Measuring and Modeling Stable Isotopes of Mobile and Bulk Soil Water
Core Ideas Bulk soil water isotopes have an evaporation signal, but mobile water isotopes do not. These differences are time variant and linked to the volume and age of the mobile water. Two pore domains (fast and slow) improve simulations of soil water isotope dynamics. A new model accounts for iso...
Saved in:
Published in: | Vadose zone journal Vol. 17; no. 1; pp. 1 - 18 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Madison
The Soil Science Society of America, Inc
2018
John Wiley & Sons, Inc Wiley |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Core Ideas
Bulk soil water isotopes have an evaporation signal, but mobile water isotopes do not.
These differences are time variant and linked to the volume and age of the mobile water.
Two pore domains (fast and slow) improve simulations of soil water isotope dynamics.
A new model accounts for isotopic exchange via water vapor between two pore domains.
This exchange is relevant for proper simulation of the evaporation signal in bulk soil water.
Recent findings from stable isotope studies have opened up new questions about differences in the isotopic composition (δ2H and δ18O) of mobile (MW) and bulk water (BW) in soils. We sampled the isotopic compositions of MW using suction lysimeters and BW with the direct‐equilibration method. The study was conducted at two landscape units in each of three catchments: the Bruntland Burn (Scotland), Dorset (Canada), and Krycklan (Sweden). We further used the numerical one‐dimensional flow model SWIS (Soil Water Isotope Simulator) to simulate the hydrometric and isotopic dynamics. The model included evaporation fractionation, allowed differentiation between a fast and a slow flow domain, and included isotopic exchange via water vapor. Our measurements showed that MW plots along the local meteoric water lines, whereas BW plots below, which is indicative of evaporation fractionation. We suggest that the relative volume of MW to BW is relevant for explaining these isotopic differences because MW volumes are usually relatively low during periods of high evaporation. Under this condition, differences between MW and plant water isotopes are not paradoxical but rather related to the water that cannot be sampled with suction lysimeters but is still available for plant water uptake. The simulations accounting for fast and slow flow supported the conceptualization of the two soil pore domains with isotopic exchange via vapor exchange because this model setup resulted in the best model performance. Overall, these findings are of high relevance for current understanding related to the source and isotopic composition of water taken up by plants. |
---|---|
AbstractList | Core IdeasBulk soil water isotopes have an evaporation signal, but mobile water isotopes do not.These differences are time variant and linked to the volume and age of the mobile water.Two pore domains (fast and slow) improve simulations of soil water isotope dynamics.A new model accounts for isotopic exchange via water vapor between two pore domains.This exchange is relevant for proper simulation of the evaporation signal in bulk soil water.Recent findings from stable isotope studies have opened up new questions about differences in the isotopic composition (δ2H and δ18O) of mobile (MW) and bulk water (BW) in soils. We sampled the isotopic compositions of MW using suction lysimeters and BW with the direct‐equilibration method. The study was conducted at two landscape units in each of three catchments: the Bruntland Burn (Scotland), Dorset (Canada), and Krycklan (Sweden). We further used the numerical one‐dimensional flow model SWIS (Soil Water Isotope Simulator) to simulate the hydrometric and isotopic dynamics. The model included evaporation fractionation, allowed differentiation between a fast and a slow flow domain, and included isotopic exchange via water vapor. Our measurements showed that MW plots along the local meteoric water lines, whereas BW plots below, which is indicative of evaporation fractionation. We suggest that the relative volume of MW to BW is relevant for explaining these isotopic differences because MW volumes are usually relatively low during periods of high evaporation. Under this condition, differences between MW and plant water isotopes are not paradoxical but rather related to the water that cannot be sampled with suction lysimeters but is still available for plant water uptake. The simulations accounting for fast and slow flow supported the conceptualization of the two soil pore domains with isotopic exchange via vapor exchange because this model setup resulted in the best model performance. Overall, these findings are of high relevance for current understanding related to the source and isotopic composition of water taken up by plants. Recent findings from stable isotope studies have opened up new questions about differences in the isotopic composition (delta H-2 and delta O-18) of mobile (MW) and bulk water (BW) in soils. We sampled the isotopic compositions of MW using suction lysimeters and BW with the direct-equilibration method. The study was conducted at two landscape units in each of three catchments: the Bruntland Burn (Scotland), Dorset (Canada), and Krycklan (Sweden). We further used the numerical one-dimensional flow model SWIS (Soil Water Isotope Simulator) to simulate the hydrometric and isotopic dynamics. The model included evaporation fractionation, allowed differentiation between a fast and a slow flow domain, and included isotopic exchange via water vapor. Our measurements showed that MW plots along the local meteoric water lines, whereas BW plots below, which is indicative of evaporation fractionation. We suggest that the relative volume of MW to BW is relevant for explaining these isotopic differences because MW volumes are usually relatively low during periods of high evaporation. Under this condition, differences between MW and plant water isotopes are not paradoxical but rather related to the water that cannot be sampled with suction lysimeters but is still available for plant water uptake. The simulations accounting for fast and slow flow supported the conceptualization of the two soil pore domains with isotopic exchange via vapor exchange because this model setup resulted in the best model performance. Overall, these findings are of high relevance for current understanding related to the source and isotopic composition of water taken up by plants. Core Ideas Bulk soil water isotopes have an evaporation signal, but mobile water isotopes do not. These differences are time variant and linked to the volume and age of the mobile water. Two pore domains (fast and slow) improve simulations of soil water isotope dynamics. A new model accounts for isotopic exchange via water vapor between two pore domains. This exchange is relevant for proper simulation of the evaporation signal in bulk soil water. Recent findings from stable isotope studies have opened up new questions about differences in the isotopic composition (δ2H and δ18O) of mobile (MW) and bulk water (BW) in soils. We sampled the isotopic compositions of MW using suction lysimeters and BW with the direct‐equilibration method. The study was conducted at two landscape units in each of three catchments: the Bruntland Burn (Scotland), Dorset (Canada), and Krycklan (Sweden). We further used the numerical one‐dimensional flow model SWIS (Soil Water Isotope Simulator) to simulate the hydrometric and isotopic dynamics. The model included evaporation fractionation, allowed differentiation between a fast and a slow flow domain, and included isotopic exchange via water vapor. Our measurements showed that MW plots along the local meteoric water lines, whereas BW plots below, which is indicative of evaporation fractionation. We suggest that the relative volume of MW to BW is relevant for explaining these isotopic differences because MW volumes are usually relatively low during periods of high evaporation. Under this condition, differences between MW and plant water isotopes are not paradoxical but rather related to the water that cannot be sampled with suction lysimeters but is still available for plant water uptake. The simulations accounting for fast and slow flow supported the conceptualization of the two soil pore domains with isotopic exchange via vapor exchange because this model setup resulted in the best model performance. Overall, these findings are of high relevance for current understanding related to the source and isotopic composition of water taken up by plants. Recent findings from stable isotope studies have opened up new questions about differences in the isotopic composition (δH and δO) of mobile (MW) and bulk water (BW) in soils. We sampled the isotopic compositions of MW using suction lysimeters and BW with the direct-equilibration method. The study was conducted at two landscape units in each of three catchments: the Bruntland Burn (Scotland), Dorset (Canada), and Krycklan (Sweden). We further used the numerical one-dimensional flow model SWIS (Soil Water Isotope Simulator) to simulate the hydrometric and isotopic dynamics. The model included evaporation fractionation, allowed differentiation between a fast and a slow flow domain, and included isotopic exchange via water vapor. Our measurements showed that MW plots along the local meteoric water lines, whereas BW plots below, which is indicative of evaporation fractionation. We suggest that the relative volume of MW to BW is relevant for explaining these isotopic differences because MW volumes are usually relatively low during periods of high evaporation. Under this condition, differences between MW and plant water isotopes are not paradoxical but rather related to the water that cannot be sampled with suction lysimeters but is still available for plant water uptake. The simulations accounting for fast and slow flow supported the conceptualization of the two soil pore domains with isotopic exchange via vapor exchange because this model setup resulted in the best model performance. Overall, these findings are of high relevance for current understanding related to the source and isotopic composition of water taken up by plants. Core Ideas Bulk soil water isotopes have an evaporation signal, but mobile water isotopes do not. These differences are time variant and linked to the volume and age of the mobile water. Two pore domains (fast and slow) improve simulations of soil water isotope dynamics. A new model accounts for isotopic exchange via water vapor between two pore domains. This exchange is relevant for proper simulation of the evaporation signal in bulk soil water. Recent findings from stable isotope studies have opened up new questions about differences in the isotopic composition (δ 2 H and δ 18 O) of mobile (MW) and bulk water (BW) in soils. We sampled the isotopic compositions of MW using suction lysimeters and BW with the direct‐equilibration method. The study was conducted at two landscape units in each of three catchments: the Bruntland Burn (Scotland), Dorset (Canada), and Krycklan (Sweden). We further used the numerical one‐dimensional flow model SWIS (Soil Water Isotope Simulator) to simulate the hydrometric and isotopic dynamics. The model included evaporation fractionation, allowed differentiation between a fast and a slow flow domain, and included isotopic exchange via water vapor. Our measurements showed that MW plots along the local meteoric water lines, whereas BW plots below, which is indicative of evaporation fractionation. We suggest that the relative volume of MW to BW is relevant for explaining these isotopic differences because MW volumes are usually relatively low during periods of high evaporation. Under this condition, differences between MW and plant water isotopes are not paradoxical but rather related to the water that cannot be sampled with suction lysimeters but is still available for plant water uptake. The simulations accounting for fast and slow flow supported the conceptualization of the two soil pore domains with isotopic exchange via vapor exchange because this model setup resulted in the best model performance. Overall, these findings are of high relevance for current understanding related to the source and isotopic composition of water taken up by plants. |
Author | Leistert, Hannes Weiler, Markus Snelgrove, Jenna Tetzlaff, Doerthe Buttle, Jim Laudon, Hjalmar Mitchell, Carl P.J. Soulsby, Chris Sprenger, Matthias |
Author_xml | – sequence: 1 givenname: Matthias surname: Sprenger fullname: Sprenger, Matthias email: Matthias.sprenger@abdn.ac.uk organization: Northern Rivers Institute, School of Geosciences, Univ. of Aberdeen – sequence: 2 givenname: Doerthe surname: Tetzlaff fullname: Tetzlaff, Doerthe organization: IGB Leibniz Institute of Freshwater Ecology and Inland Fisheries, Humboldt Univ – sequence: 3 givenname: Jim surname: Buttle fullname: Buttle, Jim organization: School of the Environment, Trent Univ – sequence: 4 givenname: Hjalmar surname: Laudon fullname: Laudon, Hjalmar organization: Swedish Univ. of Agricultural Sciences – sequence: 5 givenname: Hannes surname: Leistert fullname: Leistert, Hannes organization: Univ. of Freiburg – sequence: 6 givenname: Carl P.J. surname: Mitchell fullname: Mitchell, Carl P.J. organization: Univ. of Toronto – sequence: 7 givenname: Jenna surname: Snelgrove fullname: Snelgrove, Jenna organization: Trent Univ – sequence: 8 givenname: Markus surname: Weiler fullname: Weiler, Markus organization: Univ. of Freiburg – sequence: 9 givenname: Chris surname: Soulsby fullname: Soulsby, Chris organization: Northern Rivers Institute, School of Geosciences, Univ. of Aberdeen |
BackLink | https://res.slu.se/id/publ/96229$$DView record from Swedish Publication Index |
BookMark | eNqFkUtv1TAQhS1UJNrCmm0k1rkdv-MNEhQoF7XqojwkNtY4dqpcQnyxk1bl1-M0FYJVF9Z4jr85sn2OyMEYx0DISwobRrk6ufm9Y0D1BpoNUGGekEMquampUvzgn_0zcpTzDoAaIdgheXcRMM-pH68rHH11EX0YluZqQjeEapvjFPchV7ErZ64v0oK9nYcf1VXsh-obTiE9J087HHJ48VCPyZcP7z-ffqzPL8-2p2_Oa5SyMbUGx2WrPQXsNDSy60SQ3AkahGo9iNYY0fByLYUetG9NI1xrZBe8p0Y2jB-T7errI-7sPvU_Md3ZiL29F2K6tpimvh2CdbwDjRRbLkEoVEg1k5oKdE5xz7B41atXvg372f3nlofZYVqKzcEaxZgp_KuV36f4aw55srs4p7E81zLNmRRGwEKdrFSbYs4pdH99KdglJvsQk4XGLjGVidfrxG353LvHcPv1-ye2rKJBc2_wBz7RmJc |
CitedBy_id | crossref_primary_10_1111_nph_16410 crossref_primary_10_1002_hyp_13539 crossref_primary_10_5194_hess_27_4173_2023 crossref_primary_10_1029_2020WR027238 crossref_primary_10_5194_bg_15_6399_2018 crossref_primary_10_1002_hyp_13135 crossref_primary_10_1061_JHYEFF_HEENG_5806 crossref_primary_10_5194_hess_25_2169_2021 crossref_primary_10_1002_vzj2_20265 crossref_primary_10_1016_j_jhydrol_2021_126347 crossref_primary_10_1002_vzj2_20022 crossref_primary_10_1016_j_jhydrol_2020_125811 crossref_primary_10_1016_j_jhydrol_2022_128926 crossref_primary_10_5194_hess_26_4093_2022 crossref_primary_10_5194_hess_25_4513_2021 crossref_primary_10_1146_annurev_earth_071822_100356 crossref_primary_10_1002_hyp_13627 crossref_primary_10_1016_j_jhydrol_2024_130893 crossref_primary_10_5194_hess_24_1831_2020 crossref_primary_10_1029_2022WR032314 crossref_primary_10_3389_frwa_2021_645634 crossref_primary_10_3390_w15050988 crossref_primary_10_5194_hess_22_2881_2018 crossref_primary_10_5194_hess_26_5515_2022 crossref_primary_10_1002_hyp_13584 crossref_primary_10_1029_2020WR027419 crossref_primary_10_1080_15715124_2022_2092490 crossref_primary_10_1029_2022WR033056 crossref_primary_10_2136_vzj2017_09_0170 crossref_primary_10_2138_rmg_2018_85_13 crossref_primary_10_1002_vzj2_20310 crossref_primary_10_1111_ejss_13434 crossref_primary_10_5194_gmd_11_3045_2018 crossref_primary_10_5194_hess_23_2751_2019 crossref_primary_10_1029_2018RG000633 crossref_primary_10_1002_hyp_13518 crossref_primary_10_1016_j_advwatres_2020_103586 crossref_primary_10_5194_hess_24_4413_2020 crossref_primary_10_1029_2019WR025174 crossref_primary_10_2136_vzj2018_05_0096 crossref_primary_10_5194_hess_24_4045_2020 crossref_primary_10_1002_wat2_1727 crossref_primary_10_1002_hyp_13916 crossref_primary_10_1016_j_envsoft_2021_105118 crossref_primary_10_1002_hyp_13232 crossref_primary_10_1002_hyp_13475 crossref_primary_10_1111_gwat_13329 crossref_primary_10_3389_fpls_2020_00387 crossref_primary_10_5194_cp_15_685_2019 crossref_primary_10_5194_hess_22_3965_2018 crossref_primary_10_1002_vzj2_20288 crossref_primary_10_1002_hyp_14082 crossref_primary_10_1016_j_jhydrol_2019_06_071 crossref_primary_10_1002_hyp_15057 crossref_primary_10_1016_j_orggeochem_2020_104064 crossref_primary_10_14770_jgsk_2020_56_1_101 crossref_primary_10_5194_hess_24_3737_2020 crossref_primary_10_1016_j_jhydrol_2021_126079 crossref_primary_10_5194_hess_26_1615_2022 crossref_primary_10_1029_2021WR030698 crossref_primary_10_1002_hyp_13606 crossref_primary_10_1029_2018WR023894 crossref_primary_10_1016_j_scitotenv_2023_168800 crossref_primary_10_1002_eco_2402 crossref_primary_10_1002_rcm_8494 crossref_primary_10_1002_hyp_14778 crossref_primary_10_1002_hyp_13569 crossref_primary_10_1016_j_scitotenv_2023_163510 crossref_primary_10_1029_2022WR032385 crossref_primary_10_1002_eco_2208 crossref_primary_10_1029_2022WR032344 crossref_primary_10_1080_14702541_2019_1695894 crossref_primary_10_1002_hyp_13480 crossref_primary_10_1029_2019WR026988 crossref_primary_10_3390_w11091760 crossref_primary_10_1016_j_jenvman_2020_110903 crossref_primary_10_1038_s41467_022_34215_7 crossref_primary_10_1111_2041_210X_13461 |
Cites_doi | 10.5194/hess‐4‐451‐2000 10.5194/bg‐14‐2199‐2017 10.1029/WR008i005p01204 10.1002/wrcr.20311 10.1002/2015RG000515 10.1002/hyp.10643 10.1002/hyp.10300 10.5194/jsss‐2‐179‐2013 10.1016/0022‐1694(94)02636‐P 10.1002/eco.1843 10.1029/2011WR011316 10.1016/B978-0-444-42225-5.50008-5 10.1002/2015WR017485 10.1016/j.jhydrol.2014.07.031 10.1002/wat2.1027 10.1002/2013WR014147 10.1016/j.agrformet.2017.04.002 10.1016/0022‐1694(90)90217‐L 10.1002/eco.268 10.5194/hess‐21‐3839‐2017 10.1002/hyp.256 10.1002/2016MS000842 10.1016/S0022‐1694(01)00466‐8 10.1002/wrcr.20520 10.2136/vzj2011.0075 10.1002/rcm.7787 10.1016/j.jhydrol.2014.04.029 10.1016/0022‐1694(70)90255‐6 10.1007/s11270‐007‐9399‐8 10.5194/hess‐16‐631‐2012 10.5194/hess‐21‐5089‐2017 10.1093/oso/9780195117752.001.0001 10.1029/96WR02715 10.1051/jcp/1971681423 10.1111/nph.14616 10.1126/science.aaa5931 10.1061/(ASCE)1090‐0241(2007)133:10(1277) 10.1002/hyp.10515 10.1029/92WR02339 10.1002/rcm.7815 10.1016/j.jhydrol.2010.05.029 10.1016/0022‐1694(83)90018‐5 10.1021/es802065s 10.1016/j.jhydrol.2009.08.003 10.1016/S0009‐2541(98)00109‐0 10.2136/vzj2012.0163 10.1016/0022‐1694(86)90091‐0 10.1016/S0022‐1694(03)00257‐9 10.1002/hyp.10753 10.1002/hyp.11351 10.2136/sssaj1980.03615995004400050002x 10.5194/hess‐18‐4113‐2014 10.1002/2013WR015141 10.5194/bg‐14‐3001‐2017 10.1038/ngeo722 10.1016/j.jhydrol.2009.06.036 10.1002/hyp.10603 10.1080/10256016.2017.1302446 10.1002/hyp.10984 10.1016/j.jhydrol.2013.08.033 10.4141/cjss87‐030 10.1002/2016WR019258 10.5194/hess‐19‐4427‐2015 10.1002/2015WR017888 10.1623/hysj.52.4.748 10.1038/350335a0 10.1002/hyp.11052 10.1002/rcm.2456 10.1002/2015WR018077 10.1023/A:1020261913618 10.1002/hyp.11363 10.1016/S0022‐1694(02)00005‐7 10.1111/1365‐2745.12636 10.1029/WR026i011p02821 10.1002/2013WR014925 10.1002/eco.1841 10.1002/eco.1675 10.2136/vzj2006.0096 10.3402/tellusa.v16i4.8993 10.5194/gmd‐7‐1247‐2014 10.1002/wrcr.20156 10.1002/rcm.5198 10.1002/hyp.11194 10.5194/gmd‐6‐1463‐2013 10.1016/j.agee.2016.02.014 10.5194/hess‐19‐2617‐2015 10.1016/0022‐1694(88)90171‐0 10.1002/hyp.10289 10.1016/S0022‐1694(99)00120‐1 10.1002/hyp.232 10.1002/2017WR020650 10.1002/hyp.11271 10.1111/nph.13868 10.5194/hess‐18‐1819‐2014 10.1007/978-94-007-2275-0 |
ContentType | Journal Article |
Copyright | 2018 The Authors. 2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2018 The Authors. – notice: 2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Sveriges lantbruksuniversitet |
CorporateAuthor_xml | – name: Sveriges lantbruksuniversitet |
DBID | 24P WIN AAYXX CITATION 7UA C1K F1W H96 L.G ADTPV AOWAS DOA |
DOI | 10.2136/vzj2017.08.0149 |
DatabaseName | Open Access: Wiley-Blackwell Open Access Journals Wiley-Blackwell Open Access Backfiles (Open Access) CrossRef Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional SwePub SwePub Articles DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1539-1663 |
EndPage | 18 |
ExternalDocumentID | oai_doaj_org_article_b3f07a1ac35046a6a1725714abb63d2a oai_slubar_slu_se_96229 10_2136_vzj2017_08_0149 VZJ2VZJ2017080149 |
Genre | article |
GrantInformation_xml | – fundername: European Research Council funderid: 335910 VeWa – fundername: KAW Branch‐Points |
GroupedDBID | .~0 0R~ 123 18M 1OB 1OC 24P 2WC 6KN AAHBH AAHHS ABJNI ACAWQ ACCFJ ACGFO ACXQS ADBBV ADKYN ADZMN AEEZP AENEX AEQDE AFRAH AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BCNDV C1A CS3 DDYGU DU5 E3Z EBS ECGQY EJD GOHGZ GROUPED_DOAJ GX1 H13 IAO IGS MV1 M~E NHAZY O9- OK1 P2P RAK RGW SAMSI TR2 WIN WOQ WXSBR ~02 ~KM AAWFE AAYXX CITATION ITC 7UA C1K F1W H96 L.G ADTPV AOWAS |
ID | FETCH-LOGICAL-a5589-70b35c7d10af7085ff4e53b41e46cd04c994834426ad07dc984bc95fedd195823 |
IEDL.DBID | DOA |
ISSN | 1539-1663 |
IngestDate | Tue Oct 22 15:14:38 EDT 2024 Tue Oct 01 22:53:13 EDT 2024 Thu Oct 10 18:21:51 EDT 2024 Thu Sep 26 18:20:10 EDT 2024 Sat Aug 24 01:11:40 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a5589-70b35c7d10af7085ff4e53b41e46cd04c994834426ad07dc984bc95fedd195823 |
Notes | Supplemental material online. |
OpenAccessLink | https://doaj.org/article/b3f07a1ac35046a6a1725714abb63d2a |
PQID | 2732549409 |
PQPubID | 2046224 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b3f07a1ac35046a6a1725714abb63d2a swepub_primary_oai_slubar_slu_se_96229 proquest_journals_2732549409 crossref_primary_10_2136_vzj2017_08_0149 wiley_primary_10_2136_vzj2017_08_0149_VZJ2VZJ2017080149 |
PublicationCentury | 2000 |
PublicationDate | 2018 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018 |
PublicationDecade | 2010 |
PublicationPlace | Madison |
PublicationPlace_xml | – name: Madison |
PublicationTitle | Vadose zone journal |
PublicationYear | 2018 |
Publisher | The Soil Science Society of America, Inc John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: The Soil Science Society of America, Inc – name: John Wiley & Sons, Inc – name: Wiley |
References | 2015a; 29 1991; 350 1993; 29 2013; 2 2007; 184 2000; 4 1980; 44 2010; 388 2016; 31 2016; 30 2015b; 29 2017a; 31 2016; 104 2012; 16 2015; 349 2017a; 240–241 2013; 6 2012; 11 2017; 9 1998; 150 1988; 104 2014; 1 2017; 31 2006; 20 2001; 251 2002; 261 1986; 88 2013; 12 2007; 133 1987 1986 2003; 282 1985 2017c; 53 2007; 6 1995; 168 1983; 60 2001; 15 2014; 18 2011; 25 2014; 50 2014; 7 2014; 519A 2017b; 21 2014; 515 1972; 8 2016a; 222 2015; 19 2013; 49 2017; 2017 2012 2015; 51 1971; 68 2016b; 54 2013; 503 1998 2009; 374 1970; 10 2016; 52 2009; 377 2006 2017a; 53 1999; 224 2007; 52 1991 2016c; 52 2017; 215 1999 2017; 53 1987; 67 2017b; 31 2015; 29 1990; 115 1997; 33 1990; 26 2017; 14 1964; 16 2002; 61 2017; 10 2016; 210 2015b; 19 2014 2012; 48 2008; 42 2009; 3 2012; 5 2016; 9 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_9_1 Lozano F.C. (e_1_2_8_48_1) 1987 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_2_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 Campbell G.S. (e_1_2_8_16_1) 1985 e_1_2_8_18_1 Landwehr J.M. (e_1_2_8_44_1) 2006 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 Allen R.G. (e_1_2_8_4_1) 1998 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_46_1 Genuchten M.Th. (e_1_2_8_90_1) 1991 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_65_1 Weiss M. (e_1_2_8_98_1) 2014 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 Wenner D. (e_1_2_8_99_1) 1991 e_1_2_8_73_1 e_1_2_8_50_1 |
References_xml | – volume: 29 start-page: 5153 year: 2015 end-page: 5173 article-title: A preliminary assessment of water partitioning and ecohydrological coupling in northern headwaters using stable isotopes and conceptual runoff models publication-title: Hydrol. Processes – volume: 50 start-page: 5342 year: 2014 end-page: 5350 article-title: Debates—The future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph publication-title: Water Resour. Res. – volume: 374 start-page: 360 year: 2009 end-page: 372 article-title: Scaling and physiographic controls on streamflow behaviour on the Precambrian Shield, south‐central Ontario publication-title: J. Hydrol. – volume: 31 start-page: 4282 year: 2017 end-page: 4296 article-title: Influence of forest and shrub canopies on precipitation partitioning and isotopic signatures publication-title: Hydrol. Processes – start-page: 195 year: 1991 end-page: 203 – volume: 6 start-page: 29 year: 2007 end-page: 52 article-title: Review of dispersivities for transport modeling in soils publication-title: Vadose Zone J. – start-page: 132 year: 2006 end-page: 135 – volume: 168 start-page: 159 year: 1995 end-page: 171 article-title: Isotope effects accompanying vacuum extraction of soil water for stable isotope analyses publication-title: J. Hydrol. – volume: 240–241 start-page: 58 year: 2017a end-page: 66 article-title: Assessing the environmental controls on Scots pine transpiration and the implications for water partitioning in a boreal headwater catchment publication-title: Agric. For. Meteorol. – volume: 52 start-page: 164 year: 2016 end-page: 189 article-title: Dynamic, structured heterogeneity of water isotopes inside hillslopes publication-title: Water Resour. Res. – volume: 26 start-page: 2821 year: 1990 end-page: 2832 article-title: A rationale for old water discharge through macropores in a steep, humid catchment publication-title: Water Resour. Res. – volume: 2 start-page: 179 year: 2013 end-page: 193 article-title: Validation and application of a cryogenic vacuum extraction system for soil and plant water extraction for isotope analysis publication-title: J. Sens. Sens. Syst. – year: 2014 – volume: 377 start-page: 80 year: 2009 end-page: 91 article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling publication-title: J. Hydrol. – year: 1998 – volume: 15 start-page: 927 year: 2001 end-page: 941 article-title: Soil frost effects on soil water and runoff dynamics along a boreal transect: 2 publication-title: Simulations. Hydrol. Processes – volume: 19 start-page: 4427 year: 2015 end-page: 4440 article-title: Determining the stable isotope composition of pore water from saturated and unsaturated zone core: Improvements to the direct vapour equilibration laser spectrometry method publication-title: Hydrol. Earth Syst. Sci. – volume: 50 start-page: 3481 year: 2014 end-page: 3501 article-title: Developing a consistent process‐based conceptualization of catchment functioning using measurements of internal state variables publication-title: Water Resour. Res. – volume: 16 start-page: 631 year: 2012 end-page: 640 article-title: A porewater‐based stable isotope approach for the investigation of subsurface hydrological processes publication-title: Hydrol. Earth Syst. Sci. – volume: 25 start-page: 3041 year: 2011 end-page: 3048 article-title: An inexpensive, fast, and reliable method for vacuum extraction of soil and plant water for stable isotope analyses by mass spectrometry. Rapid Commun publication-title: Mass Spectrom. – volume: 50 start-page: 969 year: 2014 end-page: 985 article-title: Storage dynamics in hydropedological units control hillslope connectivity, runoff generation and the evolution of catchment transit time distributions publication-title: Water Resour. Res. – volume: 88 start-page: 201 year: 1986 end-page: 211 article-title: The influence of land use on water yield in upland areas of the U.K. publication-title: J. Hydrol. – volume: 29 start-page: 1844 year: 2015b end-page: 1860 article-title: The relative role of soil type and tree cover on water storage and transmission in northern headwater catchments publication-title: Hydrol. Processes – volume: 31 start-page: 2438 year: 2017 end-page: 2452 article-title: Ecohydrologic considerations for modeling of stable water isotopes in a small intermittent watershed publication-title: Hydrol. Processes – volume: 2017 year: 2017 article-title: The two water worlds hypothesis: Addressing multiple working hypotheses and proposing a way forward publication-title: Ecohydrology – volume: 68 start-page: 1423 year: 1971 end-page: 1436 article-title: Fractionnement en oxygene‐18 et en deuterium entre l'eau et sa vapeur publication-title: J. Chim. Phys. – volume: 61 start-page: 337 year: 2002 end-page: 355 article-title: Climate effects on sulphate flux from forested catchments in south‐central Ontario publication-title: Biogeochemistry – volume: 20 start-page: 1317 year: 2006 end-page: 1321 article-title: Water extraction times for plant and soil materials used in stable isotope analysis. Rapid Commun publication-title: Mass Spectrom. – volume: 10 start-page: 282 year: 1970 end-page: 290 article-title: River flow forecasting through conceptual models: I. A discussion of principles publication-title: J. Hydrol. – volume: 31 start-page: 430 year: 2017a end-page: 436 article-title: No influence of CO on stable isotope analyses of soil waters with OA‐ICOS. Rapid Commun publication-title: Mass Spectrom. – volume: 18 start-page: 4113 year: 2014 end-page: 4127 article-title: Stable water isotope tracing through hydrological models for disentangling runoff generation processes at the hillslope scale publication-title: Hydrol. Earth Syst. Sci. – volume: 49 start-page: 3747 year: 2013 end-page: 3755 article-title: Monitoring water stable isotopic composition in soils using gas‐permeable tubing and infrared laser absorption spectroscopy publication-title: Water Resour. Res. – year: 1987 – volume: 184 start-page: 63 year: 2007 end-page: 75 article-title: A comparison of Od composition of water extracted from suction lysimeters, centrifugation, and azeotropic distillation publication-title: Water Air Soil Pollut. – volume: 515 start-page: 1 year: 2014 end-page: 9 article-title: Oxygen isotope fractionation effects in soil water via interaction with cations (Mg, Ca, K, Na) adsorbed to phyllosilicate clay minerals publication-title: J. Hydrol. – start-page: 113 year: 1986 end-page: 168 – volume: 51 start-page: 7759 year: 2015 end-page: 7776 article-title: Stream water age distributions controlled by storage dynamics and nonlinear hydrologic connectivity: Modeling with high‐resolution isotope data publication-title: Water Resour. Res. – volume: 350 start-page: 335 year: 1991 end-page: 337 article-title: Streamside trees that do not use stream water publication-title: Nature – volume: 7 start-page: 1247 year: 2014 end-page: 1250 article-title: Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature publication-title: Geosci. Model Dev. – volume: 349 start-page: 175 year: 2015 end-page: 177 article-title: Hydrologic connectivity constrains partitioning of global terrestrial water fluxes publication-title: Science – volume: 9 start-page: 978 year: 2017 end-page: 1001 article-title: Evaluation of modeled land–atmosphere exchanges with a comprehensive water isotope fractionation scheme in version 4 of the Community Land Model publication-title: J. Adv. Model. Earth Syst. – volume: 3 start-page: 100 year: 2009 end-page: 104 article-title: Ecohydrologic separation of water between trees and streams in a Mediterranean climate publication-title: Nat. Geosci. – volume: 52 start-page: 5727 year: 2016c end-page: 5754 article-title: Travel times in the vadose zone: Variability in space and time publication-title: Water Resour. Res. – volume: 6 start-page: 1463 year: 2013 end-page: 1480 article-title: Stable water isotopes in the coupled atmosphere–land surface model ECHAM5‐JSBACH publication-title: Geosci. Model Dev. – volume: 53 start-page: 368 year: 2017 end-page: 381 article-title: Tightly bound soil water introduces isotopic memory effects on mobile and extractable soil water pools publication-title: Isot. Environ. Health Stud. – volume: 16 start-page: 436 year: 1964 end-page: 468 article-title: Stable isotopes in precipitation publication-title: Tellus – volume: 115 start-page: 397 year: 1990 end-page: 406 article-title: A method to extract soil water for stable isotope analysis publication-title: J. Hydrol. – volume: 52 start-page: 748 year: 2007 end-page: 762 article-title: Quantification of the heterogeneity of the unsaturated zone based on environmental deuterium observed in lysimeter experiments publication-title: Hydrol. Sci. J. – volume: 29 start-page: 305 year: 1993 end-page: 319 article-title: A dual‐porosity model for simulating the preferential movement of water and solutes in structured porous media publication-title: Water Resour. Res. – volume: 29 start-page: 5174 year: 2015a end-page: 5192 article-title: Established methods and new opportunities for pore water stable isotope analysis publication-title: Hydrol. Processes – volume: 44 start-page: 892 year: 1980 end-page: 898 article-title: A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils publication-title: Soil Sci. Soc. Am. J. – volume: 519A start-page: 340 year: 2014 end-page: 352 article-title: Tracking water pathways in steep hillslopes by d O depth profiles of soil water publication-title: J. Hydrol. – volume: 1 start-page: 323 year: 2014 end-page: 329 article-title: The two water worlds hypothesis: Ecohydrological separation of water between streams and trees? Wiley Interdiscip. Rev.: publication-title: Water – volume: 21 start-page: 5089 year: 2017b end-page: 5110 article-title: Using isotopes to constrain water flux and age estimates in snow‐influenced catchments using the STARR (Spatially distributed Tracer‐Aided Rainfall–Runoff) model publication-title: Hydrol. Earth Syst. Sci. – volume: 11 issue: 1 year: 2012 article-title: Effects of land cover and fertilization method on water flow and solute transport in five lysimeters: A long‐term study using stable water isotopes publication-title: Vadose Zone J. – volume: 8 start-page: 1204 year: 1972 end-page: 1213 article-title: Model for predicting evaporation from a row crop with incomplete cover publication-title: Water Resour. Res. – start-page: 40 year: 1985 end-page: 48 – volume: 104 start-page: 301 year: 1988 end-page: 310 article-title: Three‐component tracer model for stormflow on a small Appalachian forested catchment publication-title: J. Hydrol. – volume: 67 start-page: 341 year: 1987 end-page: 352 article-title: Sulphate relationships in some central Ontario forest soils publication-title: Can. J. Soil Sci. – volume: 150 start-page: 287 year: 1998 end-page: 292 article-title: The effect of vapor pressure on the rate of isotopic exchange between water and water vapor publication-title: Chem. Geol. – volume: 224 start-page: 45 year: 1999 end-page: 54 article-title: Comparison of the stable‐isotopic composition of soil water collected from suction lysimeters, wick samplers, and cores in a sandy unsaturated zone publication-title: J. Hydrol. – volume: 14 start-page: 3001 year: 2017 end-page: 3014 article-title: From soil water to surface water: How the riparian zone controls element transport from a boreal forest to a stream publication-title: Biogeosciences – volume: 29 start-page: 3546 year: 2015 end-page: 3555 article-title: Connecting precipitation inputs and soil flow pathways to stream water in contrasting boreal catchments publication-title: Hydrol. Processes – volume: 49 start-page: 3071 year: 2013 end-page: 3092 article-title: Macropores and water flow in soils revisited publication-title: Water Resour. Res. – volume: 31 start-page: 269 year: 2017 end-page: 280 article-title: Mineral mediated isotope fractionation of soil water. Rapid Commun publication-title: Mass Spectrom. – volume: 14 start-page: 2199 year: 2017 end-page: 2224 article-title: Reviews and syntheses: Isotopic approaches to quantify root water uptake: A review and comparison of methods publication-title: Biogeosciences – volume: 104 start-page: 1638 year: 2016 end-page: 1648 article-title: Short‐term climate change manipulation effects do not scale up to long‐term legacies: Effects of an absent snow cover on boreal forest plants publication-title: J. Ecol. – volume: 21 start-page: 3839 year: 2017b end-page: 3858 article-title: Soil water stable isotopes reveal evaporation dynamics at the soil–plant–atmosphere interface of the critical zone publication-title: Hydrol. Earth Syst. Sci. – volume: 5 start-page: 779 year: 2012 end-page: 790 article-title: Stable isotopes reveal linkages among ecohydrological processes in a seasonally dry tropical montane cloud forest publication-title: Ecohydrology – volume: 31 start-page: 3504 year: 2017 end-page: 3519 article-title: Groundwater isoscapes in a montane headwater catchment show dominance of well‐mixed storage publication-title: Hydrol. Processes – volume: 282 start-page: 104 year: 2003 end-page: 115 article-title: Temperature index melt modelling in mountain areas publication-title: J. Hydrol. – volume: 54 start-page: 674 year: 2016b end-page: 704 article-title: Illuminating hydrological processes at the soil–vegetation–atmosphere interface with water stable isotopes publication-title: Rev. Geophys. – volume: 31 start-page: 783 year: 2016 end-page: 799 article-title: An evaluation of the ecohydrological separation hypothesis in a semiarid catchment publication-title: Hydrol. Processes – volume: 53 start-page: 851 year: 2017c end-page: 866 article-title: Evaporation fractionation in a peatland drainage network affects stream water isotope composition publication-title: Water Resour. Res. – volume: 388 start-page: 438 year: 2010 end-page: 455 article-title: Soil–Litter–Iso: A one‐dimensional model for coupled transport of heat, water and stable isotopes in soil with a litter layer and root extraction publication-title: J. Hydrol. – volume: 261 start-page: 173 year: 2002 end-page: 192 article-title: Residence times and flow paths of water in steep unchannelled catchments, Tanakami publication-title: Japan. J. Hydrol. – volume: 4 start-page: 451 year: 2000 end-page: 461 article-title: Evaporation from Scots pine ( ) following natural re‐colonisation of the Cairngorm mountains, Scotland publication-title: Hydrol. Earth Syst. Sci. – volume: 251 start-page: 163 year: 2001 end-page: 176 article-title: ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions publication-title: J. Hydrol. – volume: 31 start-page: 4613 year: 2017b end-page: 4621 article-title: Testing the maximum entropy production approach for estimating evapotranspiration from closed canopy shrubland in a low‐energy humid environment publication-title: Hydrol. Processes – volume: 60 start-page: 141 year: 1983 end-page: 156 article-title: The distribution of deuterium and O in dry soils: 1. Theory publication-title: J. Hydrol. – volume: 222 start-page: 185 year: 2016a end-page: 192 article-title: Historical tracking of nitrate in contrasting vineyards using water isotopes and nitrate depth profiles publication-title: Agric. Ecosyst. Environ. – volume: 19 start-page: 2617 year: 2015b end-page: 2635 article-title: Estimating flow and transport parameters in the unsaturated zone with pore water stable isotopes publication-title: Hydrol. Earth Syst. Sci. – volume: 30 start-page: 4227 year: 2016 end-page: 4241 article-title: Assessing the “two water worlds” hypothesis and water sources for native and exotic evergreen species in south‐central Chile publication-title: Hydrol. Processes – volume: 48 start-page: W09528 year: 2012 article-title: Runoff generation in a steep, tropical montane cloud forest catchment on permeable volcanic substrate publication-title: Water Resour. Res. – volume: 9 start-page: 1 year: 2016 end-page: 5 article-title: Critical issues with cryogenic extraction of soil water for stable isotope analysis publication-title: Ecohydrology – volume: 49 start-page: 7154 year: 2013 end-page: 7158 article-title: The Krycklan Catchment Study: A flagship infrastructure for hydrology, biogeochemistry, and climate research in the boreal landscape publication-title: Water Resour. Res. – year: 2012 – volume: 15 start-page: 909 year: 2001 end-page: 926 article-title: Soil frost effects on soil water and runoff dynamics along a boreal forest transect: 1. Field investigations publication-title: Hydrol. Processes – volume: 10 year: 2017 article-title: In situ monitoring of H and O stable isotopes in soil water reveals ecohydrologic dynamics in managed soil systems publication-title: Ecohydrology – volume: 133 start-page: 1277 year: 2007 end-page: 1289 article-title: Preferential flow in a reclamation cover: Hydrological and geochemical response publication-title: J. Geotech. Geoenviron. Eng. – volume: 18 start-page: 1819 year: 2014 end-page: 1833 article-title: Continual in situ monitoring of pore water stable isotopes in the subsurface publication-title: Hydrol. Earth Syst. Sci. – volume: 215 start-page: 582 year: 2017 end-page: 594 article-title: Testing plant use of mobile vs immobile soil water sources using stable isotope experiments publication-title: New Phytol. – volume: 30 start-page: 2413 year: 2016 end-page: 2416 article-title: Adding snow to the picture: Providing complementary winter precipitation data to the Krycklan Catchment Study database publication-title: Hydrol. Processes – volume: 12 issue: 4 year: 2013 article-title: Advances in soil evaporation physics: A review publication-title: Vadose Zone J. – volume: 33 start-page: 211 year: 1997 end-page: 225 article-title: Concentration–discharge relationships in runoff from a steep, unchanneled catchment publication-title: Water Resour. Res. – volume: 53 start-page: 5813 year: 2017a end-page: 5830 article-title: Modeling the isotopic evolution of snowpack and snowmelt: Testing a spatially distributed parsimonious approach publication-title: Water Resour. Res. – volume: 42 start-page: 9262 year: 2008 end-page: 9267 article-title: High resolution pore water d H and d O measurements by H O (liquid)–H O (vapor) equilibration laser spectroscopy publication-title: Environ. Sci. Technol. – volume: 29 start-page: 5139 year: 2015a end-page: 5152 article-title: Ecohydrological separation in wet, low energy northern environments? A preliminary assessment using different soil water extraction techniques publication-title: Hydrol. Processes – year: 1991 – volume: 503 start-page: 1 year: 2013 end-page: 10 article-title: Identifying the water source for subsurface flow with deuterium and oxygen‐18 isotopes of soil water collected from tension lysimeters and cores publication-title: J. Hydrol. – volume: 210 start-page: 839 year: 2016 end-page: 849 article-title: High‐resolution isotope measurements resolve rapid ecohydrological dynamics at the soil–plant interface publication-title: New Phytol. – year: 1999 – ident: e_1_2_8_34_1 doi: 10.5194/hess‐4‐451‐2000 – ident: e_1_2_8_69_1 doi: 10.5194/bg‐14‐2199‐2017 – ident: e_1_2_8_68_1 doi: 10.1029/WR008i005p01204 – ident: e_1_2_8_70_1 doi: 10.1002/wrcr.20311 – ident: e_1_2_8_77_1 doi: 10.1002/2015RG000515 – ident: e_1_2_8_76_1 doi: 10.1002/hyp.10643 – ident: e_1_2_8_66_1 doi: 10.1002/hyp.10300 – ident: e_1_2_8_64_1 doi: 10.5194/jsss‐2‐179‐2013 – ident: e_1_2_8_6_1 doi: 10.1016/0022‐1694(94)02636‐P – ident: e_1_2_8_9_1 doi: 10.1002/eco.1843 – ident: e_1_2_8_55_1 doi: 10.1029/2011WR011316 – ident: e_1_2_8_30_1 doi: 10.1016/B978-0-444-42225-5.50008-5 – ident: e_1_2_8_65_1 doi: 10.1002/2015WR017485 – ident: e_1_2_8_54_1 doi: 10.1016/j.jhydrol.2014.07.031 – ident: e_1_2_8_52_1 doi: 10.1002/wat2.1027 – ident: e_1_2_8_86_1 doi: 10.1002/2013WR014147 – ident: e_1_2_8_94_1 doi: 10.1016/j.agrformet.2017.04.002 – ident: e_1_2_8_67_1 doi: 10.1016/0022‐1694(90)90217‐L – ident: e_1_2_8_29_1 doi: 10.1002/eco.268 – ident: e_1_2_8_80_1 doi: 10.5194/hess‐21‐3839‐2017 – ident: e_1_2_8_59_1 doi: 10.1002/hyp.256 – ident: e_1_2_8_102_1 doi: 10.1002/2016MS000842 – ident: e_1_2_8_71_1 doi: 10.1016/S0022‐1694(01)00466‐8 – ident: e_1_2_8_46_1 doi: 10.1002/wrcr.20520 – ident: e_1_2_8_85_1 doi: 10.2136/vzj2011.0075 – ident: e_1_2_8_24_1 doi: 10.1002/rcm.7787 – volume-title: Crop evapotranspiration: Guidelines for computing crop water requirements year: 1998 ident: e_1_2_8_4_1 contributor: fullname: Allen R.G. – ident: e_1_2_8_61_1 doi: 10.1016/j.jhydrol.2014.04.029 – ident: e_1_2_8_56_1 doi: 10.1016/0022‐1694(70)90255‐6 – ident: e_1_2_8_23_1 doi: 10.1007/s11270‐007‐9399‐8 – ident: e_1_2_8_25_1 doi: 10.5194/hess‐16‐631‐2012 – ident: e_1_2_8_3_1 doi: 10.5194/hess‐21‐5089‐2017 – ident: e_1_2_8_18_1 doi: 10.1093/oso/9780195117752.001.0001 – ident: e_1_2_8_5_1 doi: 10.1029/96WR02715 – ident: e_1_2_8_49_1 doi: 10.1051/jcp/1971681423 – ident: e_1_2_8_91_1 doi: 10.1111/nph.14616 – ident: e_1_2_8_31_1 doi: 10.1126/science.aaa5931 – ident: e_1_2_8_40_1 doi: 10.1061/(ASCE)1090‐0241(2007)133:10(1277) – ident: e_1_2_8_87_1 doi: 10.1002/hyp.10515 – ident: e_1_2_8_28_1 doi: 10.1029/92WR02339 – ident: e_1_2_8_79_1 doi: 10.1002/rcm.7815 – ident: e_1_2_8_35_1 doi: 10.1016/j.jhydrol.2010.05.029 – start-page: 132 volume-title: International Conference on Isotopes in Environmental Studies year: 2006 ident: e_1_2_8_44_1 contributor: fullname: Landwehr J.M. – ident: e_1_2_8_8_1 doi: 10.1016/0022‐1694(83)90018‐5 – ident: e_1_2_8_97_1 doi: 10.1021/es802065s – ident: e_1_2_8_32_1 doi: 10.1016/j.jhydrol.2009.08.003 – ident: e_1_2_8_39_1 doi: 10.1016/S0009‐2541(98)00109‐0 – volume-title: Physical and chemical properties for the soils at the Southern Biogeochemical Study Site. Consultant's Rep. 18 year: 1987 ident: e_1_2_8_48_1 contributor: fullname: Lozano F.C. – ident: e_1_2_8_62_1 doi: 10.2136/vzj2012.0163 – ident: e_1_2_8_15_1 doi: 10.1016/0022‐1694(86)90091‐0 – ident: e_1_2_8_38_1 doi: 10.1016/S0022‐1694(03)00257‐9 – ident: e_1_2_8_45_1 doi: 10.1002/hyp.10753 – ident: e_1_2_8_74_1 doi: 10.1002/hyp.11351 – start-page: 195 volume-title: Stable isotope geochemistry: A tribute to Samuel Epstein year: 1991 ident: e_1_2_8_99_1 contributor: fullname: Wenner D. – ident: e_1_2_8_89_1 doi: 10.2136/sssaj1980.03615995004400050002x – ident: e_1_2_8_101_1 doi: 10.5194/hess‐18‐4113‐2014 – ident: e_1_2_8_53_1 doi: 10.1002/2013WR015141 – ident: e_1_2_8_47_1 doi: 10.5194/bg‐14‐3001‐2017 – ident: e_1_2_8_13_1 doi: 10.1038/ngeo722 – ident: e_1_2_8_14_1 doi: 10.1016/j.jhydrol.2009.06.036 – ident: e_1_2_8_26_1 doi: 10.1002/hyp.10603 – ident: e_1_2_8_58_1 doi: 10.1080/10256016.2017.1302446 – ident: e_1_2_8_37_1 doi: 10.1002/hyp.10984 – ident: e_1_2_8_103_1 doi: 10.1016/j.jhydrol.2013.08.033 – ident: e_1_2_8_57_1 doi: 10.4141/cjss87‐030 – ident: e_1_2_8_81_1 doi: 10.1002/2016WR019258 – start-page: 40 volume-title: Soil physics with Basic: Transport models for soil–plant systems year: 1985 ident: e_1_2_8_16_1 contributor: fullname: Campbell G.S. – ident: e_1_2_8_36_1 doi: 10.5194/hess‐19‐4427‐2015 – ident: e_1_2_8_73_1 doi: 10.1002/2015WR017888 – ident: e_1_2_8_84_1 doi: 10.1623/hysj.52.4.748 – ident: e_1_2_8_20_1 doi: 10.1038/350335a0 – ident: e_1_2_8_50_1 doi: 10.1002/hyp.11052 – ident: e_1_2_8_100_1 doi: 10.1002/rcm.2456 – ident: e_1_2_8_78_1 doi: 10.1002/2015WR018077 – ident: e_1_2_8_22_1 doi: 10.1023/A:1020261913618 – volume-title: The RETC code for quantifying the hydraulic functions of unsaturated soils. EPA/600/2–91/065 year: 1991 ident: e_1_2_8_90_1 contributor: fullname: Genuchten M.Th. – ident: e_1_2_8_95_1 doi: 10.1002/hyp.11363 – ident: e_1_2_8_7_1 doi: 10.1016/S0022‐1694(02)00005‐7 – ident: e_1_2_8_12_1 doi: 10.1111/1365‐2745.12636 – ident: e_1_2_8_51_1 doi: 10.1029/WR026i011p02821 – ident: e_1_2_8_11_1 doi: 10.1002/2013WR014925 – ident: e_1_2_8_60_1 doi: 10.1002/eco.1841 – ident: e_1_2_8_63_1 doi: 10.1002/eco.1675 – ident: e_1_2_8_88_1 doi: 10.2136/vzj2006.0096 – ident: e_1_2_8_19_1 doi: 10.3402/tellusa.v16i4.8993 – ident: e_1_2_8_17_1 doi: 10.5194/gmd‐7‐1247‐2014 – ident: e_1_2_8_10_1 doi: 10.1002/wrcr.20156 – volume-title: CAN‐EYE output variables: Definitions and theoretical background year: 2014 ident: e_1_2_8_98_1 contributor: fullname: Weiss M. – ident: e_1_2_8_42_1 doi: 10.1002/rcm.5198 – ident: e_1_2_8_41_1 doi: 10.1002/hyp.11194 – ident: e_1_2_8_33_1 doi: 10.5194/gmd‐6‐1463‐2013 – ident: e_1_2_8_75_1 doi: 10.1016/j.agee.2016.02.014 – ident: e_1_2_8_82_1 doi: 10.5194/hess‐19‐2617‐2015 – ident: e_1_2_8_21_1 doi: 10.1016/0022‐1694(88)90171‐0 – ident: e_1_2_8_27_1 doi: 10.1002/hyp.10289 – ident: e_1_2_8_43_1 doi: 10.1016/S0022‐1694(99)00120‐1 – ident: e_1_2_8_83_1 doi: 10.1002/hyp.232 – ident: e_1_2_8_2_1 doi: 10.1002/2017WR020650 – ident: e_1_2_8_72_1 doi: 10.1002/hyp.11271 – ident: e_1_2_8_92_1 doi: 10.1111/nph.13868 – ident: e_1_2_8_93_1 doi: 10.5194/hess‐18‐1819‐2014 – ident: e_1_2_8_96_1 doi: 10.1007/978-94-007-2275-0 |
SSID | ssj0019442 |
Score | 2.5157695 |
Snippet | Core Ideas
Bulk soil water isotopes have an evaporation signal, but mobile water isotopes do not.
These differences are time variant and linked to the volume... Core IdeasBulk soil water isotopes have an evaporation signal, but mobile water isotopes do not.These differences are time variant and linked to the volume and... Recent findings from stable isotope studies have opened up new questions about differences in the isotopic composition (delta H-2 and delta O-18) of mobile... Recent findings from stable isotope studies have opened up new questions about differences in the isotopic composition (δH and δO) of mobile (MW) and bulk... |
SourceID | doaj swepub proquest crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Catchment area Catchments Chemical composition Composition Domains Dynamics Evaporation Exchanging Fractionation Hydrology Isotope studies Isotopes Lysimeters Markvetenskap Meteoric water Moisture content Oceanografi, hydrologi, vattenresurser Oceanography, Hydrology, Water Resources Precipitation Retention Simulation Simulators Soil Soil dynamics Soil Science Soil water Stable isotopes Uptake Water uptake Water vapor Water vapour |
Title | Measuring and Modeling Stable Isotopes of Mobile and Bulk Soil Water |
URI | https://onlinelibrary.wiley.com/doi/abs/10.2136%2Fvzj2017.08.0149 https://www.proquest.com/docview/2732549409 https://res.slu.se/id/publ/96229 https://doaj.org/article/b3f07a1ac35046a6a1725714abb63d2a |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUoJzhUbaFiKUU-VIhLRGzHcXzkU4BULny06sWyY7sqrDarDcuBX8-MnUXsiUsPUSRnFCczsd6bSfKGkB9N5FExr7BQFQpEDFhSgRWtE9zBuGhTwe38Wl39bk5OUSbntdUXfhOW5YGz4w6ciKWyzLZCQipnawuIKxWrrHO18DxTo7JZJFPD-wNdpbY5sJx1wQBUs6gPZ6I-eHq-B9BTSbiToYTmGzxKsv3LXDPrhy5T14Q9Z5_Ix4E00sN8sZ_JSph8IeuHf2eDcEbYICc_U7EPgIjaiafY4gx_NKdAJt040Iu-e-ymoaddhGMOJklmR_PxA73u_o3pL-Ccs01ye3Z6c3xeDB0SCitlowtVOiFb5VlpowLyFGMVpHAVC1Xd-rJqtcZiIaCw9aXyrW4q12oZg_coMsPFV7I66SZhi1AwDd6CIf4JK3TtpOWVcHWsJcCc1iOyv_CTmWYhDAMJBLrUDC412NASXDoiR-jHVzNUsE4DEFczxNW8F9cR2VlEwQzLqjfAtTChhZx0RPZyZJZm6cdzZ2e4M30wuuYcDFWK3HsXbe7-XHLcUFAIJXX09v-4jW9kDc7Y5KLNDll9nM3Dd_Kh9_Pd9MS-AKiK6Po |
link.rule.ids | 230,315,782,786,866,887,2108,4030,27934,27935,27936 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+and+Modeling+Stable+Isotopes+of+Mobile+and+Bulk+Soil+Water&rft.jtitle=Vadose+zone+journal&rft.au=Sprenger%2C+Matthias&rft.au=Tetzlaff%2C+Doerthe&rft.au=Buttle%2C+Jim&rft.au=Laudon%2C+Hjalmar&rft.date=2018&rft.pub=The+Soil+Science+Society+of+America%2C+Inc&rft.issn=1539-1663&rft.eissn=1539-1663&rft.volume=17&rft.issue=1&rft.spage=1&rft.epage=18&rft_id=info:doi/10.2136%2Fvzj2017.08.0149&rft.externalDBID=10.2136%252Fvzj2017.08.0149&rft.externalDocID=VZJ2VZJ2017080149 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-1663&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-1663&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-1663&client=summon |