Impact of geoengineered aerosols on the troposphere and stratosphere

A coupled chemistry climate model, the Whole Atmosphere Community Climate Model was used to perform a transient climate simulation to quantify the impact of geoengineered aerosols on atmospheric processes. In contrast to previous model studies, the impact on stratospheric chemistry, including hetero...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research - Atmospheres Vol. 114; no. D12; pp. D12305 - n/a
Main Authors: Tilmes, Simone, Garcia, Rolando R., Kinnison, Douglas E., Gettelman, Andrew, Rasch, Philip J.
Format: Journal Article
Language:English
Published: Washington, DC American Geophysical Union 27-06-2009
Blackwell Publishing Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A coupled chemistry climate model, the Whole Atmosphere Community Climate Model was used to perform a transient climate simulation to quantify the impact of geoengineered aerosols on atmospheric processes. In contrast to previous model studies, the impact on stratospheric chemistry, including heterogeneous chemistry in the polar regions, is considered in this simulation. In the geoengineering simulation, a constant stratospheric distribution of volcanic‐sized, liquid sulfate aerosols is imposed in the period 2020–2050, corresponding to an injection of 2 Tg S/a. The aerosol cools the troposphere compared to a baseline simulation. Assuming an Intergovernmental Panel on Climate Change A1B emission scenario, global warming is delayed by about 40 years in the troposphere with respect to the baseline scenario. Large local changes of precipitation and temperatures may occur as a result of geoengineering. Comparison with simulations carried out with the Community Atmosphere Model indicates the importance of stratospheric processes for estimating the impact of stratospheric aerosols on the Earth's climate. Changes in stratospheric dynamics and chemistry, especially faster heterogeneous reactions, reduce the recovery of the ozone layer in middle and high latitudes for the Southern Hemisphere. In the geoengineering case, the recovery of the Antarctic ozone hole is delayed by about 30 years on the basis of this model simulation. For the Northern Hemisphere, a onefold to twofold increase of the chemical ozone depletion occurs owing to a simulated stronger polar vortex and colder temperatures compared to the baseline simulation, in agreement with observational estimates.
AbstractList A coupled chemistry climate model, the Whole Atmosphere Community Climate Model was used to perform a transient climate simulation to quantify the impact of geoengineered aerosols on atmospheric processes. In contrast to previous model studies, the impact on stratospheric chemistry, including heterogeneous chemistry in the polar regions, is considered in this simulation. In the geoengineering simulation, a constant stratospheric distribution of volcanic‐sized, liquid sulfate aerosols is imposed in the period 2020–2050, corresponding to an injection of 2 Tg S/a. The aerosol cools the troposphere compared to a baseline simulation. Assuming an Intergovernmental Panel on Climate Change A1B emission scenario, global warming is delayed by about 40 years in the troposphere with respect to the baseline scenario. Large local changes of precipitation and temperatures may occur as a result of geoengineering. Comparison with simulations carried out with the Community Atmosphere Model indicates the importance of stratospheric processes for estimating the impact of stratospheric aerosols on the Earth's climate. Changes in stratospheric dynamics and chemistry, especially faster heterogeneous reactions, reduce the recovery of the ozone layer in middle and high latitudes for the Southern Hemisphere. In the geoengineering case, the recovery of the Antarctic ozone hole is delayed by about 30 years on the basis of this model simulation. For the Northern Hemisphere, a onefold to twofold increase of the chemical ozone depletion occurs owing to a simulated stronger polar vortex and colder temperatures compared to the baseline simulation, in agreement with observational estimates.
Author Kinnison, Douglas E.
Garcia, Rolando R.
Gettelman, Andrew
Tilmes, Simone
Rasch, Philip J.
Author_xml – sequence: 1
  givenname: Simone
  surname: Tilmes
  fullname: Tilmes, Simone
  email: tilmes@ucar.edu
  organization: Atmospheric Chemistry Division, National Center of Atmospheric Research, Colorado, Boulder, USA
– sequence: 2
  givenname: Rolando R.
  surname: Garcia
  fullname: Garcia, Rolando R.
  organization: Atmospheric Chemistry Division, National Center of Atmospheric Research, Colorado, Boulder, USA
– sequence: 3
  givenname: Douglas E.
  surname: Kinnison
  fullname: Kinnison, Douglas E.
  organization: Atmospheric Chemistry Division, National Center of Atmospheric Research, Colorado, Boulder, USA
– sequence: 4
  givenname: Andrew
  surname: Gettelman
  fullname: Gettelman, Andrew
  organization: Atmospheric Chemistry Division, National Center of Atmospheric Research, Colorado, Boulder, USA
– sequence: 5
  givenname: Philip J.
  surname: Rasch
  fullname: Rasch, Philip J.
  organization: Pacific Northwest National Laboratory, Washington, Richland, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21748063$$DView record in Pascal Francis
BookMark eNqFkE1v1DAQhi3USixtb9zJhZ5IGX8lzhE1ZelqBVJVxNGajSfbQDZO7ayg_x5XWbU9wVxGmnnedz7esKPBD8TYWw4XHET1UQCYVQ2cKwGv2EJwXeRCgDhiC-DK5CBE-ZqdxfgTUihdKOALVl_vRmymzLfZljwN224gCuQypOCj72Pmh2y6o2wKfvRxvEvNDAeXxSngdCicsuMW-0hnh3zCvn--ur38kq-_La8vP61zTNNEXsmyhaoAacBpJzfOOGOgQS3QCK2ck0q6yjkHJVKjeeU2SkFT4YaMIYHyhJ3PvmPw93uKk911saG-x4H8PlqpNJhSmf-CAorSJO8EfpjBJl0bA7V2DN0Ow4PlYB_fal--NeHvD74YG-zbgEPTxSeN4Gk4FDJxcuZ-dz09_NPTrpY3NddSi6TKZ1UXJ_rzpMLwyxalLLX98XVp1yVocVOvbJ34dzOP2_3zDi_3_Quv7J84
CitedBy_id crossref_primary_10_5194_gmd_8_43_2015
crossref_primary_10_1029_2023GL103773
crossref_primary_10_1175_2010JAS3433_1
crossref_primary_10_1029_2011JD016690
crossref_primary_10_5194_acp_15_9129_2015
crossref_primary_10_1002_2013JD020648
crossref_primary_10_1007_s00382_017_3810_y
crossref_primary_10_1029_2023EF003779
crossref_primary_10_1016_j_atmosenv_2018_05_047
crossref_primary_10_1175_JCLI_D_19_0087_1
crossref_primary_10_3103_S1068373910070010
crossref_primary_10_1525_elementa_2022_00047
crossref_primary_10_1002_2015JD024521
crossref_primary_10_5194_acp_16_2843_2016
crossref_primary_10_5194_acp_14_5251_2014
crossref_primary_10_5194_acp_23_3799_2023
crossref_primary_10_1175_BAMS_D_18_0122_1
crossref_primary_10_5194_acp_19_3417_2019
crossref_primary_10_1175_JAS_D_13_0289_1
crossref_primary_10_1007_s00382_010_0868_1
crossref_primary_10_5194_acp_10_4295_2010
crossref_primary_10_5194_acp_14_7769_2014
crossref_primary_10_1029_2018JD028285
crossref_primary_10_5194_tc_12_2501_2018
crossref_primary_10_1007_s00382_014_2240_3
crossref_primary_10_1029_2011JD016393
crossref_primary_10_1175_AMSMONOGRAPHS_D_19_0001_1
crossref_primary_10_5194_amt_13_1243_2020
crossref_primary_10_1088_2515_7620_ac5229
crossref_primary_10_1038_nclimate1328
crossref_primary_10_1029_2022GL102315
crossref_primary_10_1002_2017JD026888
crossref_primary_10_1002_asl_285
crossref_primary_10_1029_2019JD030943
crossref_primary_10_1029_2020JD033438
crossref_primary_10_1038_463426a
crossref_primary_10_1002_2017JD028146
crossref_primary_10_5194_gmd_9_2459_2016
crossref_primary_10_1002_grl_50598
crossref_primary_10_5194_acp_14_4843_2014
crossref_primary_10_1029_2021EF002052
crossref_primary_10_5194_acp_16_4191_2016
crossref_primary_10_1098_rsta_2010_0327
crossref_primary_10_1002_jgrd_50388
crossref_primary_10_5194_acp_12_4775_2012
crossref_primary_10_5194_acp_17_3879_2017
crossref_primary_10_5194_gmd_17_5087_2024
crossref_primary_10_1016_j_crte_2018_06_014
crossref_primary_10_1002_2017JD026912
crossref_primary_10_3389_feart_2020_591150
crossref_primary_10_1002_2017JD026874
crossref_primary_10_5194_esd_11_579_2020
crossref_primary_10_1029_2019GL083680
crossref_primary_10_1038_nature23681
crossref_primary_10_5194_acp_13_3997_2013
crossref_primary_10_5194_acp_17_11913_2017
crossref_primary_10_1029_2009JD013020
crossref_primary_10_1088_1748_9326_4_4_045108
crossref_primary_10_1029_2021GL094058
crossref_primary_10_1002_2013JD020566
crossref_primary_10_1029_2011JD017341
crossref_primary_10_1002_asl_304
crossref_primary_10_1002_2015JD024202
crossref_primary_10_1002_2016GL070701
crossref_primary_10_1029_2019JD030329
crossref_primary_10_5194_amt_14_3597_2021
crossref_primary_10_1029_2011RG000355
crossref_primary_10_5194_angeo_30_1055_2012
crossref_primary_10_1029_2010JD013890
crossref_primary_10_1073_pnas_1619318114
crossref_primary_10_1039_c2cs35181a
crossref_primary_10_1002_2014GL062823
crossref_primary_10_1038_climate_2010_135
crossref_primary_10_1039_C7CP08331A
crossref_primary_10_5194_acp_22_2955_2022
crossref_primary_10_1029_2019GL083701
crossref_primary_10_1038_ngeo915
crossref_primary_10_5194_acp_17_11209_2017
crossref_primary_10_5194_acp_18_601_2018
crossref_primary_10_5194_acp_22_5757_2022
crossref_primary_10_5194_gmd_14_5525_2021
crossref_primary_10_1038_s41586_021_03737_3
crossref_primary_10_5194_acp_15_11835_2015
crossref_primary_10_5194_acp_21_1287_2021
crossref_primary_10_3390_cli9040066
crossref_primary_10_1038_s41558_019_0564_z
crossref_primary_10_1175_AMSMONOGRAPHS_D_19_0003_1
crossref_primary_10_5194_acp_12_10945_2012
crossref_primary_10_5194_acp_23_5467_2023
crossref_primary_10_1039_D3EA00134B
crossref_primary_10_5194_acp_18_10133_2018
crossref_primary_10_1007_s10584_011_0102_0
crossref_primary_10_1002_2016EF000454
crossref_primary_10_1029_2011GL049761
crossref_primary_10_1002_2013GL058818
crossref_primary_10_5194_acp_20_14043_2020
crossref_primary_10_1029_2023AV000911
crossref_primary_10_1029_2010GL043975
crossref_primary_10_1146_annurev_earth_042711_105548
crossref_primary_10_5194_acp_18_14867_2018
crossref_primary_10_1029_2010GL044548
crossref_primary_10_1002_2016JD025808
crossref_primary_10_1002_2014JD022734
crossref_primary_10_1029_2023EF003488
crossref_primary_10_3390_atmos12030367
crossref_primary_10_5194_acp_18_2769_2018
crossref_primary_10_1002_2016EF000449
crossref_primary_10_5194_acp_21_2427_2021
crossref_primary_10_1029_2018JD029034
crossref_primary_10_1002_jgrd_50868
crossref_primary_10_1175_2010JAS3527_1
crossref_primary_10_1002_jgrd_50622
crossref_primary_10_5194_acp_9_5759_2009
crossref_primary_10_3390_aerospace9010041
Cites_doi 10.5194/acp-4-1849-2004
10.1029/2006GL026731
10.1029/1999RG900008
10.1029/96JD02962
10.1029/2002JD002090
10.1029/2005GL025232
10.1029/2005GL024481
10.1175/1520-0469(1979)036<0699:AODMDA>2.0.CO;2
10.1029/2005JD006726
10.1029/96JD01162
10.1029/2008JD010050
10.1126/science.1069270
10.1029/2008JD010421
10.1175/JAS-3321.1
10.1029/1999JD900932
10.1175/JCLI3760.1
10.1126/science.1131728
10.1029/94JD03325
10.5194/acp-7-4537-2007
10.1175/2008JAS2712.1
10.1073/pnas.052518199
10.1029/2006JD008334
10.1007/1-4020-3824-0
10.1126/science.1153966
10.1029/2004GL022131
10.1029/2006JD007879
10.1007/s10584-006-9102-x
10.1029/2001GL014206
10.1029/2006JD007485
10.1029/2006JD008306
10.1023/A:1006290927549
10.1017/CBO9780511546013
10.1029/2008GL033317
10.1029/2006GL026925
10.1175/BAMS-86-8-1117
10.1126/science.1155939
10.1029/1998RG000054
10.1029/2007GL032179
10.1038/332501a0
10.1029/SP010
10.1038/363509a0
10.1007/s10584-006-9101-y
10.1029/2006JD007327
10.1039/b418650h
10.1029/95JD03353
ContentType Journal Article
Copyright 2008 American Geophysical Union
Copyright 2009 by the American Geophysical Union.
2009 INIST-CNRS
Copyright_xml – notice: 2008 American Geophysical Union
– notice: Copyright 2009 by the American Geophysical Union.
– notice: 2009 INIST-CNRS
DBID BSCLL
IQODW
AAYXX
CITATION
7TG
7TV
C1K
KL.
7SM
8FD
FR3
H8D
KR7
L7M
DOI 10.1029/2008JD011420
DatabaseName Istex
Pascal-Francis
CrossRef
Meteorological & Geoastrophysical Abstracts
Pollution Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts - Academic
Earthquake Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts
Pollution Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Sciences and Pollution Management
Earthquake Engineering Abstracts
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Meteorological & Geoastrophysical Abstracts

Earthquake Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
2169-8996
EndPage n/a
ExternalDocumentID 10_1029_2008JD011420
21748063
JGRD15352
ark_67375_WNG_L7052RDJ_D
2008JD011420
Genre article
GeographicLocations polar regions
Antarctica
GroupedDBID 08R
1OC
24P
3V.
7XC
88I
8FE
8FH
8G5
8R4
8R5
A
ABUWG
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
DRFUL
DRSTM
DU5
DWQXO
FH7
G-S
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MBDVC
MEWTI
MRJOP
MSFUL
MSSTM
MXFUL
MXSTM
OA
P-X
Q2X
RNS
WIN
WYJ
12K
AANLZ
AAXRX
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
AMYDB
BSCLL
DCZOG
WHG
WXSBR
XSW
~OA
~~A
IQODW
AAYXX
CITATION
05W
0R~
33P
50Y
52M
5VS
702
7TG
7TV
8-1
8FG
A00
AAESR
AAIHA
AASGY
AAZKR
ABJCF
ACIWK
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AFKRA
AFRAH
AIURR
ARAPS
AZQEC
AZVAB
BFHJK
BGLVJ
BMXJE
C1K
CCPQU
DPXWK
EBS
FEDTE
HGLYW
HVGLF
HZ~
K6-
KL.
L6V
LEEKS
LK5
M7R
M7S
MY~
O9-
P2W
P62
PATMY
PCBAR
PQQKQ
PROAC
PTHSS
PYCSY
R.K
SUPJJ
WBKPD
7SM
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-a5642-937f0960380d5d3bd8d880ca52a8254dd343d9ddd07aec519db440c9abe88e2a3
ISSN 0148-0227
2169-897X
IngestDate Fri Aug 16 23:29:31 EDT 2024
Fri Jun 28 03:46:54 EDT 2024
Thu Nov 21 20:54:12 EST 2024
Sun Oct 22 16:05:02 EDT 2023
Sat Aug 24 00:49:32 EDT 2024
Wed Oct 30 09:55:15 EDT 2024
Tue Jan 05 21:14:23 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue D12
Keywords stratospheric chemistry
stratospheric aerosols
geoengineering
atmosphere
Atmosphere model
atmospheric precipitation
simulation
climate warming
Model study
Climate models
climate
baseline
recovery
sulfates
troposphere
Stratospheric aerosol
Earth
dynamics
global warming
global change
temperature
Polar region
transient phenomena
injection
stratosphere
climate change
Heterogeneous reaction
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a5642-937f0960380d5d3bd8d880ca52a8254dd343d9ddd07aec519db440c9abe88e2a3
Notes ark:/67375/WNG-L7052RDJ-D
ArticleID:2008JD011420
istex:C2417DCDF80AF659ED05BEDDD6308FF202ACAF3A
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://doi.org/10.1029/2008jd011420
PQID 20678440
PQPubID 23462
PageCount 22
ParticipantIDs proquest_miscellaneous_20678440
pascalfrancis_primary_21748063
wiley_primary_10_1029_2008JD011420_JGRD15352
istex_primary_ark_67375_WNG_L7052RDJ_D
crossref_primary_10_1029_2008JD011420
agu_primary_2008JD011420
proquest_miscellaneous_34508748
PublicationCentury 2000
PublicationDate 27 June 2009
PublicationDateYYYYMMDD 2009-06-27
PublicationDate_xml – month: 06
  year: 2009
  text: 27 June 2009
  day: 27
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
PublicationTitle Journal of Geophysical Research - Atmospheres
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2009
Publisher American Geophysical Union
Blackwell Publishing Ltd
Publisher_xml – name: American Geophysical Union
– name: Blackwell Publishing Ltd
References Tilmes, S., D. Kinnisen, R. Müller, F. Sassi, D. Marsh, B. Boville, and R. Garcia (2007), Evaluation of heterogeneous processes in the polar lower stratosphere in the Whole Atmosphere Community Climate Model, J. Geophys. Res., 112, D24301, doi:10.1029/2006JD008334.
Tabazadeh, A., K. Drdla, M. R. Schoeberl, P. Hamill, and O. B. Toon (2002), Arctic "ozone hole" in a cold volcanic stratosphere, Proc. Natl. Acad. Sci. U. S. A., 99(5), 2609-2612.
Eyring, V., et al. (2005), A strategy for process-oriented validation of coupled chemistry-climate models, Bull. Am. Meteorol. Soc., 86(8), 1117-1133.
Newman, P. A., E. R. Nash, S. R. Kawa, S. A. Montzka, and S. M. Schauffler (2006), When will the Antarctic ozone hole recover? Geophys. Res. Lett., 33, L12814, doi:10.1029/2005GL025232.
Rex, M., et al. (2006), Arctic winter 2005: Implications for stratospheric ozone loss and climate change, Geophys. Res. Lett., 33, L23808, doi:10.1029/2006GL026731.
Solomon, S., R. Portmann, R. R. Garcia, L. Thomason, L. R. Poole, and M. P. McCormick (1996), The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes, J. Geophys. Res., 101, 6713-6727.
Turco, R. P., P. Hamill, O. B. Toon, R. C. Whitten, and C. S. Kiang (1979), The NASA-Ames Research Center stratospheric aerosol model, I, Physical processes and mathematical analogs, J. Atmos. Sci., 36, 699-717.
Bodeker, G. E., H. Struthers, and B. J. Connor (2002), Dynamical containment of Antarctic ozone depletion, Geophys. Res. Lett., 29(7), 1098, doi:10.1029/2001GL014206.
Rasch, P. J., S. Tilmes, R. P. Turco, A. Robock, L. Oman, and C.-C. Chen (2008a), An overview of geoengineering of climate using stratospheric sulphate aerosols, Proc. R. Soc., Ser. A, 366, 4007-4037.
Fahey, D. W., et al. (1993), In situ measurements constraining the role of sulphate aerosols in mid-latitude ozone depletion, Nature, 363, 509-514.
Garcia, R. R., and W. J. Randel (2008), Acceleration of Brewer-Dobson circulation due to increase in greenhouse gases, J. Atmos. Sci., 65, 2731-2739.
Randel, W. J., et al. (2009), An update of observed stratospheric temperature trend, J. Geophys. Res., 114, D02107, doi:10.1029/2008JD010421.
Wigley, T. M. (2006), A combined mitigation/geoengineering approach to climate stabilization, Science, 314, 452-454.
Considine, D. B., A. R. Douglass, D. E. Kinnison, P. S. Connell, and D. A. Rotman (2000), A polar stratospheric cloud parameterization for the three-dimensional model of the global modeling initiative and its response to stratospheric aircraft emissions, J. Geophys. Res., 105, 3955-3975.
Newman, P. A., J. S. Daniel, D. W. Waugh, and E. R. Nash (2007), A new formulation of equivalent effective stratospheric chlorine (EESC), Atmos. Chem. Phys., 7, 4537-4552.
Drdla, K. (2005), Temperature thresholds for polar stratospheric ozone loss, Eos Trans. AGU, 86(52), Fall Meet. Suppl., Abstract A31D-03.
Perlwitz, J., S. Pawson, R. Fogt, J. Nielsen, and W. Neff (2008), Impact of stratospheric ozone hole recovery on Antarctic climate, Geophys. Res. Lett., 35, L08714, doi:10.1029/2008GL033317.
Robock, A. (2000), Volcanic eruptions and climate, Rev. Geophys., 38, 191-219.
Tilmes, S., R. Müller, A. Engel, M. Rex, and J. Russel III (2006a), Chemical ozone loss in the Arctic and Antarctic stratosphere between 1992 and 2005, Geophys. Res. Lett., 33, L20812, doi:10.1029/2006GL026925.
Cicerone, R. J. (2006), Geoengineering: Encouraging research and overseeing implementaion, Clim. Change, 77, 221-226.
Intergovernmental Panel on Climate Change (2007), Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, U. K.
Solomon, S. (1999), Stratospheric ozone depletion: A review of concepts and history, Rev. Geophys., 37, 275-316.
Eyring, V., et al. (2006), Assessment of temperature, trace species and ozone in chemistry-climate simulations of the recent past, J. Geophys. Res., 111, D22308, doi:10.1029/2006JD007327.
Thompson, D. W. J., M. P. Baldwin, and S. Solomon (2005), Stratosphere-troposphere coupling in the Southern Hemisphere, J. Atmos. Sci., 62, 708-715.
Sassi, F., B. A. Boville, D. Kinnison, and R. Garcia (2005), The effects of interactive ozone chemistry on simulations of the middle atmosphere, Geophys. Res. Lett., 32, L07811, doi:10.1029/2004GL022131.
Robock, A., L. Oman, and G. Stenchikov (2008), Regional climate response to geoengineering with tropical and arctic SO2 injection, J. Geophys. Res., 113, D16101, doi:10.1029/2008JD010050.
Rasch, R. J., C. P. J., and D. B. Coleman (2008b), Exploring the geoengineering of climate using stratospheric sulfate aerosols: The role of particle size, Geophys. Res. Lett., 35, L02809, doi:10.1029/2007GL032179.
Brasseur, G., and S. Solomon (2005), Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, 3rd ed., Springer, Heidelberg, Germany.
Zhao, J., R. P. Turco, and O. B. Toon (1995), A model simulation of Pinatubo volcanic aerosols in the stratosphere, J. Geophys. Res., 100, 7315-7328.
Stenchikov, G. L., A. Robock, V. Ramaswamy, M. D. Schwarzkopf, K. Hamilton, and S. Ramachandran (2002), Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depetion, J. Geophys. Res., 107(D24), 4803, doi:10.1029/2002JD002090.
Thomason, L. W., L. R. Poole, and T. Deshler (1997), A global climatoloy of stratospheric aerosol surface area density deduced from Stratospheric Aerosol and Gas Experiment II measurements: 1984-1994, J. Geophys. Res., 102, 8967-8976.
Russell, P. B., et al. (1996), Global to microscale evolution of the Pinatubo volcanic aerosol derived from diverse measurements and analyses, J. Geophys. Res., 101, 18,745-18,763.
Collins, W. J., et al. (2006), The formulation and atmospheric simulation of the community atmosphere model (CAM3), J. Clim., 19, 2144-2161.
Grooß, J.-U., R. Müller, G. Becker, D. S. McKenna, and P. J. Crutzen (1999), The upper stratospheric ozone budget: An update of calculations based on HALOE data, J. Atmos. Chem., 34, 171-183.
Tilmes, S., R. Müller, J.-U. Grooß, H. Nakajima, and Y. Sasano (2006b), Development of tracer relations and chemical ozone loss during the setup phase of the polar vortex, J. Geophys. Res., 111, D24S90, doi:10.1029/2005JD006726.
Marsh, D., R. R. Garcia, D. E. Kinnison, B. A. Bouville, F. Sassi, S. C. Solomon, and K. Matthes (2007), Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing, J. Geophys. Res., 112, D23306, doi:10.1029/2006JD008306.
Tilmes, S., R. Müller, and R. J. Salawitch (2008), The sensitivity of polar ozone depletion to proposed geoengineering schemes, Science, 320, 1201-1204.
Cai, M. (2005), Dynamical amplification of polar warming, Geophys. Res. Lett., 32, L22710, doi:10.1029/2005GL024481.
Kiehl, J. T., B. A. Boville, and B. P. Briegleb (1988), Response of a general circulation model to a prescribed Antarctic ozone hole, Nature, 332, 501-504.
Metz, B., et al. (Eds.) (2005), Special Report on Safeguarding the Ozone Layer and the Global Climate System: Issues Related to Hydrofluorocarbons and Perfluorocarbons, Cambridge Univ. Press, Cambridge, U. K.
Budyko, M. I. (1977), Climatic Changes, translated from Russian by R. Zolina, AGU, Washington, D. C.
United Nations Environment Programme and Environmental Effects Assessment Panel (2005), Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2004, Photochem. Photobiol. Sci., 4(2), 177-184.
Knudsen, B. M., N. R. P. Harris, S. B. Andersen, B. Christiansen, N. Larsen, M. Rex, and B. Naujokat (2004), Extrapolating future Arctic ozone losses, Atmos. Chem. Phys., 4, 1849-1856.
Seinfeld, J. H., and S. N. Pandis (1998), Atmospheric Chemistry and Physics, John Wiley, Hoboken, N. J.
Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi (2007), Simulation of secular trends in the middle atmosphere, J. Geophys. Res., 112, D09301, doi:10.1029/2006JD007485.
Kinnison, D. E., et al. (2007), Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model, J. Geophys. Res., 112, D20302, doi:10.1029/2006JD007879.
Crutzen, P. J. (2006), Albedo enhancements by stratospheric sulfur injections: A contribution to resolve a policy dilemma? An editorial essay, Clim. Change, 77, 211-219.
Thompson, D., and S. Solomon (2002), Interpretation of recent Southern Hemisphere climate change, Science, 296, 895-899.
Son, S.-W., et al. (2008), The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet, Science, 320, 1486-1489.
1979; 36
2002; 296
2006; 77
2006; 33
2002; 99
2004; 4
1998
2005; 62
2005; 86
2007
1996
2006; 19
2008; 35
2006
2005
2008; 366
2006; 314
2008; 320
1996; 101
1993; 363
2009; 114
2006; 111
1977
1997; 102
2007; 112
2002; 29
2000; 38
2000; 105
1999; 37
1999; 34
2002; 107
2005; 4
1988; 332
2005; 32
2007; 7
2008; 65
1995; 100
2008; 113
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
Rasch P. J. (e_1_2_9_29_1) 2008; 366
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
Seinfeld J. H. (e_1_2_9_36_1) 1998
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
Metz B. (e_1_2_9_23_1) 2005
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Drdla K. (e_1_2_9_10_1) 2005; 86
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
References_xml – volume: 34
  start-page: 171
  year: 1999
  end-page: 183
  article-title: The upper stratospheric ozone budget: An update of calculations based on HALOE data
  publication-title: J. Atmos. Chem.
– volume: 7
  start-page: 4537
  year: 2007
  end-page: 4552
  article-title: A new formulation of equivalent effective stratospheric chlorine (EESC)
  publication-title: Atmos. Chem. Phys.
– year: 2005
– volume: 86
  start-page: 1117
  issue: 8
  year: 2005
  end-page: 1133
  article-title: A strategy for process‐oriented validation of coupled chemistry‐climate models
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 35
  year: 2008
  article-title: Impact of stratospheric ozone hole recovery on Antarctic climate
  publication-title: Geophys. Res. Lett.
– volume: 101
  start-page: 18,745
  year: 1996
  end-page: 18,763
  article-title: Global to microscale evolution of the Pinatubo volcanic aerosol derived from diverse measurements and analyses
  publication-title: J. Geophys. Res.
– volume: 332
  start-page: 501
  year: 1988
  end-page: 504
  article-title: Response of a general circulation model to a prescribed Antarctic ozone hole
  publication-title: Nature
– volume: 114
  year: 2009
  article-title: An update of observed stratospheric temperature trend
  publication-title: J. Geophys. Res.
– year: 1998
– volume: 33
  year: 2006
  article-title: Chemical ozone loss in the Arctic and Antarctic stratosphere between 1992 and 2005
  publication-title: Geophys. Res. Lett.
– volume: 320
  start-page: 1201
  year: 2008
  end-page: 1204
  article-title: The sensitivity of polar ozone depletion to proposed geoengineering schemes
  publication-title: Science
– volume: 32
  year: 2005
  article-title: Dynamical amplification of polar warming
  publication-title: Geophys. Res. Lett.
– volume: 77
  start-page: 211
  year: 2006
  end-page: 219
  article-title: Albedo enhancements by stratospheric sulfur injections: A contribution to resolve a policy dilemma? An editorial essay
  publication-title: Clim. Change
– volume: 296
  start-page: 895
  year: 2002
  end-page: 899
  article-title: Interpretation of recent Southern Hemisphere climate change
  publication-title: Science
– volume: 33
  year: 2006
  article-title: When will the Antarctic ozone hole recover?
  publication-title: Geophys. Res. Lett.
– volume: 37
  start-page: 275
  year: 1999
  end-page: 316
  article-title: Stratospheric ozone depletion: A review of concepts and history
  publication-title: Rev. Geophys.
– volume: 314
  start-page: 452
  year: 2006
  end-page: 454
  article-title: A combined mitigation/geoengineering approach to climate stabilization
  publication-title: Science
– volume: 363
  start-page: 509
  year: 1993
  end-page: 514
  article-title: In situ measurements constraining the role of sulphate aerosols in mid‐latitude ozone depletion
  publication-title: Nature
– volume: 4
  start-page: 1849
  year: 2004
  end-page: 1856
  article-title: Extrapolating future Arctic ozone losses
  publication-title: Atmos. Chem. Phys.
– volume: 111
  year: 2006
  article-title: Development of tracer relations and chemical ozone loss during the setup phase of the polar vortex
  publication-title: J. Geophys. Res.
– volume: 77
  start-page: 221
  year: 2006
  end-page: 226
  article-title: Geoengineering: Encouraging research and overseeing implementaion
  publication-title: Clim. Change
– volume: 38
  start-page: 191
  year: 2000
  end-page: 219
  article-title: Volcanic eruptions and climate
  publication-title: Rev. Geophys.
– volume: 366
  start-page: 4007
  year: 2008
  end-page: 4037
  article-title: An overview of geoengineering of climate using stratospheric sulphate aerosols
  publication-title: Proc. R. Soc., Ser. A
– year: 2007
– year: 1996
– volume: 4
  start-page: 177
  issue: 2
  year: 2005
  end-page: 184
  article-title: Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2004
  publication-title: Photochem. Photobiol. Sci.
– volume: 19
  start-page: 2144
  year: 2006
  end-page: 2161
  article-title: The formulation and atmospheric simulation of the community atmosphere model (CAM3)
  publication-title: J. Clim.
– volume: 99
  start-page: 2609
  issue: 5
  year: 2002
  end-page: 2612
  article-title: Arctic “ozone hole” in a cold volcanic stratosphere
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– year: 1977
– volume: 101
  start-page: 6713
  year: 1996
  end-page: 6727
  article-title: The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes
  publication-title: J. Geophys. Res.
– volume: 65
  start-page: 2731
  year: 2008
  end-page: 2739
  article-title: Acceleration of Brewer‐Dobson circulation due to increase in greenhouse gases
  publication-title: J. Atmos. Sci.
– volume: 112
  year: 2007
  article-title: Sensitivity of chemical tracers to meteorological parameters in the MOZART‐3 chemical transport model
  publication-title: J. Geophys. Res.
– volume: 320
  start-page: 1486
  year: 2008
  end-page: 1489
  article-title: The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet
  publication-title: Science
– volume: 112
  year: 2007
  article-title: Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing
  publication-title: J. Geophys. Res.
– volume: 113
  year: 2008
  article-title: Regional climate response to geoengineering with tropical and arctic SO injection
  publication-title: J. Geophys. Res.
– volume: 29
  issue: 7
  year: 2002
  article-title: Dynamical containment of Antarctic ozone depletion
  publication-title: Geophys. Res. Lett.
– volume: 111
  year: 2006
  article-title: Assessment of temperature, trace species and ozone in chemistry‐climate simulations of the recent past
  publication-title: J. Geophys. Res.
– volume: 32
  year: 2005
  article-title: The effects of interactive ozone chemistry on simulations of the middle atmosphere
  publication-title: Geophys. Res. Lett.
– volume: 112
  year: 2007
  article-title: Simulation of secular trends in the middle atmosphere
  publication-title: J. Geophys. Res.
– volume: 33
  year: 2006
  article-title: Arctic winter 2005: Implications for stratospheric ozone loss and climate change
  publication-title: Geophys. Res. Lett.
– year: 2006
– volume: 102
  start-page: 8967
  year: 1997
  end-page: 8976
  article-title: A global climatoloy of stratospheric aerosol surface area density deduced from Stratospheric Aerosol and Gas Experiment II measurements: 1984–1994
  publication-title: J. Geophys. Res.
– volume: 105
  start-page: 3955
  year: 2000
  end-page: 3975
  article-title: A polar stratospheric cloud parameterization for the three‐dimensional model of the global modeling initiative and its response to stratospheric aircraft emissions
  publication-title: J. Geophys. Res.
– volume: 86
  issue: 52
  year: 2005
  article-title: Temperature thresholds for polar stratospheric ozone loss
  publication-title: Eos Trans. AGU
– volume: 112
  year: 2007
  article-title: Evaluation of heterogeneous processes in the polar lower stratosphere in the Whole Atmosphere Community Climate Model
  publication-title: J. Geophys. Res.
– volume: 100
  start-page: 7315
  year: 1995
  end-page: 7328
  article-title: A model simulation of Pinatubo volcanic aerosols in the stratosphere
  publication-title: J. Geophys. Res.
– volume: 35
  year: 2008
  article-title: Exploring the geoengineering of climate using stratospheric sulfate aerosols: The role of particle size
  publication-title: Geophys. Res. Lett.
– volume: 107
  issue: D24
  year: 2002
  article-title: Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depetion
  publication-title: J. Geophys. Res.
– volume: 62
  start-page: 708
  year: 2005
  end-page: 715
  article-title: Stratosphere‐troposphere coupling in the Southern Hemisphere
  publication-title: J. Atmos. Sci.
– volume: 36
  start-page: 699
  year: 1979
  end-page: 717
  article-title: The NASA‐Ames Research Center stratospheric aerosol model, I, Physical processes and mathematical analogs
  publication-title: J. Atmos. Sci.
– ident: e_1_2_9_42_1
– volume-title: Special Report on Safeguarding the Ozone Layer and the Global Climate System: Issues Related to Hydrofluorocarbons and Perfluorocarbons
  year: 2005
  ident: e_1_2_9_23_1
  contributor:
    fullname: Metz B.
– ident: e_1_2_9_20_1
  doi: 10.5194/acp-4-1849-2004
– ident: e_1_2_9_31_1
  doi: 10.1029/2006GL026731
– ident: e_1_2_9_37_1
  doi: 10.1029/1999RG900008
– ident: e_1_2_9_43_1
  doi: 10.1029/96JD02962
– ident: e_1_2_9_40_1
  doi: 10.1029/2002JD002090
– ident: e_1_2_9_25_1
  doi: 10.1029/2005GL025232
– ident: e_1_2_9_5_1
  doi: 10.1029/2005GL024481
– ident: e_1_2_9_24_1
– ident: e_1_2_9_50_1
  doi: 10.1175/1520-0469(1979)036<0699:AODMDA>2.0.CO;2
– ident: e_1_2_9_47_1
  doi: 10.1029/2005JD006726
– ident: e_1_2_9_34_1
  doi: 10.1029/96JD01162
– volume-title: Atmospheric Chemistry and Physics
  year: 1998
  ident: e_1_2_9_36_1
  contributor:
    fullname: Seinfeld J. H.
– ident: e_1_2_9_33_1
  doi: 10.1029/2008JD010050
– ident: e_1_2_9_44_1
  doi: 10.1126/science.1069270
– ident: e_1_2_9_28_1
  doi: 10.1029/2008JD010421
– ident: e_1_2_9_45_1
  doi: 10.1175/JAS-3321.1
– ident: e_1_2_9_8_1
  doi: 10.1029/1999JD900932
– ident: e_1_2_9_7_1
  doi: 10.1175/JCLI3760.1
– ident: e_1_2_9_52_1
  doi: 10.1126/science.1131728
– ident: e_1_2_9_53_1
  doi: 10.1029/94JD03325
– ident: e_1_2_9_26_1
  doi: 10.5194/acp-7-4537-2007
– ident: e_1_2_9_14_1
  doi: 10.1175/2008JAS2712.1
– ident: e_1_2_9_41_1
  doi: 10.1073/pnas.052518199
– ident: e_1_2_9_48_1
  doi: 10.1029/2006JD008334
– ident: e_1_2_9_3_1
  doi: 10.1007/1-4020-3824-0
– ident: e_1_2_9_49_1
  doi: 10.1126/science.1153966
– ident: e_1_2_9_35_1
  doi: 10.1029/2004GL022131
– ident: e_1_2_9_19_1
  doi: 10.1029/2006JD007879
– ident: e_1_2_9_6_1
  doi: 10.1007/s10584-006-9102-x
– ident: e_1_2_9_2_1
  doi: 10.1029/2001GL014206
– ident: e_1_2_9_15_1
  doi: 10.1029/2006JD007485
– ident: e_1_2_9_21_1
– ident: e_1_2_9_22_1
  doi: 10.1029/2006JD008306
– ident: e_1_2_9_16_1
  doi: 10.1023/A:1006290927549
– ident: e_1_2_9_17_1
  doi: 10.1017/CBO9780511546013
– ident: e_1_2_9_27_1
  doi: 10.1029/2008GL033317
– ident: e_1_2_9_46_1
  doi: 10.1029/2006GL026925
– ident: e_1_2_9_11_1
  doi: 10.1175/BAMS-86-8-1117
– ident: e_1_2_9_39_1
  doi: 10.1126/science.1155939
– ident: e_1_2_9_32_1
  doi: 10.1029/1998RG000054
– ident: e_1_2_9_30_1
  doi: 10.1029/2007GL032179
– ident: e_1_2_9_18_1
  doi: 10.1038/332501a0
– ident: e_1_2_9_4_1
  doi: 10.1029/SP010
– volume: 86
  issue: 52
  year: 2005
  ident: e_1_2_9_10_1
  article-title: Temperature thresholds for polar stratospheric ozone loss
  publication-title: Eos Trans. AGU
  contributor:
    fullname: Drdla K.
– ident: e_1_2_9_13_1
  doi: 10.1038/363509a0
– ident: e_1_2_9_9_1
  doi: 10.1007/s10584-006-9101-y
– ident: e_1_2_9_12_1
  doi: 10.1029/2006JD007327
– ident: e_1_2_9_51_1
  doi: 10.1039/b418650h
– volume: 366
  start-page: 4007
  year: 2008
  ident: e_1_2_9_29_1
  article-title: An overview of geoengineering of climate using stratospheric sulphate aerosols
  publication-title: Proc. R. Soc., Ser. A
  contributor:
    fullname: Rasch P. J.
– ident: e_1_2_9_38_1
  doi: 10.1029/95JD03353
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000803454
Score 2.3936267
Snippet A coupled chemistry climate model, the Whole Atmosphere Community Climate Model was used to perform a transient climate simulation to quantify the impact of...
SourceID proquest
crossref
pascalfrancis
wiley
istex
agu
SourceType Aggregation Database
Index Database
Publisher
StartPage D12305
SubjectTerms Atmospheric Composition and Structure
Atmospheric Processes
Climate change and variability
composition and chemistry
constituent transport and chemistry
Earth sciences
Earth, ocean, space
Exact sciences and technology
geoengineering
Middle atmosphere
Radiative processes
stratospheric aerosols
stratospheric chemistry
Volcanic effects
Title Impact of geoengineered aerosols on the troposphere and stratosphere
URI https://api.istex.fr/ark:/67375/WNG-L7052RDJ-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2008JD011420
https://search.proquest.com/docview/20678440
https://search.proquest.com/docview/34508748
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0GpXISEkBAPU8FHyAHspgdRxUvexWkrGBGPqOgFPkRs7U0WXTE0rsX_P-SNfoE3sgZfI5zhO07vz3dn3gdAbJtNNUsqdxA24QwKcODTBE8dLAf2Jn9BAyP2Oo7PxyXcazsis0ylLd9V9_xXT0Ae4lpGzd8B2NSl0QBtwDlfAOlz_Ce-fqrDHC5ELk20QtEomQB7m6_J0YLiV5REKmVRAHyCo_Lmm4waNNRL5VYnW0mNPbSxuL82DlYK-WJWRDmdADPXRfSRLF2l9NZc-lflw_r52A8iylQkAM3r9cFbdjaRP0trs1zbcMMsdC5nlwNEJABqbmDJ1oZZBqg80DxiE3fbKrONLDQmGxt9ai-lKiP0lA1wsU6hKv47jUIUKu7WsK8_3q3H-bSOVmD-O5uFIJsHpoh6G1QwW0950dv5jXm3lqZQ8tWfRiKhYYQ3AckpbAG4CXhMgTcBvAkEJEBAHusKm-QdNKAd8yofmZ0hV62LXUrV6ctX4JV1_WQFkkuqyLS27qmmdKfVq8Qg9NFRmTzVBP0Ydke2j_rSQJzX55bV9YKu2pr9iH93TRVSvoRUJ07K-gAWYbxQEDxyuV2COmXsPviaCZSY_Ozx0qid6gkLNMHae2i2GsUuGsfPMBoaxGwxjA-XaTYZ5is4_zhaHR44pLeIwwBV2QClPpfHuUZf73FtyykGQJczHTG6ZcO4Rj0845-6YiQSsHL4kxE0mbCkoFZh5z9BeBtzTRzYdeylhOCUiAE1P-HSZBCTFDE98mNQPLNQHXMRXOnlM3ESThd6WCKruK6cQPPlj3IHCXjWIbX5Kh8yxH387ieLPY9fH8_A4Di00aKG3futoTChYIxZ6XeI7BjkiDwdZJvJdEcsyDhS-8eYRHgFjDqax0DtFKLf-5Lhim-d3G_4C3a_XjJdob7vZiVeoW_DdAHU973RguO83f8ruNQ
link.rule.ids 315,782,786,27933,27934
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+geoengineered+aerosols+on+the+troposphere+and+stratosphere&rft.jtitle=Journal+of+Geophysical+Research%3A+Atmospheres&rft.au=Tilmes%2C+Simone&rft.au=Garcia%2C+Rolando+R.&rft.au=Kinnison%2C+Douglas+E.&rft.au=Gettelman%2C+Andrew&rft.date=2009-06-27&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=114&rft.issue=D12&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2008JD011420&rft.externalDBID=10.1029%252F2008JD011420&rft.externalDocID=JGRD15352
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon