Measuring and Modeling Stable Isotopes of Mobile and Bulk Soil Water

Core Ideas Bulk soil water isotopes have an evaporation signal, but mobile water isotopes do not. These differences are time variant and linked to the volume and age of the mobile water. Two pore domains (fast and slow) improve simulations of soil water isotope dynamics. A new model accounts for iso...

Full description

Saved in:
Bibliographic Details
Published in:Vadose zone journal Vol. 17; no. 1; pp. 1 - 18
Main Authors: Sprenger, Matthias, Tetzlaff, Doerthe, Buttle, Jim, Laudon, Hjalmar, Leistert, Hannes, Mitchell, Carl P.J., Snelgrove, Jenna, Weiler, Markus, Soulsby, Chris
Format: Journal Article
Language:English
Published: Madison The Soil Science Society of America, Inc 2018
John Wiley & Sons, Inc
Wiley
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Core Ideas Bulk soil water isotopes have an evaporation signal, but mobile water isotopes do not. These differences are time variant and linked to the volume and age of the mobile water. Two pore domains (fast and slow) improve simulations of soil water isotope dynamics. A new model accounts for isotopic exchange via water vapor between two pore domains. This exchange is relevant for proper simulation of the evaporation signal in bulk soil water. Recent findings from stable isotope studies have opened up new questions about differences in the isotopic composition (δ2H and δ18O) of mobile (MW) and bulk water (BW) in soils. We sampled the isotopic compositions of MW using suction lysimeters and BW with the direct‐equilibration method. The study was conducted at two landscape units in each of three catchments: the Bruntland Burn (Scotland), Dorset (Canada), and Krycklan (Sweden). We further used the numerical one‐dimensional flow model SWIS (Soil Water Isotope Simulator) to simulate the hydrometric and isotopic dynamics. The model included evaporation fractionation, allowed differentiation between a fast and a slow flow domain, and included isotopic exchange via water vapor. Our measurements showed that MW plots along the local meteoric water lines, whereas BW plots below, which is indicative of evaporation fractionation. We suggest that the relative volume of MW to BW is relevant for explaining these isotopic differences because MW volumes are usually relatively low during periods of high evaporation. Under this condition, differences between MW and plant water isotopes are not paradoxical but rather related to the water that cannot be sampled with suction lysimeters but is still available for plant water uptake. The simulations accounting for fast and slow flow supported the conceptualization of the two soil pore domains with isotopic exchange via vapor exchange because this model setup resulted in the best model performance. Overall, these findings are of high relevance for current understanding related to the source and isotopic composition of water taken up by plants.
AbstractList Core IdeasBulk soil water isotopes have an evaporation signal, but mobile water isotopes do not.These differences are time variant and linked to the volume and age of the mobile water.Two pore domains (fast and slow) improve simulations of soil water isotope dynamics.A new model accounts for isotopic exchange via water vapor between two pore domains.This exchange is relevant for proper simulation of the evaporation signal in bulk soil water.Recent findings from stable isotope studies have opened up new questions about differences in the isotopic composition (δ2H and δ18O) of mobile (MW) and bulk water (BW) in soils. We sampled the isotopic compositions of MW using suction lysimeters and BW with the direct‐equilibration method. The study was conducted at two landscape units in each of three catchments: the Bruntland Burn (Scotland), Dorset (Canada), and Krycklan (Sweden). We further used the numerical one‐dimensional flow model SWIS (Soil Water Isotope Simulator) to simulate the hydrometric and isotopic dynamics. The model included evaporation fractionation, allowed differentiation between a fast and a slow flow domain, and included isotopic exchange via water vapor. Our measurements showed that MW plots along the local meteoric water lines, whereas BW plots below, which is indicative of evaporation fractionation. We suggest that the relative volume of MW to BW is relevant for explaining these isotopic differences because MW volumes are usually relatively low during periods of high evaporation. Under this condition, differences between MW and plant water isotopes are not paradoxical but rather related to the water that cannot be sampled with suction lysimeters but is still available for plant water uptake. The simulations accounting for fast and slow flow supported the conceptualization of the two soil pore domains with isotopic exchange via vapor exchange because this model setup resulted in the best model performance. Overall, these findings are of high relevance for current understanding related to the source and isotopic composition of water taken up by plants.
Recent findings from stable isotope studies have opened up new questions about differences in the isotopic composition (delta H-2 and delta O-18) of mobile (MW) and bulk water (BW) in soils. We sampled the isotopic compositions of MW using suction lysimeters and BW with the direct-equilibration method. The study was conducted at two landscape units in each of three catchments: the Bruntland Burn (Scotland), Dorset (Canada), and Krycklan (Sweden). We further used the numerical one-dimensional flow model SWIS (Soil Water Isotope Simulator) to simulate the hydrometric and isotopic dynamics. The model included evaporation fractionation, allowed differentiation between a fast and a slow flow domain, and included isotopic exchange via water vapor. Our measurements showed that MW plots along the local meteoric water lines, whereas BW plots below, which is indicative of evaporation fractionation. We suggest that the relative volume of MW to BW is relevant for explaining these isotopic differences because MW volumes are usually relatively low during periods of high evaporation. Under this condition, differences between MW and plant water isotopes are not paradoxical but rather related to the water that cannot be sampled with suction lysimeters but is still available for plant water uptake. The simulations accounting for fast and slow flow supported the conceptualization of the two soil pore domains with isotopic exchange via vapor exchange because this model setup resulted in the best model performance. Overall, these findings are of high relevance for current understanding related to the source and isotopic composition of water taken up by plants.
Core Ideas Bulk soil water isotopes have an evaporation signal, but mobile water isotopes do not. These differences are time variant and linked to the volume and age of the mobile water. Two pore domains (fast and slow) improve simulations of soil water isotope dynamics. A new model accounts for isotopic exchange via water vapor between two pore domains. This exchange is relevant for proper simulation of the evaporation signal in bulk soil water. Recent findings from stable isotope studies have opened up new questions about differences in the isotopic composition (δ2H and δ18O) of mobile (MW) and bulk water (BW) in soils. We sampled the isotopic compositions of MW using suction lysimeters and BW with the direct‐equilibration method. The study was conducted at two landscape units in each of three catchments: the Bruntland Burn (Scotland), Dorset (Canada), and Krycklan (Sweden). We further used the numerical one‐dimensional flow model SWIS (Soil Water Isotope Simulator) to simulate the hydrometric and isotopic dynamics. The model included evaporation fractionation, allowed differentiation between a fast and a slow flow domain, and included isotopic exchange via water vapor. Our measurements showed that MW plots along the local meteoric water lines, whereas BW plots below, which is indicative of evaporation fractionation. We suggest that the relative volume of MW to BW is relevant for explaining these isotopic differences because MW volumes are usually relatively low during periods of high evaporation. Under this condition, differences between MW and plant water isotopes are not paradoxical but rather related to the water that cannot be sampled with suction lysimeters but is still available for plant water uptake. The simulations accounting for fast and slow flow supported the conceptualization of the two soil pore domains with isotopic exchange via vapor exchange because this model setup resulted in the best model performance. Overall, these findings are of high relevance for current understanding related to the source and isotopic composition of water taken up by plants.
Recent findings from stable isotope studies have opened up new questions about differences in the isotopic composition (δH and δO) of mobile (MW) and bulk water (BW) in soils. We sampled the isotopic compositions of MW using suction lysimeters and BW with the direct-equilibration method. The study was conducted at two landscape units in each of three catchments: the Bruntland Burn (Scotland), Dorset (Canada), and Krycklan (Sweden). We further used the numerical one-dimensional flow model SWIS (Soil Water Isotope Simulator) to simulate the hydrometric and isotopic dynamics. The model included evaporation fractionation, allowed differentiation between a fast and a slow flow domain, and included isotopic exchange via water vapor. Our measurements showed that MW plots along the local meteoric water lines, whereas BW plots below, which is indicative of evaporation fractionation. We suggest that the relative volume of MW to BW is relevant for explaining these isotopic differences because MW volumes are usually relatively low during periods of high evaporation. Under this condition, differences between MW and plant water isotopes are not paradoxical but rather related to the water that cannot be sampled with suction lysimeters but is still available for plant water uptake. The simulations accounting for fast and slow flow supported the conceptualization of the two soil pore domains with isotopic exchange via vapor exchange because this model setup resulted in the best model performance. Overall, these findings are of high relevance for current understanding related to the source and isotopic composition of water taken up by plants.
Core Ideas Bulk soil water isotopes have an evaporation signal, but mobile water isotopes do not. These differences are time variant and linked to the volume and age of the mobile water. Two pore domains (fast and slow) improve simulations of soil water isotope dynamics. A new model accounts for isotopic exchange via water vapor between two pore domains. This exchange is relevant for proper simulation of the evaporation signal in bulk soil water. Recent findings from stable isotope studies have opened up new questions about differences in the isotopic composition (δ 2 H and δ 18 O) of mobile (MW) and bulk water (BW) in soils. We sampled the isotopic compositions of MW using suction lysimeters and BW with the direct‐equilibration method. The study was conducted at two landscape units in each of three catchments: the Bruntland Burn (Scotland), Dorset (Canada), and Krycklan (Sweden). We further used the numerical one‐dimensional flow model SWIS (Soil Water Isotope Simulator) to simulate the hydrometric and isotopic dynamics. The model included evaporation fractionation, allowed differentiation between a fast and a slow flow domain, and included isotopic exchange via water vapor. Our measurements showed that MW plots along the local meteoric water lines, whereas BW plots below, which is indicative of evaporation fractionation. We suggest that the relative volume of MW to BW is relevant for explaining these isotopic differences because MW volumes are usually relatively low during periods of high evaporation. Under this condition, differences between MW and plant water isotopes are not paradoxical but rather related to the water that cannot be sampled with suction lysimeters but is still available for plant water uptake. The simulations accounting for fast and slow flow supported the conceptualization of the two soil pore domains with isotopic exchange via vapor exchange because this model setup resulted in the best model performance. Overall, these findings are of high relevance for current understanding related to the source and isotopic composition of water taken up by plants.
Author Leistert, Hannes
Weiler, Markus
Snelgrove, Jenna
Tetzlaff, Doerthe
Buttle, Jim
Laudon, Hjalmar
Mitchell, Carl P.J.
Soulsby, Chris
Sprenger, Matthias
Author_xml – sequence: 1
  givenname: Matthias
  surname: Sprenger
  fullname: Sprenger, Matthias
  email: Matthias.sprenger@abdn.ac.uk
  organization: Northern Rivers Institute, School of Geosciences, Univ. of Aberdeen
– sequence: 2
  givenname: Doerthe
  surname: Tetzlaff
  fullname: Tetzlaff, Doerthe
  organization: IGB Leibniz Institute of Freshwater Ecology and Inland Fisheries, Humboldt Univ
– sequence: 3
  givenname: Jim
  surname: Buttle
  fullname: Buttle, Jim
  organization: School of the Environment, Trent Univ
– sequence: 4
  givenname: Hjalmar
  surname: Laudon
  fullname: Laudon, Hjalmar
  organization: Swedish Univ. of Agricultural Sciences
– sequence: 5
  givenname: Hannes
  surname: Leistert
  fullname: Leistert, Hannes
  organization: Univ. of Freiburg
– sequence: 6
  givenname: Carl P.J.
  surname: Mitchell
  fullname: Mitchell, Carl P.J.
  organization: Univ. of Toronto
– sequence: 7
  givenname: Jenna
  surname: Snelgrove
  fullname: Snelgrove, Jenna
  organization: Trent Univ
– sequence: 8
  givenname: Markus
  surname: Weiler
  fullname: Weiler, Markus
  organization: Univ. of Freiburg
– sequence: 9
  givenname: Chris
  surname: Soulsby
  fullname: Soulsby, Chris
  organization: Northern Rivers Institute, School of Geosciences, Univ. of Aberdeen
BackLink https://res.slu.se/id/publ/96229$$DView record from Swedish Publication Index
BookMark eNqFkUtv1TAQhS1UJNrCmm0k1rkdv-MNEhQoF7XqojwkNtY4dqpcQnyxk1bl1-M0FYJVF9Z4jr85sn2OyMEYx0DISwobRrk6ufm9Y0D1BpoNUGGekEMquampUvzgn_0zcpTzDoAaIdgheXcRMM-pH68rHH11EX0YluZqQjeEapvjFPchV7ErZ64v0oK9nYcf1VXsh-obTiE9J087HHJ48VCPyZcP7z-ffqzPL8-2p2_Oa5SyMbUGx2WrPQXsNDSy60SQ3AkahGo9iNYY0fByLYUetG9NI1xrZBe8p0Y2jB-T7errI-7sPvU_Md3ZiL29F2K6tpimvh2CdbwDjRRbLkEoVEg1k5oKdE5xz7B41atXvg372f3nlofZYVqKzcEaxZgp_KuV36f4aw55srs4p7E81zLNmRRGwEKdrFSbYs4pdH99KdglJvsQk4XGLjGVidfrxG353LvHcPv1-ye2rKJBc2_wBz7RmJc
CitedBy_id crossref_primary_10_1111_nph_16410
crossref_primary_10_1002_hyp_13539
crossref_primary_10_5194_hess_27_4173_2023
crossref_primary_10_1029_2020WR027238
crossref_primary_10_5194_bg_15_6399_2018
crossref_primary_10_1002_hyp_13135
crossref_primary_10_1061_JHYEFF_HEENG_5806
crossref_primary_10_5194_hess_25_2169_2021
crossref_primary_10_1002_vzj2_20265
crossref_primary_10_1016_j_jhydrol_2021_126347
crossref_primary_10_1002_vzj2_20022
crossref_primary_10_1016_j_jhydrol_2020_125811
crossref_primary_10_1016_j_jhydrol_2022_128926
crossref_primary_10_5194_hess_26_4093_2022
crossref_primary_10_5194_hess_25_4513_2021
crossref_primary_10_1146_annurev_earth_071822_100356
crossref_primary_10_1002_hyp_13627
crossref_primary_10_1016_j_jhydrol_2024_130893
crossref_primary_10_5194_hess_24_1831_2020
crossref_primary_10_1029_2022WR032314
crossref_primary_10_3389_frwa_2021_645634
crossref_primary_10_3390_w15050988
crossref_primary_10_5194_hess_22_2881_2018
crossref_primary_10_5194_hess_26_5515_2022
crossref_primary_10_1002_hyp_13584
crossref_primary_10_1029_2020WR027419
crossref_primary_10_1080_15715124_2022_2092490
crossref_primary_10_1029_2022WR033056
crossref_primary_10_2136_vzj2017_09_0170
crossref_primary_10_2138_rmg_2018_85_13
crossref_primary_10_1002_vzj2_20310
crossref_primary_10_1111_ejss_13434
crossref_primary_10_5194_gmd_11_3045_2018
crossref_primary_10_5194_hess_23_2751_2019
crossref_primary_10_1029_2018RG000633
crossref_primary_10_1002_hyp_13518
crossref_primary_10_1016_j_advwatres_2020_103586
crossref_primary_10_5194_hess_24_4413_2020
crossref_primary_10_1029_2019WR025174
crossref_primary_10_2136_vzj2018_05_0096
crossref_primary_10_5194_hess_24_4045_2020
crossref_primary_10_1002_wat2_1727
crossref_primary_10_1002_hyp_13916
crossref_primary_10_1016_j_envsoft_2021_105118
crossref_primary_10_1002_hyp_13232
crossref_primary_10_1002_hyp_13475
crossref_primary_10_1111_gwat_13329
crossref_primary_10_3389_fpls_2020_00387
crossref_primary_10_5194_cp_15_685_2019
crossref_primary_10_5194_hess_22_3965_2018
crossref_primary_10_1002_vzj2_20288
crossref_primary_10_1002_hyp_14082
crossref_primary_10_1016_j_jhydrol_2019_06_071
crossref_primary_10_1002_hyp_15057
crossref_primary_10_1016_j_orggeochem_2020_104064
crossref_primary_10_14770_jgsk_2020_56_1_101
crossref_primary_10_5194_hess_24_3737_2020
crossref_primary_10_1016_j_jhydrol_2021_126079
crossref_primary_10_5194_hess_26_1615_2022
crossref_primary_10_1029_2021WR030698
crossref_primary_10_1002_hyp_13606
crossref_primary_10_1029_2018WR023894
crossref_primary_10_1016_j_scitotenv_2023_168800
crossref_primary_10_1002_eco_2402
crossref_primary_10_1002_rcm_8494
crossref_primary_10_1002_hyp_14778
crossref_primary_10_1002_hyp_13569
crossref_primary_10_1016_j_scitotenv_2023_163510
crossref_primary_10_1029_2022WR032385
crossref_primary_10_1002_eco_2208
crossref_primary_10_1029_2022WR032344
crossref_primary_10_1080_14702541_2019_1695894
crossref_primary_10_1002_hyp_13480
crossref_primary_10_1029_2019WR026988
crossref_primary_10_3390_w11091760
crossref_primary_10_1016_j_jenvman_2020_110903
crossref_primary_10_1038_s41467_022_34215_7
crossref_primary_10_1111_2041_210X_13461
Cites_doi 10.5194/hess‐4‐451‐2000
10.5194/bg‐14‐2199‐2017
10.1029/WR008i005p01204
10.1002/wrcr.20311
10.1002/2015RG000515
10.1002/hyp.10643
10.1002/hyp.10300
10.5194/jsss‐2‐179‐2013
10.1016/0022‐1694(94)02636‐P
10.1002/eco.1843
10.1029/2011WR011316
10.1016/B978-0-444-42225-5.50008-5
10.1002/2015WR017485
10.1016/j.jhydrol.2014.07.031
10.1002/wat2.1027
10.1002/2013WR014147
10.1016/j.agrformet.2017.04.002
10.1016/0022‐1694(90)90217‐L
10.1002/eco.268
10.5194/hess‐21‐3839‐2017
10.1002/hyp.256
10.1002/2016MS000842
10.1016/S0022‐1694(01)00466‐8
10.1002/wrcr.20520
10.2136/vzj2011.0075
10.1002/rcm.7787
10.1016/j.jhydrol.2014.04.029
10.1016/0022‐1694(70)90255‐6
10.1007/s11270‐007‐9399‐8
10.5194/hess‐16‐631‐2012
10.5194/hess‐21‐5089‐2017
10.1093/oso/9780195117752.001.0001
10.1029/96WR02715
10.1051/jcp/1971681423
10.1111/nph.14616
10.1126/science.aaa5931
10.1061/(ASCE)1090‐0241(2007)133:10(1277)
10.1002/hyp.10515
10.1029/92WR02339
10.1002/rcm.7815
10.1016/j.jhydrol.2010.05.029
10.1016/0022‐1694(83)90018‐5
10.1021/es802065s
10.1016/j.jhydrol.2009.08.003
10.1016/S0009‐2541(98)00109‐0
10.2136/vzj2012.0163
10.1016/0022‐1694(86)90091‐0
10.1016/S0022‐1694(03)00257‐9
10.1002/hyp.10753
10.1002/hyp.11351
10.2136/sssaj1980.03615995004400050002x
10.5194/hess‐18‐4113‐2014
10.1002/2013WR015141
10.5194/bg‐14‐3001‐2017
10.1038/ngeo722
10.1016/j.jhydrol.2009.06.036
10.1002/hyp.10603
10.1080/10256016.2017.1302446
10.1002/hyp.10984
10.1016/j.jhydrol.2013.08.033
10.4141/cjss87‐030
10.1002/2016WR019258
10.5194/hess‐19‐4427‐2015
10.1002/2015WR017888
10.1623/hysj.52.4.748
10.1038/350335a0
10.1002/hyp.11052
10.1002/rcm.2456
10.1002/2015WR018077
10.1023/A:1020261913618
10.1002/hyp.11363
10.1016/S0022‐1694(02)00005‐7
10.1111/1365‐2745.12636
10.1029/WR026i011p02821
10.1002/2013WR014925
10.1002/eco.1841
10.1002/eco.1675
10.2136/vzj2006.0096
10.3402/tellusa.v16i4.8993
10.5194/gmd‐7‐1247‐2014
10.1002/wrcr.20156
10.1002/rcm.5198
10.1002/hyp.11194
10.5194/gmd‐6‐1463‐2013
10.1016/j.agee.2016.02.014
10.5194/hess‐19‐2617‐2015
10.1016/0022‐1694(88)90171‐0
10.1002/hyp.10289
10.1016/S0022‐1694(99)00120‐1
10.1002/hyp.232
10.1002/2017WR020650
10.1002/hyp.11271
10.1111/nph.13868
10.5194/hess‐18‐1819‐2014
10.1007/978-94-007-2275-0
ContentType Journal Article
Copyright 2018 The Authors.
2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018 The Authors.
– notice: 2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Sveriges lantbruksuniversitet
DBID 24P
WIN
AAYXX
CITATION
7UA
C1K
F1W
H96
L.G
ADTPV
AOWAS
DOA
DOI 10.2136/vzj2017.08.0149
DatabaseName Open Access: Wiley-Blackwell Open Access Journals
Wiley-Blackwell Open Access Backfiles (Open Access)
CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
SwePub
SwePub Articles
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional



CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1539-1663
EndPage 18
ExternalDocumentID oai_doaj_org_article_b3f07a1ac35046a6a1725714abb63d2a
oai_slubar_slu_se_96229
10_2136_vzj2017_08_0149
VZJ2VZJ2017080149
Genre article
GrantInformation_xml – fundername: European Research Council
  funderid: 335910 VeWa
– fundername: KAW Branch‐Points
GroupedDBID .~0
0R~
123
18M
1OB
1OC
24P
2WC
6KN
AAHBH
AAHHS
ABJNI
ACAWQ
ACCFJ
ACGFO
ACXQS
ADBBV
ADKYN
ADZMN
AEEZP
AENEX
AEQDE
AFRAH
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
C1A
CS3
DDYGU
DU5
E3Z
EBS
ECGQY
EJD
GOHGZ
GROUPED_DOAJ
GX1
H13
IAO
IGS
MV1
M~E
NHAZY
O9-
OK1
P2P
RAK
RGW
SAMSI
TR2
WIN
WOQ
WXSBR
~02
~KM
AAWFE
AAYXX
CITATION
ITC
7UA
C1K
F1W
H96
L.G
ADTPV
AOWAS
ID FETCH-LOGICAL-a5589-70b35c7d10af7085ff4e53b41e46cd04c994834426ad07dc984bc95fedd195823
IEDL.DBID DOA
ISSN 1539-1663
IngestDate Tue Oct 22 15:14:38 EDT 2024
Tue Oct 01 22:53:13 EDT 2024
Thu Oct 10 18:21:51 EDT 2024
Thu Sep 26 18:20:10 EDT 2024
Sat Aug 24 01:11:40 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5589-70b35c7d10af7085ff4e53b41e46cd04c994834426ad07dc984bc95fedd195823
Notes Supplemental material online.
OpenAccessLink https://doaj.org/article/b3f07a1ac35046a6a1725714abb63d2a
PQID 2732549409
PQPubID 2046224
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_b3f07a1ac35046a6a1725714abb63d2a
swepub_primary_oai_slubar_slu_se_96229
proquest_journals_2732549409
crossref_primary_10_2136_vzj2017_08_0149
wiley_primary_10_2136_vzj2017_08_0149_VZJ2VZJ2017080149
PublicationCentury 2000
PublicationDate 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationPlace Madison
PublicationPlace_xml – name: Madison
PublicationTitle Vadose zone journal
PublicationYear 2018
Publisher The Soil Science Society of America, Inc
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: The Soil Science Society of America, Inc
– name: John Wiley & Sons, Inc
– name: Wiley
References 2015a; 29
1991; 350
1993; 29
2013; 2
2007; 184
2000; 4
1980; 44
2010; 388
2016; 31
2016; 30
2015b; 29
2017a; 31
2016; 104
2012; 16
2015; 349
2017a; 240–241
2013; 6
2012; 11
2017; 9
1998; 150
1988; 104
2014; 1
2017; 31
2006; 20
2001; 251
2002; 261
1986; 88
2013; 12
2007; 133
1987
1986
2003; 282
1985
2017c; 53
2007; 6
1995; 168
1983; 60
2001; 15
2014; 18
2011; 25
2014; 50
2014; 7
2014; 519A
2017b; 21
2014; 515
1972; 8
2016a; 222
2015; 19
2013; 49
2017; 2017
2012
2015; 51
1971; 68
2016b; 54
2013; 503
1998
2009; 374
1970; 10
2016; 52
2009; 377
2006
2017a; 53
1999; 224
2007; 52
1991
2016c; 52
2017; 215
1999
2017; 53
1987; 67
2017b; 31
2015; 29
1990; 115
1997; 33
1990; 26
2017; 14
1964; 16
2002; 61
2017; 10
2016; 210
2015b; 19
2014
2012; 48
2008; 42
2009; 3
2012; 5
2016; 9
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
Lozano F.C. (e_1_2_8_48_1) 1987
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_2_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
Campbell G.S. (e_1_2_8_16_1) 1985
e_1_2_8_18_1
Landwehr J.M. (e_1_2_8_44_1) 2006
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
Allen R.G. (e_1_2_8_4_1) 1998
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_46_1
Genuchten M.Th. (e_1_2_8_90_1) 1991
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_65_1
Weiss M. (e_1_2_8_98_1) 2014
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
Wenner D. (e_1_2_8_99_1) 1991
e_1_2_8_73_1
e_1_2_8_50_1
References_xml – volume: 29
  start-page: 5153
  year: 2015
  end-page: 5173
  article-title: A preliminary assessment of water partitioning and ecohydrological coupling in northern headwaters using stable isotopes and conceptual runoff models
  publication-title: Hydrol. Processes
– volume: 50
  start-page: 5342
  year: 2014
  end-page: 5350
  article-title: Debates—The future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph
  publication-title: Water Resour. Res.
– volume: 374
  start-page: 360
  year: 2009
  end-page: 372
  article-title: Scaling and physiographic controls on streamflow behaviour on the Precambrian Shield, south‐central Ontario
  publication-title: J. Hydrol.
– volume: 31
  start-page: 4282
  year: 2017
  end-page: 4296
  article-title: Influence of forest and shrub canopies on precipitation partitioning and isotopic signatures
  publication-title: Hydrol. Processes
– start-page: 195
  year: 1991
  end-page: 203
– volume: 6
  start-page: 29
  year: 2007
  end-page: 52
  article-title: Review of dispersivities for transport modeling in soils
  publication-title: Vadose Zone J.
– start-page: 132
  year: 2006
  end-page: 135
– volume: 168
  start-page: 159
  year: 1995
  end-page: 171
  article-title: Isotope effects accompanying vacuum extraction of soil water for stable isotope analyses
  publication-title: J. Hydrol.
– volume: 240–241
  start-page: 58
  year: 2017a
  end-page: 66
  article-title: Assessing the environmental controls on Scots pine transpiration and the implications for water partitioning in a boreal headwater catchment
  publication-title: Agric. For. Meteorol.
– volume: 52
  start-page: 164
  year: 2016
  end-page: 189
  article-title: Dynamic, structured heterogeneity of water isotopes inside hillslopes
  publication-title: Water Resour. Res.
– volume: 26
  start-page: 2821
  year: 1990
  end-page: 2832
  article-title: A rationale for old water discharge through macropores in a steep, humid catchment
  publication-title: Water Resour. Res.
– volume: 2
  start-page: 179
  year: 2013
  end-page: 193
  article-title: Validation and application of a cryogenic vacuum extraction system for soil and plant water extraction for isotope analysis
  publication-title: J. Sens. Sens. Syst.
– year: 2014
– volume: 377
  start-page: 80
  year: 2009
  end-page: 91
  article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling
  publication-title: J. Hydrol.
– year: 1998
– volume: 15
  start-page: 927
  year: 2001
  end-page: 941
  article-title: Soil frost effects on soil water and runoff dynamics along a boreal transect: 2
  publication-title: Simulations. Hydrol. Processes
– volume: 19
  start-page: 4427
  year: 2015
  end-page: 4440
  article-title: Determining the stable isotope composition of pore water from saturated and unsaturated zone core: Improvements to the direct vapour equilibration laser spectrometry method
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 50
  start-page: 3481
  year: 2014
  end-page: 3501
  article-title: Developing a consistent process‐based conceptualization of catchment functioning using measurements of internal state variables
  publication-title: Water Resour. Res.
– volume: 16
  start-page: 631
  year: 2012
  end-page: 640
  article-title: A porewater‐based stable isotope approach for the investigation of subsurface hydrological processes
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 25
  start-page: 3041
  year: 2011
  end-page: 3048
  article-title: An inexpensive, fast, and reliable method for vacuum extraction of soil and plant water for stable isotope analyses by mass spectrometry. Rapid Commun
  publication-title: Mass Spectrom.
– volume: 50
  start-page: 969
  year: 2014
  end-page: 985
  article-title: Storage dynamics in hydropedological units control hillslope connectivity, runoff generation and the evolution of catchment transit time distributions
  publication-title: Water Resour. Res.
– volume: 88
  start-page: 201
  year: 1986
  end-page: 211
  article-title: The influence of land use on water yield in upland areas of the U.K.
  publication-title: J. Hydrol.
– volume: 29
  start-page: 1844
  year: 2015b
  end-page: 1860
  article-title: The relative role of soil type and tree cover on water storage and transmission in northern headwater catchments
  publication-title: Hydrol. Processes
– volume: 31
  start-page: 2438
  year: 2017
  end-page: 2452
  article-title: Ecohydrologic considerations for modeling of stable water isotopes in a small intermittent watershed
  publication-title: Hydrol. Processes
– volume: 2017
  year: 2017
  article-title: The two water worlds hypothesis: Addressing multiple working hypotheses and proposing a way forward
  publication-title: Ecohydrology
– volume: 68
  start-page: 1423
  year: 1971
  end-page: 1436
  article-title: Fractionnement en oxygene‐18 et en deuterium entre l'eau et sa vapeur
  publication-title: J. Chim. Phys.
– volume: 61
  start-page: 337
  year: 2002
  end-page: 355
  article-title: Climate effects on sulphate flux from forested catchments in south‐central Ontario
  publication-title: Biogeochemistry
– volume: 20
  start-page: 1317
  year: 2006
  end-page: 1321
  article-title: Water extraction times for plant and soil materials used in stable isotope analysis. Rapid Commun
  publication-title: Mass Spectrom.
– volume: 10
  start-page: 282
  year: 1970
  end-page: 290
  article-title: River flow forecasting through conceptual models: I. A discussion of principles
  publication-title: J. Hydrol.
– volume: 31
  start-page: 430
  year: 2017a
  end-page: 436
  article-title: No influence of CO on stable isotope analyses of soil waters with OA‐ICOS. Rapid Commun
  publication-title: Mass Spectrom.
– volume: 18
  start-page: 4113
  year: 2014
  end-page: 4127
  article-title: Stable water isotope tracing through hydrological models for disentangling runoff generation processes at the hillslope scale
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 49
  start-page: 3747
  year: 2013
  end-page: 3755
  article-title: Monitoring water stable isotopic composition in soils using gas‐permeable tubing and infrared laser absorption spectroscopy
  publication-title: Water Resour. Res.
– year: 1987
– volume: 184
  start-page: 63
  year: 2007
  end-page: 75
  article-title: A comparison of Od composition of water extracted from suction lysimeters, centrifugation, and azeotropic distillation
  publication-title: Water Air Soil Pollut.
– volume: 515
  start-page: 1
  year: 2014
  end-page: 9
  article-title: Oxygen isotope fractionation effects in soil water via interaction with cations (Mg, Ca, K, Na) adsorbed to phyllosilicate clay minerals
  publication-title: J. Hydrol.
– start-page: 113
  year: 1986
  end-page: 168
– volume: 51
  start-page: 7759
  year: 2015
  end-page: 7776
  article-title: Stream water age distributions controlled by storage dynamics and nonlinear hydrologic connectivity: Modeling with high‐resolution isotope data
  publication-title: Water Resour. Res.
– volume: 350
  start-page: 335
  year: 1991
  end-page: 337
  article-title: Streamside trees that do not use stream water
  publication-title: Nature
– volume: 7
  start-page: 1247
  year: 2014
  end-page: 1250
  article-title: Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature
  publication-title: Geosci. Model Dev.
– volume: 349
  start-page: 175
  year: 2015
  end-page: 177
  article-title: Hydrologic connectivity constrains partitioning of global terrestrial water fluxes
  publication-title: Science
– volume: 9
  start-page: 978
  year: 2017
  end-page: 1001
  article-title: Evaluation of modeled land–atmosphere exchanges with a comprehensive water isotope fractionation scheme in version 4 of the Community Land Model
  publication-title: J. Adv. Model. Earth Syst.
– volume: 3
  start-page: 100
  year: 2009
  end-page: 104
  article-title: Ecohydrologic separation of water between trees and streams in a Mediterranean climate
  publication-title: Nat. Geosci.
– volume: 52
  start-page: 5727
  year: 2016c
  end-page: 5754
  article-title: Travel times in the vadose zone: Variability in space and time
  publication-title: Water Resour. Res.
– volume: 6
  start-page: 1463
  year: 2013
  end-page: 1480
  article-title: Stable water isotopes in the coupled atmosphere–land surface model ECHAM5‐JSBACH
  publication-title: Geosci. Model Dev.
– volume: 53
  start-page: 368
  year: 2017
  end-page: 381
  article-title: Tightly bound soil water introduces isotopic memory effects on mobile and extractable soil water pools
  publication-title: Isot. Environ. Health Stud.
– volume: 16
  start-page: 436
  year: 1964
  end-page: 468
  article-title: Stable isotopes in precipitation
  publication-title: Tellus
– volume: 115
  start-page: 397
  year: 1990
  end-page: 406
  article-title: A method to extract soil water for stable isotope analysis
  publication-title: J. Hydrol.
– volume: 52
  start-page: 748
  year: 2007
  end-page: 762
  article-title: Quantification of the heterogeneity of the unsaturated zone based on environmental deuterium observed in lysimeter experiments
  publication-title: Hydrol. Sci. J.
– volume: 29
  start-page: 305
  year: 1993
  end-page: 319
  article-title: A dual‐porosity model for simulating the preferential movement of water and solutes in structured porous media
  publication-title: Water Resour. Res.
– volume: 29
  start-page: 5174
  year: 2015a
  end-page: 5192
  article-title: Established methods and new opportunities for pore water stable isotope analysis
  publication-title: Hydrol. Processes
– volume: 44
  start-page: 892
  year: 1980
  end-page: 898
  article-title: A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 519A
  start-page: 340
  year: 2014
  end-page: 352
  article-title: Tracking water pathways in steep hillslopes by d O depth profiles of soil water
  publication-title: J. Hydrol.
– volume: 1
  start-page: 323
  year: 2014
  end-page: 329
  article-title: The two water worlds hypothesis: Ecohydrological separation of water between streams and trees? Wiley Interdiscip. Rev.:
  publication-title: Water
– volume: 21
  start-page: 5089
  year: 2017b
  end-page: 5110
  article-title: Using isotopes to constrain water flux and age estimates in snow‐influenced catchments using the STARR (Spatially distributed Tracer‐Aided Rainfall–Runoff) model
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 11
  issue: 1
  year: 2012
  article-title: Effects of land cover and fertilization method on water flow and solute transport in five lysimeters: A long‐term study using stable water isotopes
  publication-title: Vadose Zone J.
– volume: 8
  start-page: 1204
  year: 1972
  end-page: 1213
  article-title: Model for predicting evaporation from a row crop with incomplete cover
  publication-title: Water Resour. Res.
– start-page: 40
  year: 1985
  end-page: 48
– volume: 104
  start-page: 301
  year: 1988
  end-page: 310
  article-title: Three‐component tracer model for stormflow on a small Appalachian forested catchment
  publication-title: J. Hydrol.
– volume: 67
  start-page: 341
  year: 1987
  end-page: 352
  article-title: Sulphate relationships in some central Ontario forest soils
  publication-title: Can. J. Soil Sci.
– volume: 150
  start-page: 287
  year: 1998
  end-page: 292
  article-title: The effect of vapor pressure on the rate of isotopic exchange between water and water vapor
  publication-title: Chem. Geol.
– volume: 224
  start-page: 45
  year: 1999
  end-page: 54
  article-title: Comparison of the stable‐isotopic composition of soil water collected from suction lysimeters, wick samplers, and cores in a sandy unsaturated zone
  publication-title: J. Hydrol.
– volume: 14
  start-page: 3001
  year: 2017
  end-page: 3014
  article-title: From soil water to surface water: How the riparian zone controls element transport from a boreal forest to a stream
  publication-title: Biogeosciences
– volume: 29
  start-page: 3546
  year: 2015
  end-page: 3555
  article-title: Connecting precipitation inputs and soil flow pathways to stream water in contrasting boreal catchments
  publication-title: Hydrol. Processes
– volume: 49
  start-page: 3071
  year: 2013
  end-page: 3092
  article-title: Macropores and water flow in soils revisited
  publication-title: Water Resour. Res.
– volume: 31
  start-page: 269
  year: 2017
  end-page: 280
  article-title: Mineral mediated isotope fractionation of soil water. Rapid Commun
  publication-title: Mass Spectrom.
– volume: 14
  start-page: 2199
  year: 2017
  end-page: 2224
  article-title: Reviews and syntheses: Isotopic approaches to quantify root water uptake: A review and comparison of methods
  publication-title: Biogeosciences
– volume: 104
  start-page: 1638
  year: 2016
  end-page: 1648
  article-title: Short‐term climate change manipulation effects do not scale up to long‐term legacies: Effects of an absent snow cover on boreal forest plants
  publication-title: J. Ecol.
– volume: 21
  start-page: 3839
  year: 2017b
  end-page: 3858
  article-title: Soil water stable isotopes reveal evaporation dynamics at the soil–plant–atmosphere interface of the critical zone
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 5
  start-page: 779
  year: 2012
  end-page: 790
  article-title: Stable isotopes reveal linkages among ecohydrological processes in a seasonally dry tropical montane cloud forest
  publication-title: Ecohydrology
– volume: 31
  start-page: 3504
  year: 2017
  end-page: 3519
  article-title: Groundwater isoscapes in a montane headwater catchment show dominance of well‐mixed storage
  publication-title: Hydrol. Processes
– volume: 282
  start-page: 104
  year: 2003
  end-page: 115
  article-title: Temperature index melt modelling in mountain areas
  publication-title: J. Hydrol.
– volume: 54
  start-page: 674
  year: 2016b
  end-page: 704
  article-title: Illuminating hydrological processes at the soil–vegetation–atmosphere interface with water stable isotopes
  publication-title: Rev. Geophys.
– volume: 31
  start-page: 783
  year: 2016
  end-page: 799
  article-title: An evaluation of the ecohydrological separation hypothesis in a semiarid catchment
  publication-title: Hydrol. Processes
– volume: 53
  start-page: 851
  year: 2017c
  end-page: 866
  article-title: Evaporation fractionation in a peatland drainage network affects stream water isotope composition
  publication-title: Water Resour. Res.
– volume: 388
  start-page: 438
  year: 2010
  end-page: 455
  article-title: Soil–Litter–Iso: A one‐dimensional model for coupled transport of heat, water and stable isotopes in soil with a litter layer and root extraction
  publication-title: J. Hydrol.
– volume: 261
  start-page: 173
  year: 2002
  end-page: 192
  article-title: Residence times and flow paths of water in steep unchannelled catchments, Tanakami
  publication-title: Japan. J. Hydrol.
– volume: 4
  start-page: 451
  year: 2000
  end-page: 461
  article-title: Evaporation from Scots pine ( ) following natural re‐colonisation of the Cairngorm mountains, Scotland
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 251
  start-page: 163
  year: 2001
  end-page: 176
  article-title: ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions
  publication-title: J. Hydrol.
– volume: 31
  start-page: 4613
  year: 2017b
  end-page: 4621
  article-title: Testing the maximum entropy production approach for estimating evapotranspiration from closed canopy shrubland in a low‐energy humid environment
  publication-title: Hydrol. Processes
– volume: 60
  start-page: 141
  year: 1983
  end-page: 156
  article-title: The distribution of deuterium and O in dry soils: 1. Theory
  publication-title: J. Hydrol.
– volume: 222
  start-page: 185
  year: 2016a
  end-page: 192
  article-title: Historical tracking of nitrate in contrasting vineyards using water isotopes and nitrate depth profiles
  publication-title: Agric. Ecosyst. Environ.
– volume: 19
  start-page: 2617
  year: 2015b
  end-page: 2635
  article-title: Estimating flow and transport parameters in the unsaturated zone with pore water stable isotopes
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 30
  start-page: 4227
  year: 2016
  end-page: 4241
  article-title: Assessing the “two water worlds” hypothesis and water sources for native and exotic evergreen species in south‐central Chile
  publication-title: Hydrol. Processes
– volume: 48
  start-page: W09528
  year: 2012
  article-title: Runoff generation in a steep, tropical montane cloud forest catchment on permeable volcanic substrate
  publication-title: Water Resour. Res.
– volume: 9
  start-page: 1
  year: 2016
  end-page: 5
  article-title: Critical issues with cryogenic extraction of soil water for stable isotope analysis
  publication-title: Ecohydrology
– volume: 49
  start-page: 7154
  year: 2013
  end-page: 7158
  article-title: The Krycklan Catchment Study: A flagship infrastructure for hydrology, biogeochemistry, and climate research in the boreal landscape
  publication-title: Water Resour. Res.
– year: 2012
– volume: 15
  start-page: 909
  year: 2001
  end-page: 926
  article-title: Soil frost effects on soil water and runoff dynamics along a boreal forest transect: 1. Field investigations
  publication-title: Hydrol. Processes
– volume: 10
  year: 2017
  article-title: In situ monitoring of H and O stable isotopes in soil water reveals ecohydrologic dynamics in managed soil systems
  publication-title: Ecohydrology
– volume: 133
  start-page: 1277
  year: 2007
  end-page: 1289
  article-title: Preferential flow in a reclamation cover: Hydrological and geochemical response
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 18
  start-page: 1819
  year: 2014
  end-page: 1833
  article-title: Continual in situ monitoring of pore water stable isotopes in the subsurface
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 215
  start-page: 582
  year: 2017
  end-page: 594
  article-title: Testing plant use of mobile vs immobile soil water sources using stable isotope experiments
  publication-title: New Phytol.
– volume: 30
  start-page: 2413
  year: 2016
  end-page: 2416
  article-title: Adding snow to the picture: Providing complementary winter precipitation data to the Krycklan Catchment Study database
  publication-title: Hydrol. Processes
– volume: 12
  issue: 4
  year: 2013
  article-title: Advances in soil evaporation physics: A review
  publication-title: Vadose Zone J.
– volume: 33
  start-page: 211
  year: 1997
  end-page: 225
  article-title: Concentration–discharge relationships in runoff from a steep, unchanneled catchment
  publication-title: Water Resour. Res.
– volume: 53
  start-page: 5813
  year: 2017a
  end-page: 5830
  article-title: Modeling the isotopic evolution of snowpack and snowmelt: Testing a spatially distributed parsimonious approach
  publication-title: Water Resour. Res.
– volume: 42
  start-page: 9262
  year: 2008
  end-page: 9267
  article-title: High resolution pore water d H and d O measurements by H O (liquid)–H O (vapor) equilibration laser spectroscopy
  publication-title: Environ. Sci. Technol.
– volume: 29
  start-page: 5139
  year: 2015a
  end-page: 5152
  article-title: Ecohydrological separation in wet, low energy northern environments? A preliminary assessment using different soil water extraction techniques
  publication-title: Hydrol. Processes
– year: 1991
– volume: 503
  start-page: 1
  year: 2013
  end-page: 10
  article-title: Identifying the water source for subsurface flow with deuterium and oxygen‐18 isotopes of soil water collected from tension lysimeters and cores
  publication-title: J. Hydrol.
– volume: 210
  start-page: 839
  year: 2016
  end-page: 849
  article-title: High‐resolution isotope measurements resolve rapid ecohydrological dynamics at the soil–plant interface
  publication-title: New Phytol.
– year: 1999
– ident: e_1_2_8_34_1
  doi: 10.5194/hess‐4‐451‐2000
– ident: e_1_2_8_69_1
  doi: 10.5194/bg‐14‐2199‐2017
– ident: e_1_2_8_68_1
  doi: 10.1029/WR008i005p01204
– ident: e_1_2_8_70_1
  doi: 10.1002/wrcr.20311
– ident: e_1_2_8_77_1
  doi: 10.1002/2015RG000515
– ident: e_1_2_8_76_1
  doi: 10.1002/hyp.10643
– ident: e_1_2_8_66_1
  doi: 10.1002/hyp.10300
– ident: e_1_2_8_64_1
  doi: 10.5194/jsss‐2‐179‐2013
– ident: e_1_2_8_6_1
  doi: 10.1016/0022‐1694(94)02636‐P
– ident: e_1_2_8_9_1
  doi: 10.1002/eco.1843
– ident: e_1_2_8_55_1
  doi: 10.1029/2011WR011316
– ident: e_1_2_8_30_1
  doi: 10.1016/B978-0-444-42225-5.50008-5
– ident: e_1_2_8_65_1
  doi: 10.1002/2015WR017485
– ident: e_1_2_8_54_1
  doi: 10.1016/j.jhydrol.2014.07.031
– ident: e_1_2_8_52_1
  doi: 10.1002/wat2.1027
– ident: e_1_2_8_86_1
  doi: 10.1002/2013WR014147
– ident: e_1_2_8_94_1
  doi: 10.1016/j.agrformet.2017.04.002
– ident: e_1_2_8_67_1
  doi: 10.1016/0022‐1694(90)90217‐L
– ident: e_1_2_8_29_1
  doi: 10.1002/eco.268
– ident: e_1_2_8_80_1
  doi: 10.5194/hess‐21‐3839‐2017
– ident: e_1_2_8_59_1
  doi: 10.1002/hyp.256
– ident: e_1_2_8_102_1
  doi: 10.1002/2016MS000842
– ident: e_1_2_8_71_1
  doi: 10.1016/S0022‐1694(01)00466‐8
– ident: e_1_2_8_46_1
  doi: 10.1002/wrcr.20520
– ident: e_1_2_8_85_1
  doi: 10.2136/vzj2011.0075
– ident: e_1_2_8_24_1
  doi: 10.1002/rcm.7787
– volume-title: Crop evapotranspiration: Guidelines for computing crop water requirements
  year: 1998
  ident: e_1_2_8_4_1
  contributor:
    fullname: Allen R.G.
– ident: e_1_2_8_61_1
  doi: 10.1016/j.jhydrol.2014.04.029
– ident: e_1_2_8_56_1
  doi: 10.1016/0022‐1694(70)90255‐6
– ident: e_1_2_8_23_1
  doi: 10.1007/s11270‐007‐9399‐8
– ident: e_1_2_8_25_1
  doi: 10.5194/hess‐16‐631‐2012
– ident: e_1_2_8_3_1
  doi: 10.5194/hess‐21‐5089‐2017
– ident: e_1_2_8_18_1
  doi: 10.1093/oso/9780195117752.001.0001
– ident: e_1_2_8_5_1
  doi: 10.1029/96WR02715
– ident: e_1_2_8_49_1
  doi: 10.1051/jcp/1971681423
– ident: e_1_2_8_91_1
  doi: 10.1111/nph.14616
– ident: e_1_2_8_31_1
  doi: 10.1126/science.aaa5931
– ident: e_1_2_8_40_1
  doi: 10.1061/(ASCE)1090‐0241(2007)133:10(1277)
– ident: e_1_2_8_87_1
  doi: 10.1002/hyp.10515
– ident: e_1_2_8_28_1
  doi: 10.1029/92WR02339
– ident: e_1_2_8_79_1
  doi: 10.1002/rcm.7815
– ident: e_1_2_8_35_1
  doi: 10.1016/j.jhydrol.2010.05.029
– start-page: 132
  volume-title: International Conference on Isotopes in Environmental Studies
  year: 2006
  ident: e_1_2_8_44_1
  contributor:
    fullname: Landwehr J.M.
– ident: e_1_2_8_8_1
  doi: 10.1016/0022‐1694(83)90018‐5
– ident: e_1_2_8_97_1
  doi: 10.1021/es802065s
– ident: e_1_2_8_32_1
  doi: 10.1016/j.jhydrol.2009.08.003
– ident: e_1_2_8_39_1
  doi: 10.1016/S0009‐2541(98)00109‐0
– volume-title: Physical and chemical properties for the soils at the Southern Biogeochemical Study Site. Consultant's Rep. 18
  year: 1987
  ident: e_1_2_8_48_1
  contributor:
    fullname: Lozano F.C.
– ident: e_1_2_8_62_1
  doi: 10.2136/vzj2012.0163
– ident: e_1_2_8_15_1
  doi: 10.1016/0022‐1694(86)90091‐0
– ident: e_1_2_8_38_1
  doi: 10.1016/S0022‐1694(03)00257‐9
– ident: e_1_2_8_45_1
  doi: 10.1002/hyp.10753
– ident: e_1_2_8_74_1
  doi: 10.1002/hyp.11351
– start-page: 195
  volume-title: Stable isotope geochemistry: A tribute to Samuel Epstein
  year: 1991
  ident: e_1_2_8_99_1
  contributor:
    fullname: Wenner D.
– ident: e_1_2_8_89_1
  doi: 10.2136/sssaj1980.03615995004400050002x
– ident: e_1_2_8_101_1
  doi: 10.5194/hess‐18‐4113‐2014
– ident: e_1_2_8_53_1
  doi: 10.1002/2013WR015141
– ident: e_1_2_8_47_1
  doi: 10.5194/bg‐14‐3001‐2017
– ident: e_1_2_8_13_1
  doi: 10.1038/ngeo722
– ident: e_1_2_8_14_1
  doi: 10.1016/j.jhydrol.2009.06.036
– ident: e_1_2_8_26_1
  doi: 10.1002/hyp.10603
– ident: e_1_2_8_58_1
  doi: 10.1080/10256016.2017.1302446
– ident: e_1_2_8_37_1
  doi: 10.1002/hyp.10984
– ident: e_1_2_8_103_1
  doi: 10.1016/j.jhydrol.2013.08.033
– ident: e_1_2_8_57_1
  doi: 10.4141/cjss87‐030
– ident: e_1_2_8_81_1
  doi: 10.1002/2016WR019258
– start-page: 40
  volume-title: Soil physics with Basic: Transport models for soil–plant systems
  year: 1985
  ident: e_1_2_8_16_1
  contributor:
    fullname: Campbell G.S.
– ident: e_1_2_8_36_1
  doi: 10.5194/hess‐19‐4427‐2015
– ident: e_1_2_8_73_1
  doi: 10.1002/2015WR017888
– ident: e_1_2_8_84_1
  doi: 10.1623/hysj.52.4.748
– ident: e_1_2_8_20_1
  doi: 10.1038/350335a0
– ident: e_1_2_8_50_1
  doi: 10.1002/hyp.11052
– ident: e_1_2_8_100_1
  doi: 10.1002/rcm.2456
– ident: e_1_2_8_78_1
  doi: 10.1002/2015WR018077
– ident: e_1_2_8_22_1
  doi: 10.1023/A:1020261913618
– volume-title: The RETC code for quantifying the hydraulic functions of unsaturated soils. EPA/600/2–91/065
  year: 1991
  ident: e_1_2_8_90_1
  contributor:
    fullname: Genuchten M.Th.
– ident: e_1_2_8_95_1
  doi: 10.1002/hyp.11363
– ident: e_1_2_8_7_1
  doi: 10.1016/S0022‐1694(02)00005‐7
– ident: e_1_2_8_12_1
  doi: 10.1111/1365‐2745.12636
– ident: e_1_2_8_51_1
  doi: 10.1029/WR026i011p02821
– ident: e_1_2_8_11_1
  doi: 10.1002/2013WR014925
– ident: e_1_2_8_60_1
  doi: 10.1002/eco.1841
– ident: e_1_2_8_63_1
  doi: 10.1002/eco.1675
– ident: e_1_2_8_88_1
  doi: 10.2136/vzj2006.0096
– ident: e_1_2_8_19_1
  doi: 10.3402/tellusa.v16i4.8993
– ident: e_1_2_8_17_1
  doi: 10.5194/gmd‐7‐1247‐2014
– ident: e_1_2_8_10_1
  doi: 10.1002/wrcr.20156
– volume-title: CAN‐EYE output variables: Definitions and theoretical background
  year: 2014
  ident: e_1_2_8_98_1
  contributor:
    fullname: Weiss M.
– ident: e_1_2_8_42_1
  doi: 10.1002/rcm.5198
– ident: e_1_2_8_41_1
  doi: 10.1002/hyp.11194
– ident: e_1_2_8_33_1
  doi: 10.5194/gmd‐6‐1463‐2013
– ident: e_1_2_8_75_1
  doi: 10.1016/j.agee.2016.02.014
– ident: e_1_2_8_82_1
  doi: 10.5194/hess‐19‐2617‐2015
– ident: e_1_2_8_21_1
  doi: 10.1016/0022‐1694(88)90171‐0
– ident: e_1_2_8_27_1
  doi: 10.1002/hyp.10289
– ident: e_1_2_8_43_1
  doi: 10.1016/S0022‐1694(99)00120‐1
– ident: e_1_2_8_83_1
  doi: 10.1002/hyp.232
– ident: e_1_2_8_2_1
  doi: 10.1002/2017WR020650
– ident: e_1_2_8_72_1
  doi: 10.1002/hyp.11271
– ident: e_1_2_8_92_1
  doi: 10.1111/nph.13868
– ident: e_1_2_8_93_1
  doi: 10.5194/hess‐18‐1819‐2014
– ident: e_1_2_8_96_1
  doi: 10.1007/978-94-007-2275-0
SSID ssj0019442
Score 2.5157695
Snippet Core Ideas Bulk soil water isotopes have an evaporation signal, but mobile water isotopes do not. These differences are time variant and linked to the volume...
Core IdeasBulk soil water isotopes have an evaporation signal, but mobile water isotopes do not.These differences are time variant and linked to the volume and...
Recent findings from stable isotope studies have opened up new questions about differences in the isotopic composition (delta H-2 and delta O-18) of mobile...
Recent findings from stable isotope studies have opened up new questions about differences in the isotopic composition (δH and δO) of mobile (MW) and bulk...
SourceID doaj
swepub
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage 1
SubjectTerms Catchment area
Catchments
Chemical composition
Composition
Domains
Dynamics
Evaporation
Exchanging
Fractionation
Hydrology
Isotope studies
Isotopes
Lysimeters
Markvetenskap
Meteoric water
Moisture content
Oceanografi, hydrologi, vattenresurser
Oceanography, Hydrology, Water Resources
Precipitation
Retention
Simulation
Simulators
Soil
Soil dynamics
Soil Science
Soil water
Stable isotopes
Uptake
Water uptake
Water vapor
Water vapour
Title Measuring and Modeling Stable Isotopes of Mobile and Bulk Soil Water
URI https://onlinelibrary.wiley.com/doi/abs/10.2136%2Fvzj2017.08.0149
https://www.proquest.com/docview/2732549409
https://res.slu.se/id/publ/96229
https://doaj.org/article/b3f07a1ac35046a6a1725714abb63d2a
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUoJzhUbaFiKUU-VIhLRGzHcXzkU4BULny06sWyY7sqrDarDcuBX8-MnUXsiUsPUSRnFCczsd6bSfKGkB9N5FExr7BQFQpEDFhSgRWtE9zBuGhTwe38Wl39bk5OUSbntdUXfhOW5YGz4w6ciKWyzLZCQipnawuIKxWrrHO18DxTo7JZJFPD-wNdpbY5sJx1wQBUs6gPZ6I-eHq-B9BTSbiToYTmGzxKsv3LXDPrhy5T14Q9Z5_Ix4E00sN8sZ_JSph8IeuHf2eDcEbYICc_U7EPgIjaiafY4gx_NKdAJt040Iu-e-ymoaddhGMOJklmR_PxA73u_o3pL-Ccs01ye3Z6c3xeDB0SCitlowtVOiFb5VlpowLyFGMVpHAVC1Xd-rJqtcZiIaCw9aXyrW4q12oZg_coMsPFV7I66SZhi1AwDd6CIf4JK3TtpOWVcHWsJcCc1iOyv_CTmWYhDAMJBLrUDC412NASXDoiR-jHVzNUsE4DEFczxNW8F9cR2VlEwQzLqjfAtTChhZx0RPZyZJZm6cdzZ2e4M30wuuYcDFWK3HsXbe7-XHLcUFAIJXX09v-4jW9kDc7Y5KLNDll9nM3Dd_Kh9_Pd9MS-AKiK6Po
link.rule.ids 230,315,782,786,866,887,2108,4030,27934,27935,27936
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+and+Modeling+Stable+Isotopes+of+Mobile+and+Bulk+Soil+Water&rft.jtitle=Vadose+zone+journal&rft.au=Sprenger%2C+Matthias&rft.au=Tetzlaff%2C+Doerthe&rft.au=Buttle%2C+Jim&rft.au=Laudon%2C+Hjalmar&rft.date=2018&rft.pub=The+Soil+Science+Society+of+America%2C+Inc&rft.issn=1539-1663&rft.eissn=1539-1663&rft.volume=17&rft.issue=1&rft.spage=1&rft.epage=18&rft_id=info:doi/10.2136%2Fvzj2017.08.0149&rft.externalDBID=10.2136%252Fvzj2017.08.0149&rft.externalDocID=VZJ2VZJ2017080149
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-1663&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-1663&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-1663&client=summon