1_2_9_9_1 doi: 10.1007/s10584-006-9101-y – ident: e_1_2_9_12_1 doi: 10.1029/2006JD007327 – ident: e_1_2_9_51_1 doi: 10.1039/b418650h – volume: 366 start-page: 4007 year: 2008 ident: e_1_2_9_29_1 article-title: An overview of geoengineering of climate using stratospheric sulphate aerosols publication-title: Proc. R. Soc., Ser. A contributor: fullname: Rasch P. J. – ident: e_1_2_9_38_1 doi: 10.1029/95JD03353 |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 ssj0000803454 |
Score | 2.3936267 |
Snippet | A coupled chemistry climate model, the Whole Atmosphere Community Climate Model was used to perform a transient climate simulation to quantify the impact of... |
SourceID | proquest crossref pascalfrancis wiley istex agu |
SourceType | Aggregation Database Index Database Publisher |
StartPage | D12305 |
SubjectTerms | Atmospheric Composition and Structure Atmospheric Processes Climate change and variability composition and chemistry constituent transport and chemistry Earth sciences Earth, ocean, space Exact sciences and technology geoengineering Middle atmosphere Radiative processes stratospheric aerosols stratospheric chemistry Volcanic effects |
Title | Impact of geoengineered aerosols on the troposphere and stratosphere |
URI | https://api.istex.fr/ark:/67375/WNG-L7052RDJ-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2008JD011420 https://search.proquest.com/docview/20678440 https://search.proquest.com/docview/34508748 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0GpXISEkBAPU8FHyAHspgdRxUvexWkrGBGPqOgFPkRs7U0WXTE0rsX_P-SNfoE3sgZfI5zhO07vz3dn3gdAbJtNNUsqdxA24QwKcODTBE8dLAf2Jn9BAyP2Oo7PxyXcazsis0ylLd9V9_xXT0Ae4lpGzd8B2NSl0QBtwDlfAOlz_Ce-fqrDHC5ELk20QtEomQB7m6_J0YLiV5REKmVRAHyCo_Lmm4waNNRL5VYnW0mNPbSxuL82DlYK-WJWRDmdADPXRfSRLF2l9NZc-lflw_r52A8iylQkAM3r9cFbdjaRP0trs1zbcMMsdC5nlwNEJABqbmDJ1oZZBqg80DxiE3fbKrONLDQmGxt9ai-lKiP0lA1wsU6hKv47jUIUKu7WsK8_3q3H-bSOVmD-O5uFIJsHpoh6G1QwW0950dv5jXm3lqZQ8tWfRiKhYYQ3AckpbAG4CXhMgTcBvAkEJEBAHusKm-QdNKAd8yofmZ0hV62LXUrV6ctX4JV1_WQFkkuqyLS27qmmdKfVq8Qg9NFRmTzVBP0Ydke2j_rSQJzX55bV9YKu2pr9iH93TRVSvoRUJ07K-gAWYbxQEDxyuV2COmXsPviaCZSY_Ozx0qid6gkLNMHae2i2GsUuGsfPMBoaxGwxjA-XaTYZ5is4_zhaHR44pLeIwwBV2QClPpfHuUZf73FtyykGQJczHTG6ZcO4Rj0845-6YiQSsHL4kxE0mbCkoFZh5z9BeBtzTRzYdeylhOCUiAE1P-HSZBCTFDE98mNQPLNQHXMRXOnlM3ESThd6WCKruK6cQPPlj3IHCXjWIbX5Kh8yxH387ieLPY9fH8_A4Di00aKG3futoTChYIxZ6XeI7BjkiDwdZJvJdEcsyDhS-8eYRHgFjDqax0DtFKLf-5Lhim-d3G_4C3a_XjJdob7vZiVeoW_DdAHU973RguO83f8ruNQ |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+geoengineered+aerosols+on+the+troposphere+and+stratosphere&rft.jtitle=Journal+of+Geophysical+Research%3A+Atmospheres&rft.au=Tilmes%2C+Simone&rft.au=Garcia%2C+Rolando+R.&rft.au=Kinnison%2C+Douglas+E.&rft.au=Gettelman%2C+Andrew&rft.date=2009-06-27&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=114&rft.issue=D12&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2008JD011420&rft.externalDBID=10.1029%252F2008JD011420&rft.externalDocID=JGRD15352 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |