A Multiphase Multiobjective Dynamic Genome-Scale Model Shows Different Redox Balancing among Yeast Species of the Saccharomyces Genus in Fermentation

Yeasts constitute over 1,500 species with great potential for biotechnology. Still, the yeast Saccharomyces cerevisiae dominates industrial applications, and many alternative physiological capabilities of lesser-known yeasts are not being fully exploited. While comparative genomics receives substant...

Full description

Saved in:
Bibliographic Details
Published in:mSystems Vol. 6; no. 4; p. e0026021
Main Authors: Henriques, David, Minebois, Romain, Mendoza, Sebastián N, Macías, Laura G, Pérez-Torrado, Roberto, Barrio, Eladio, Teusink, Bas, Querol, Amparo, Balsa-Canto, Eva
Format: Journal Article
Language:English
Published: United States American Society for Microbiology 31-08-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Yeasts constitute over 1,500 species with great potential for biotechnology. Still, the yeast Saccharomyces cerevisiae dominates industrial applications, and many alternative physiological capabilities of lesser-known yeasts are not being fully exploited. While comparative genomics receives substantial attention, little is known about yeasts' metabolic specificity in batch cultures. Here, we propose a multiphase multiobjective dynamic genome-scale model of yeast batch cultures that describes the uptake of carbon and nitrogen sources and the production of primary and secondary metabolites. The model integrates a specific metabolic reconstruction, based on the consensus Yeast8, and a kinetic model describing the time-varying culture environment. In addition, we proposed a multiphase multiobjective flux balance analysis to compute the dynamics of intracellular fluxes. We then compared the metabolism of S. cerevisiae and Saccharomyces uvarum strains in a rich medium fermentation. The model successfully explained the experimental data and brought novel insights into how cryotolerant strains achieve redox balance. The proposed model (along with the corresponding code) provides a comprehensive picture of the main steps occurring inside the cell during batch cultures and offers a systematic approach to prospect or metabolically engineering novel yeast cell factories. Nonconventional yeast species hold the promise to provide novel metabolic routes to produce industrially relevant compounds and tolerate specific stressors, such as cold temperatures. This work validated the first multiphase multiobjective genome-scale dynamic model to describe carbon and nitrogen metabolism throughout batch fermentation. To test and illustrate its performance, we considered the comparative metabolism of three yeast strains of the genus in rich medium fermentation. The study revealed that cryotolerant species might use the γ-aminobutyric acid (GABA) shunt and the production of reducing equivalents as alternative routes to achieve redox balance, a novel biological insight worth being explored further. The proposed model (along with the provided code) can be applied to a wide range of batch processes started with different yeast species and media, offering a systematic and rational approach to prospect nonconventional yeast species metabolism and engineering novel cell factories.
AbstractList Nonconventional yeast species hold the promise to provide novel metabolic routes to produce industrially relevant compounds and tolerate specific stressors, such as cold temperatures. This work validated the first multiphase multiobjective genome-scale dynamic model to describe carbon and nitrogen metabolism throughout batch fermentation. Yeasts constitute over 1,500 species with great potential for biotechnology. Still, the yeast Saccharomyces cerevisiae dominates industrial applications, and many alternative physiological capabilities of lesser-known yeasts are not being fully exploited. While comparative genomics receives substantial attention, little is known about yeasts’ metabolic specificity in batch cultures. Here, we propose a multiphase multiobjective dynamic genome-scale model of yeast batch cultures that describes the uptake of carbon and nitrogen sources and the production of primary and secondary metabolites. The model integrates a specific metabolic reconstruction, based on the consensus Yeast8, and a kinetic model describing the time-varying culture environment. In addition, we proposed a multiphase multiobjective flux balance analysis to compute the dynamics of intracellular fluxes. We then compared the metabolism of S. cerevisiae and Saccharomyces uvarum strains in a rich medium fermentation. The model successfully explained the experimental data and brought novel insights into how cryotolerant strains achieve redox balance. The proposed model (along with the corresponding code) provides a comprehensive picture of the main steps occurring inside the cell during batch cultures and offers a systematic approach to prospect or metabolically engineering novel yeast cell factories. IMPORTANCE Nonconventional yeast species hold the promise to provide novel metabolic routes to produce industrially relevant compounds and tolerate specific stressors, such as cold temperatures. This work validated the first multiphase multiobjective genome-scale dynamic model to describe carbon and nitrogen metabolism throughout batch fermentation. To test and illustrate its performance, we considered the comparative metabolism of three yeast strains of the Saccharomyces genus in rich medium fermentation. The study revealed that cryotolerant Saccharomyces species might use the γ-aminobutyric acid (GABA) shunt and the production of reducing equivalents as alternative routes to achieve redox balance, a novel biological insight worth being explored further. The proposed model (along with the provided code) can be applied to a wide range of batch processes started with different yeast species and media, offering a systematic and rational approach to prospect nonconventional yeast species metabolism and engineering novel cell factories.
Yeasts constitute over 1,500 species with great potential for biotechnology. Still, the yeast Saccharomyces cerevisiae dominates industrial applications, and many alternative physiological capabilities of lesser-known yeasts are not being fully exploited. While comparative genomics receives substantial attention, little is known about yeasts’ metabolic specificity in batch cultures. Here, we propose a multiphase multiobjective dynamic genome-scale model of yeast batch cultures that describes the uptake of carbon and nitrogen sources and the production of primary and secondary metabolites. The model integrates a specific metabolic reconstruction, based on the consensus Yeast8, and a kinetic model describing the time-varying culture environment. In addition, we proposed a multiphase multiobjective flux balance analysis to compute the dynamics of intracellular fluxes. We then compared the metabolism of S. cerevisiae and Saccharomyces uvarum strains in a rich medium fermentation. The model successfully explained the experimental data and brought novel insights into how cryotolerant strains achieve redox balance. The proposed model (along with the corresponding code) provides a comprehensive picture of the main steps occurring inside the cell during batch cultures and offers a systematic approach to prospect or metabolically engineering novel yeast cell factories. IMPORTANCE Nonconventional yeast species hold the promise to provide novel metabolic routes to produce industrially relevant compounds and tolerate specific stressors, such as cold temperatures. This work validated the first multiphase multiobjective genome-scale dynamic model to describe carbon and nitrogen metabolism throughout batch fermentation. To test and illustrate its performance, we considered the comparative metabolism of three yeast strains of the Saccharomyces genus in rich medium fermentation. The study revealed that cryotolerant Saccharomyces species might use the γ-aminobutyric acid (GABA) shunt and the production of reducing equivalents as alternative routes to achieve redox balance, a novel biological insight worth being explored further. The proposed model (along with the provided code) can be applied to a wide range of batch processes started with different yeast species and media, offering a systematic and rational approach to prospect nonconventional yeast species metabolism and engineering novel cell factories.
Nonconventional yeast species hold the promise to provide novel metabolic routes to produce industrially relevant compounds and tolerate specific stressors, such as cold temperatures. This work validated the first multiphase multiobjective genome-scale dynamic model to describe carbon and nitrogen metabolism throughout batch fermentation. Yeasts constitute over 1,500 species with great potential for biotechnology. Still, the yeast Saccharomyces cerevisiae dominates industrial applications, and many alternative physiological capabilities of lesser-known yeasts are not being fully exploited. While comparative genomics receives substantial attention, little is known about yeasts’ metabolic specificity in batch cultures. Here, we propose a multiphase multiobjective dynamic genome-scale model of yeast batch cultures that describes the uptake of carbon and nitrogen sources and the production of primary and secondary metabolites. The model integrates a specific metabolic reconstruction, based on the consensus Yeast8, and a kinetic model describing the time-varying culture environment. In addition, we proposed a multiphase multiobjective flux balance analysis to compute the dynamics of intracellular fluxes. We then compared the metabolism of S. cerevisiae and Saccharomyces uvarum strains in a rich medium fermentation. The model successfully explained the experimental data and brought novel insights into how cryotolerant strains achieve redox balance. The proposed model (along with the corresponding code) provides a comprehensive picture of the main steps occurring inside the cell during batch cultures and offers a systematic approach to prospect or metabolically engineering novel yeast cell factories. IMPORTANCE Nonconventional yeast species hold the promise to provide novel metabolic routes to produce industrially relevant compounds and tolerate specific stressors, such as cold temperatures. This work validated the first multiphase multiobjective genome-scale dynamic model to describe carbon and nitrogen metabolism throughout batch fermentation. To test and illustrate its performance, we considered the comparative metabolism of three yeast strains of the Saccharomyces genus in rich medium fermentation. The study revealed that cryotolerant Saccharomyces species might use the γ-aminobutyric acid (GABA) shunt and the production of reducing equivalents as alternative routes to achieve redox balance, a novel biological insight worth being explored further. The proposed model (along with the provided code) can be applied to a wide range of batch processes started with different yeast species and media, offering a systematic and rational approach to prospect nonconventional yeast species metabolism and engineering novel cell factories.
Yeasts constitute over 1,500 species with great potential for biotechnology. Still, the yeast Saccharomyces cerevisiae dominates industrial applications, and many alternative physiological capabilities of lesser-known yeasts are not being fully exploited. While comparative genomics receives substantial attention, little is known about yeasts' metabolic specificity in batch cultures. Here, we propose a multiphase multiobjective dynamic genome-scale model of yeast batch cultures that describes the uptake of carbon and nitrogen sources and the production of primary and secondary metabolites. The model integrates a specific metabolic reconstruction, based on the consensus Yeast8, and a kinetic model describing the time-varying culture environment. In addition, we proposed a multiphase multiobjective flux balance analysis to compute the dynamics of intracellular fluxes. We then compared the metabolism of S. cerevisiae and Saccharomyces uvarum strains in a rich medium fermentation. The model successfully explained the experimental data and brought novel insights into how cryotolerant strains achieve redox balance. The proposed model (along with the corresponding code) provides a comprehensive picture of the main steps occurring inside the cell during batch cultures and offers a systematic approach to prospect or metabolically engineering novel yeast cell factories. Nonconventional yeast species hold the promise to provide novel metabolic routes to produce industrially relevant compounds and tolerate specific stressors, such as cold temperatures. This work validated the first multiphase multiobjective genome-scale dynamic model to describe carbon and nitrogen metabolism throughout batch fermentation. To test and illustrate its performance, we considered the comparative metabolism of three yeast strains of the genus in rich medium fermentation. The study revealed that cryotolerant species might use the γ-aminobutyric acid (GABA) shunt and the production of reducing equivalents as alternative routes to achieve redox balance, a novel biological insight worth being explored further. The proposed model (along with the provided code) can be applied to a wide range of batch processes started with different yeast species and media, offering a systematic and rational approach to prospect nonconventional yeast species metabolism and engineering novel cell factories.
Nonconventional yeast species hold the promise to provide novel metabolic routes to produce industrially relevant compounds and tolerate specific stressors, such as cold temperatures. This work validated the first multiphase multiobjective genome-scale dynamic model to describe carbon and nitrogen metabolism throughout batch fermentation.
Yeasts constitute over 1,500 species with great potential for biotechnology. Still, the yeast Saccharomyces cerevisiae dominates industrial applications, and many alternative physiological capabilities of lesser-known yeasts are not being fully exploited. While comparative genomics receives substantial attention, little is known about yeasts’ metabolic specificity in batch cultures. Here, we propose a multiphase multiobjective dynamic genome-scale model of yeast batch cultures that describes the uptake of carbon and nitrogen sources and the production of primary and secondary metabolites. The model integrates a specific metabolic reconstruction, based on the consensus Yeast8, and a kinetic model describing the time-varying culture environment. In addition, we proposed a multiphase multiobjective flux balance analysis to compute the dynamics of intracellular fluxes. We then compared the metabolism of S. cerevisiae and Saccharomyces uvarum strains in a rich medium fermentation. The model successfully explained the experimental data and brought novel insights into how cryotolerant strains achieve redox balance. The proposed model (along with the corresponding code) provides a comprehensive picture of the main steps occurring inside the cell during batch cultures and offers a systematic approach to prospect or metabolically engineering novel yeast cell factories. IMPORTANCE Nonconventional yeast species hold the promise to provide novel metabolic routes to produce industrially relevant compounds and tolerate specific stressors, such as cold temperatures. This work validated the first multiphase multiobjective genome-scale dynamic model to describe carbon and nitrogen metabolism throughout batch fermentation. To test and illustrate its performance, we considered the comparative metabolism of three yeast strains of the Saccharomyces genus in rich medium fermentation. The study revealed that cryotolerant Saccharomyces species might use the γ-aminobutyric acid (GABA) shunt and the production of reducing equivalents as alternative routes to achieve redox balance, a novel biological insight worth being explored further. The proposed model (along with the provided code) can be applied to a wide range of batch processes started with different yeast species and media, offering a systematic and rational approach to prospect nonconventional yeast species metabolism and engineering novel cell factories.
Author Barrio, Eladio
Querol, Amparo
Mendoza, Sebastián N
Teusink, Bas
Minebois, Romain
Pérez-Torrado, Roberto
Henriques, David
Balsa-Canto, Eva
Macías, Laura G
Author_xml – sequence: 1
  givenname: David
  surname: Henriques
  fullname: Henriques, David
  organization: (Bio)process Engineering Group, IIM-CSIC, Vigo, Spain
– sequence: 2
  givenname: Romain
  surname: Minebois
  fullname: Minebois, Romain
  organization: Systems Biology in Yeast of Biotechnological Interest, IATA-CSIC, Paterna, Spain
– sequence: 3
  givenname: Sebastián N
  surname: Mendoza
  fullname: Mendoza, Sebastián N
  organization: Systems Bioinformatics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
– sequence: 4
  givenname: Laura G
  surname: Macías
  fullname: Macías, Laura G
  organization: Systems Biology in Yeast of Biotechnological Interest, IATA-CSIC, Paterna, Spain
– sequence: 5
  givenname: Roberto
  surname: Pérez-Torrado
  fullname: Pérez-Torrado, Roberto
  organization: Systems Biology in Yeast of Biotechnological Interest, IATA-CSIC, Paterna, Spain
– sequence: 6
  givenname: Eladio
  surname: Barrio
  fullname: Barrio, Eladio
  organization: Department of Genetics, University of Valencia, Burjassot, Spain
– sequence: 7
  givenname: Bas
  surname: Teusink
  fullname: Teusink, Bas
  organization: Systems Bioinformatics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
– sequence: 8
  givenname: Amparo
  surname: Querol
  fullname: Querol, Amparo
  organization: Systems Biology in Yeast of Biotechnological Interest, IATA-CSIC, Paterna, Spain
– sequence: 9
  givenname: Eva
  surname: Balsa-Canto
  fullname: Balsa-Canto, Eva
  organization: (Bio)process Engineering Group, IIM-CSIC, Vigo, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34342535$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAQxyNUREvpA3BBPnJJ8UccJxek0tJSqQiJwIGT5djjXa_ieLGTwj4I74vblKoVEuJij8Yzv_HM_J8Xe2MYoSheEnxMCG3e-G6XJvDpGGNa45KSJ8UBZaItORZi74G9XxyltMEYk5oJQttnxT6rWEU54wfFrxP0cR4mt12rBIsZ-g3oyV0DOtuNyjuNLmAMHspOqyHHBAMD6tbhR0JnzlqIME7oM5jwE71Tgxq1G1dI-ZDPb6DShLotaAcJBYumNaBOab1WMfidzs7MnhNyIzqH6DNJ5Q-ML4qnVg0Jju7uw-Lr-fsvpx_Kq08Xl6cnV6XiVT2VtRaWc1OBqmssKmFw1ZgW99TUIDhwxniFqW6sUTr33rR9L2oCNTBbt9oQdlhcLlwT1EZuo_Mq7mRQTt46QlxJFSenB5CsZg3tte2xVVXT2MaQ1hpCWqxFT0iTWW8X1nbuPRide4lqeAR9_DK6tVyFa9lUWDBaZcDrO0AM32dIk_QuaRjySCHMSVLOBc97EzehZAnVMaQUwd6XIVjeqEP6tKhD3qpDUvI_Od3fOcdLjkqeyk2Y45jX8c-EVw-HcF_ij-DYb5VG3DY
CitedBy_id crossref_primary_10_1007_s11705_024_2410_8
crossref_primary_10_1002_bit_28421
crossref_primary_10_1186_s12859_023_05506_7
crossref_primary_10_1093_jimb_kuac025
crossref_primary_10_1111_1751_7915_14211
crossref_primary_10_1016_j_lwt_2023_115705
crossref_primary_10_1051_bioconf_20236802040
crossref_primary_10_1016_j_biotechadv_2024_108319
crossref_primary_10_1093_gbe_evad207
crossref_primary_10_3390_foods11121682
crossref_primary_10_1093_femsyr_foac003
crossref_primary_10_1016_j_synbio_2021_12_010
crossref_primary_10_1016_j_foodres_2022_112016
crossref_primary_10_1007_s00253_022_12066_y
crossref_primary_10_1128_spectrum_03519_22
crossref_primary_10_1186_s13068_022_02113_1
crossref_primary_10_1016_j_ijfoodmicro_2023_110537
crossref_primary_10_1016_j_fm_2022_103981
Cites_doi 10.1038/msb.2009.77
10.1038/s41467-019-12961-5
10.1093/nar/gkq1268
10.3390/fermentation4030054
10.1186/s12918-017-0408-2
10.1007/BF00058655
10.1111/1462-2920.13617
10.3389/fmicb.2017.00150
10.1146/annurev-micro-091213-113025
10.1186/1752-0509-4-11
10.1099/mic.0.26007-0
10.1038/msb.2010.47
10.1111/1462-2920.15135
10.1002/bit.27370
10.1371/journal.pone.0060135
10.3389/fgene.2019.00082
10.1111/j.1365-2672.2009.04196.x
10.1016/s0168-1605(01)00552-9
10.1093/bioinformatics/btw411
10.1016/j.ymben.2021.02.004
10.1093/femsre/fuaa058
10.1128/AEM.02617-16
10.1091/mbc.e03-11-0856
10.1002/yea.2962
10.1038/s41467-019-11581-3
10.20870/oeno-one.2020.54.2.2594
10.1186/1752-0509-5-75
10.1186/s12934-018-1018-4
10.1007/s10479-006-0086-8
10.1128/aem.58.9.2948-2953.1992
10.1007/s00253-019-09664-8
10.1371/journal.pcbi.1003580
10.1007/s11306-015-0819-2
10.1016/j.copbio.2020.01.008
10.1016/j.biotechadv.2019.02.005
10.1128/AEM.70.6.3392-3400.2004
10.1007/s00253-016-7970-1
10.1099/13500872-142-8-2299
10.1126/science.274.5287.546
10.1002/yea.1046
10.1093/femsyr/fox050
10.1186/s12934-014-0109-0
10.1111/jam.12126
10.1016/j.gde.2015.10.008
10.1016/j.cell.2016.02.004
10.1038/nprot.2011.308
10.1016/j.fm.2019.103287
10.1002/bit.21332
10.1007/s10898-007-9172-y
10.1002/bit.10133
10.15252/msb.20167411
10.1128/AEM.02294-12
10.1186/1475-2859-13-85
10.1074/jbc.M007103200
10.1038/nbt.1614
10.1016/j.ymben.2014.07.004
10.1128/aem.60.10.3724-3731.1994
10.1016/j.ijfoodmicro.2017.04.002
10.1111/1751-7915.12488
10.1128/AEM.01029-07
10.3390/pr8091195
10.1016/j.copbio.2017.03.017
10.1016/j.fm.2020.103484
10.1002/bit.21494
10.1016/j.micres.2016.07.010
10.5344/ajev.2009.60.4.508
10.1016/B978-0-12-815271-3.00013-0
10.1007/978-3-642-21551-3_33
ContentType Journal Article
Copyright Copyright © 2021 Henriques et al.
Copyright © 2021 Henriques et al. 2021 Henriques et al.
Copyright_xml – notice: Copyright © 2021 Henriques et al.
– notice: Copyright © 2021 Henriques et al. 2021 Henriques et al.
DBID NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1128/mSystems.00260-21
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef

CrossRef
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2379-5077
Editor Del Vecchio, Domitilla
Editor_xml – sequence: 1
  givenname: Domitilla
  surname: Del Vecchio
  fullname: Del Vecchio, Domitilla
EndPage e0026021
ExternalDocumentID oai_doaj_org_article_36382bcfb0fa488f8d19fd1190c7b118
10_1128_msystems_00260_21
10_1128_mSystems_00260_21
mSystems00260-21
34342535
Genre Journal Article
GrantInformation_xml – fundername: Ministerio de Ciencia, Innovación y Universidades (MCIU)
  grantid: RTI2018-093744-B-C31
– fundername: CONICYTBecasChile
  grantid: 72180373
– fundername: Ministerio de Ciencia, Innovación y Universidades (MCIU)
  grantid: PID2019-104113RB-I00
– fundername: Ministerio de Ciencia, Innovación y Universidades (MCIU)
  grantid: BES-2016-07820
– fundername: Ministerio de Ciencia, Innovación y Universidades (MCIU)
  grantid: RTI2018-093744-B-C32
– fundername: Ministerio de Ciencia, Innovación y Universidades (MCIU)
  grantid: RTI2018-093744-B-C33
– fundername: EraCoBioTech
  grantid: 053.80.733
– fundername: Ministerio de Ciencia, Innovación y Universidades (MCIU)
  grantid: PID2019-104113RB-I00
  funderid: https://doi.org/10.13039/100014440
– fundername: Ministerio de Ciencia, Innovación y Universidades (MCIU)
  grantid: BES-2016-07820
  funderid: https://doi.org/10.13039/100014440
– fundername: Ministerio de Ciencia, Innovación y Universidades (MCIU)
  grantid: RTI2018-093744-B-C33
  funderid: https://doi.org/10.13039/100014440
– fundername: Ministerio de Ciencia, Innovación y Universidades (MCIU)
  grantid: RTI2018-093744-B-C32
  funderid: https://doi.org/10.13039/100014440
– fundername: Ministerio de Ciencia, Innovación y Universidades (MCIU)
  grantid: RTI2018-093744-B-C31
  funderid: https://doi.org/10.13039/100014440
– fundername: ;
  grantid: PID2019-104113RB-I00
– fundername: ;
  grantid: 053.80.733
– fundername: ;
  grantid: RTI2018-093744-B-C32
– fundername: ;
  grantid: BES-2016-07820
– fundername: ;
  grantid: RTI2018-093744-B-C31
– fundername: ;
  grantid: 72180373
– fundername: ;
  grantid: RTI2018-093744-B-C33
GroupedDBID 0R~
3V.
53G
5VS
7X7
8FE
8FH
8FI
8FJ
AAFWJ
AAUOK
ABUWG
ACPRK
ADBBV
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
EBS
FRP
FYUFA
GROUPED_DOAJ
H13
HCIFZ
HMCUK
HYE
KQ8
LK8
M48
M7P
M~E
NPM
O9-
OK1
PIMPY
PQQKQ
PROAC
RHI
RPM
RSF
UKHRP
0R
ADACO
BBAFP
BXI
PQEST
PQUKI
PRINS
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-a546t-6c7f55d4ea660747d048d90b2d6e75e5335402c8fdac63789bb761e6e3f69cd13
IEDL.DBID RPM
ISSN 2379-5077
IngestDate Tue Oct 22 15:10:05 EDT 2024
Tue Sep 17 21:14:16 EDT 2024
Fri Oct 25 07:04:45 EDT 2024
Fri Nov 22 03:04:32 EST 2024
Thu Nov 21 22:38:32 EST 2024
Tue Dec 28 13:57:58 EST 2021
Sat Sep 28 08:27:28 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords dynamic genome-scale models
redox balance
Saccharomyces species
batch fermentation
cryotolerant species
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a546t-6c7f55d4ea660747d048d90b2d6e75e5335402c8fdac63789bb761e6e3f69cd13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Henriques D, Minebois R, Mendoza SN, Macías LG, Pérez-Torrado R, Barrio E, Teusink B, Querol A, Balsa-Canto E. 2021. A multiphase multiobjective dynamic genome-scale model shows different redox balancing among yeast species of the Saccharomyces genus in fermentation. mSystems 6:e00260-21. https://doi.org/10.1128/mSystems.00260-21.
ORCID 0000-0002-6478-6845
0000-0003-3929-0423
0000-0002-9477-292X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8407324/
PMID 34342535
PQID 2557534274
PQPubID 23479
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_36382bcfb0fa488f8d19fd1190c7b118
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8407324
proquest_miscellaneous_2557534274
crossref_primary_10_1128_msystems_00260_21
crossref_primary_10_1128_mSystems_00260_21
asm2_journals_10_1128_mSystems_00260_21
pubmed_primary_34342535
PublicationCentury 2000
PublicationDate 2021-Aug-31
PublicationDateYYYYMMDD 2021-08-31
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-Aug-31
  day: 31
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mSystems
PublicationTitleAbbrev mSystems
PublicationTitleAlternate mSystems
PublicationYear 2021
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References Goold, HD, Kroukamp, H, Williams, TC, Paulsen, IT, Varela, C, Pretorius, IS (B21) 2017; 10
Raghunathan, AU, Pérez-Correa, JR, Agosin, E, Biegler, LT (B33) 2006; 148
Gamero, A, Tronchoni, J, Querol, A, Belloch, C (B20) 2013; 114
Camarasa, C, Grivet, J-P, Dequin, S (B40) 2003; 149
Minebois, R, Pérez-Torrado, R, Querol, A (B38) 2020; 90
Wang, G, Huang, M, Nielsen, J (B6) 2017; 48
Dikicioglu, D, Kırdar, B, Oliver, SG (B37) 2015; 11
Coleman, ST, Fang, TK, Rovinsky, SA, Turano, FJ, Moye-Rowley, WS (B44) 2001; 276
Machado, D, Herrgård, M (B62) 2014; 10
Bach, B, Sauvage, F-X, Dequin, S, Camarasa, C (B41) 2009; 60
Kelly, JM, van Dyk, SA, Dowling, LK, Pickering, GJ, Kemp, B, Inglis, DL (B49) 2020; 54
Alonso-del-Real, J, Lairón-Peris, M, Barrio, E, Querol, A (B22) 2017; 8
Schulze, U, Lidén, G, Nielsen, J, Villadsen, J (B35) 1996; 142
Hittinger, CT, Rokas, A, Bai, F-Y, Boekhout, T, Gonçalves, P, Jeffries, TW, Kominek, J, Lachance, M-A, Libkind, D, Rosa, CA, Sampaio, JP, Kurtzman, CP (B10) 2015; 35
Mara, P, Fragiadakis, G, Gkountromichos, F, Alexandraki, D (B43) 2018; 17
Lewis, NE, Hixson, KK, Conrad, TM, Lerman, JA, Charusanti, P, Polpitiya, AD, Adkins, JN, Schramm, G, Purvine, SO, Lopez-Ferrer, D, Weitz, KK, Eils, R, König, R, Smith, RD, Palsson, BØ (B19) 2010; 6
Coulter, AD, Godden, PW, Pretorius, IS (B39) 2004; 19
Su, Y, Seguinot, P, Sanchez, I, Ortiz-Julien, A, Heras, JM, Querol, A, Camarasa, C, Guillamón, JM (B56) 2020; 85
Perli, T, van der Vorm Daan, NA, Wassink, M, van den Broek, M, Pronk, JT, Daran, J-M (B4) 2021; 65
Martinez, MJ, Roy, S, Archuletta, AB, Wentzell, PD, Anna-Arriola, SS, Rodriguez, AL, Aragon, AD, Quinones, GA, Allen, C, Werner-Washburne, M (B52) 2004; 15
Crépin, L, Truong, NM, Bloem, A, Sanchez, I, Dequin, S, Camarasa, C (B50) 2017; 83
Yuan, J, Chen, X, Mishra, P, Ching, C-B (B54) 2017; 101
Cramer, AC, Vlassides, S, Block, DE (B28) 2002; 77
López-Malo, M, Querol, A, Guillamon, JM (B29) 2013; 8
Klein, M, Swinnen, S, Thevelein, JM, Nevoigt, E (B5) 2017; 19
Bühlmann, P, Gentle, JE, Härdle, WK, Mori, Y (B66) 2012
Minebois, R, Pérez-Torrado, R, Querol, A (B25) 2020; 22
Varela, C, Pizarro, F, Agosin, E (B36) 2004; 70
Liu, Q, Liu, Y, Chen, Y, Nielsen, J (B8) 2020; 65
Scott, WT, Smid, EJ, Notebaart, RA, Block, DE (B32) 2020; 8
Goffeau, A, Barrell, BG, Bussey, H, Davis, RW, Dujon, B, Feldmann, H, Galibert, F, Hoheisel, JD, Jacq, C, Johnston, M, Louis, EJ, Mewes, HW, Murakami, Y, Philippsen, P, Tettelin, H, Oliver, SG (B59) 1996; 274
Efron, B, Tibshirani, R (B67) 1988
Crépin, L, Sanchez, I, Nidelet, T, Dequin, S, Camarasa, C (B27) 2014; 13
Saitua, F, Torres, P, Pérez-Correa, JR, Agosin, E (B17) 2017; 11
Pizarro, F, Varela, C, Martabit, C, Bruno, C, Pérez-Correa, JR, Agosin, E (B34) 2007; 98
Oberhardt, MA, Palsson, BØ, Papin, JA (B11) 2009; 5
Sánchez, BJ, Zhang, C, Nilsson, A, Lahtvee, P-J, Kerkhoven, EJ, Nielsen, J (B12) 2017; 13
Varela, C, Barker, A, Tran, T, Borneman, A, Curtin, C (B23) 2017; 252
Varma, A, Palsson, BØ (B60) 1994; 60
Breiman, L (B65) 1996; 24
Querol, A, Barrio, E, Huerta, T, Ramón, D (B55) 1992; 58
van Wyk, N, Kroukamp, H, Pretorius, IS (B7) 2018; 4
Liu, Q, Yu, T, Li, X, Chen, Y, Campbell, K, Nielsen, J, Chen, Y (B2) 2019; 10
Egea, JA, Vazquez, E, Banga, JR, Marti, R (B70) 2009; 43
Lu, H, Li, F, Sánchez, BJ, Zhu, Z, Li, G, Domenzain, I, Marcišauskas, S, Anton, PM, Lappa, D, Lieven, C, Beber, ME, Sonnenschein, N, Kerkhoven, EJ, Nielsen, J (B18) 2019; 10
Rojas, V, Gil, JV, Piñaga, F, Manzanares, P (B71) 2001; 70
Sánchez, BJ, Pérez-Correa, JR, Agosin, E (B16) 2014; 25
Guo, W, Huang, Q, Feng, Y, Tan, T, Niu, S, Hou, S, Chen, Z, Du, Z-Q, Shen, Y, Fang, X (B3) 2020; 117
Crépin, L, Nidelet, T, Sanchez, I, Dequin, S, Camarasa, C (B31) 2012; 78
Tosi, E, Azzolini, M, Guzzo, F, Zapparoli, G (B24) 2009; 107
Müller-Santos, M, Koskimäki, JJ, Alves, LPS, de Souza, EM, Jendrossek, D, Pirttilä, AM (B48) 2021; 45
Lopes, H, Rocha, I (B13) 2017; 17
Liu, H, Marsafari, M, Deng, L, Xu, P (B46) 2019; 103
Schellenberger, J, Que, R, Fleming, RMT, Thiele, I, Orth, JD, Feist, AM, Zielinski, DC, Bordbar, A, Lewis, NE, Rahmanian, S, Kang, J, Hyduke, DR, Palsson, BØ (B69) 2011; 6
Steensels, J, Verstrepen, KJ (B9) 2014; 68
Hjersted, JL, Henson, MA, Mahadevan, R (B14) 2007; 97
Balsa-Canto, E, Alonso, AA, Banga, JR (B64) 2010; 4
Walter, E, Pronzato, L (B63) 1997
Vargas, FA, Pizarro, F, Pérez-Correa, JR, Agosin, E (B15) 2011; 5
Nielsen, J, Keasling, JD (B1) 2016; 164
Shopska, V, Denkova, R, Lyubenova, V, Kostov, G, Grumezescu, A, Holban, AM (B53) 2019; 5
Możejko-Ciesielska, J, Kiewisz, R (B47) 2016; 192
Cao, J, Barbosa, JM, Singh, N, Locy, RD (B42) 2013; 30
Wang, Y, Zhang, H, Lu, X, Zong, H, Zhuge, B (B26) 2019; 37
Rossignol, T, Dulau, L, Julien, A, Blondin, B (B45) 2003; 20
Otto, TD, Dillon, GP, Degrave, WS, Berriman, M (B58) 2011; 39
Mendes-Ferreira, A, del Olmo, M, García-Martínez, J, Jiménez-Martí, E, Leão, C, Mendes-Faia, A, Pérez-Ortín, JE (B51) 2007; 73
Vázquez-Lima, F, Silva, P, Barreiro, A, Martínez-Moreno, R, Morales, P, Quirós, M, González, R, Albiol, J, Ferrer, P (B30) 2014; 13
Balsa-Canto, E, Henriques, D, Gabor, A, Banga, JR (B68) 2016; 32
Orth, JD, Thiele, I, Palsson, BØ (B61) 2010; 28
Morard, M, Macías, LG, Adam, AC, Lairón-Peris, M, Pérez-Torrado, R, Toft, C, Barrio, E (B57) 2019; 10
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
Efron B (e_1_3_2_68_2) 1988
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_71_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_61_2
Coulter AD (e_1_3_2_40_2) 2004; 19
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
Walter E (e_1_3_2_64_2) 1997
e_1_3_2_30_2
Bach B (e_1_3_2_42_2) 2009; 60
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
e_1_3_2_72_2
e_1_3_2_70_2
e_1_3_2_42_2
References_xml – volume: 5
  start-page: 320
  year: 2009
  ident: B11
  article-title: Applications of genome-scale metabolic reconstructions
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2009.77
  contributor:
    fullname: Papin, JA
– volume: 10
  start-page: 4976
  year: 2019
  ident: B2
  article-title: Rewiring carbon metabolism in yeast for high level production of aromatic chemicals
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-12961-5
  contributor:
    fullname: Chen, Y
– volume: 39
  year: 2011
  ident: B58
  article-title: RATT: Rapid Annotation Transfer Tool
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq1268
  contributor:
    fullname: Berriman, M
– volume: 4
  start-page: 54
  year: 2018
  ident: B7
  article-title: The smell of synthetic biology: engineering strategies for aroma compound production in yeast
  publication-title: Fermentation
  doi: 10.3390/fermentation4030054
  contributor:
    fullname: Pretorius, IS
– volume: 11
  start-page: 27
  year: 2017
  ident: B17
  article-title: Dynamic genome-scale metabolic modeling of the yeast Pichia pastoris
  publication-title: BMC Syst Biol
  doi: 10.1186/s12918-017-0408-2
  contributor:
    fullname: Agosin, E
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: B65
  article-title: Bagging predictors
  publication-title: Mach Learn
  doi: 10.1007/BF00058655
  contributor:
    fullname: Breiman, L
– volume: 19
  start-page: 878
  year: 2017
  end-page: 893
  ident: B5
  article-title: Glycerol metabolism and transport in yeast and fungi: established knowledge and ambiguities
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.13617
  contributor:
    fullname: Nevoigt, E
– volume: 8
  start-page: 150
  year: 2017
  ident: B22
  article-title: Effect of temperature on the prevalence of Saccharomyces non cerevisiae species against a S. cerevisiae wine strain in wine fermentation: competition, physiological fitness, and influence in final wine composition
  publication-title: Frontiers Microbiol
  doi: 10.3389/fmicb.2017.00150
  contributor:
    fullname: Querol, A
– volume: 68
  start-page: 61
  year: 2014
  end-page: 80
  ident: B9
  article-title: Taming wild yeast: potential of conventional and nonconventional yeasts in industrial fermentations
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev-micro-091213-113025
  contributor:
    fullname: Verstrepen, KJ
– volume: 60
  start-page: 508
  year: 2009
  end-page: 516
  ident: B41
  article-title: Role of γ-aminobutyric acid as a source of nitrogen and succinate in wine
  publication-title: Am J Enol Vit
  contributor:
    fullname: Camarasa, C
– volume: 4
  start-page: 11
  year: 2010
  ident: B64
  article-title: An iterative identification procedure for dynamic modeling of biochemical networks
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-4-11
  contributor:
    fullname: Banga, JR
– year: 1997
  ident: B63
  publication-title: Identification of parametric models from experimental data. ;Springer ;Berlin, Germany
  contributor:
    fullname: Pronzato, L
– volume: 149
  start-page: 2669
  year: 2003
  end-page: 2678
  ident: B40
  article-title: Investigation by 13C-NMR and tricarboxylic acid (TCA) deletion mutant analysis of pathways for succinate formation in Saccharomyces cerevisiae during anaerobic fermentation
  publication-title: Microbiology (Reading)
  doi: 10.1099/mic.0.26007-0
  contributor:
    fullname: Dequin, S
– start-page: 985
  year: 2012
  end-page: 1022
  ident: B66
  article-title: Bagging, boosting and ensemble methods
  publication-title: Handbook of computational statistics: concepts and methods. ;Springer ;Berlin, Germany
  contributor:
    fullname: Mori, Y
– volume: 6
  start-page: 390
  year: 2010
  ident: B19
  article-title: Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2010.47
  contributor:
    fullname: Palsson, BØ
– volume: 22
  start-page: 3700
  year: 2020
  end-page: 3721
  ident: B25
  article-title: Metabolome segregation of four strains of Saccharomyces cerevisiae, S. uvarum and S. kudriavzevii conducted under low temperature oenological conditions
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.15135
  contributor:
    fullname: Querol, A
– volume: 117
  start-page: 2410
  year: 2020
  end-page: 2419
  ident: B3
  article-title: Rewiring central carbon metabolism for tyrosol and salidroside production in Saccharomyces cerevisiae
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.27370
  contributor:
    fullname: Fang, X
– volume: 8
  year: 2013
  ident: B29
  article-title: Metabolomic comparison of Saccharomyces cerevisiae and the cryotolerant species S. bayanus var. uvarum and S. kudriavzevii during wine fermentation at low temperature
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0060135
  contributor:
    fullname: Guillamon, JM
– volume: 10
  start-page: 82
  year: 2019
  ident: B57
  article-title: Aneuploidy and ethanol tolerance in Saccharomyces cerevisiae
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00082
  contributor:
    fullname: Barrio, E
– volume: 107
  start-page: 210
  year: 2009
  end-page: 218
  ident: B24
  article-title: Evidence of different fermentation behaviours of two indigenous strains of Saccharomyces cerevisiae and Saccharomyces uvarum isolated from amarone wine
  publication-title: J Appl Microbiol
  doi: 10.1111/j.1365-2672.2009.04196.x
  contributor:
    fullname: Zapparoli, G
– volume: 70
  start-page: 283
  year: 2001
  end-page: 289
  ident: B71
  article-title: Studies on acetate ester production by non-Saccharomyces wine yeasts
  publication-title: Int J Food Microbiol
  doi: 10.1016/s0168-1605(01)00552-9
  contributor:
    fullname: Manzanares, P
– volume: 32
  start-page: 3357
  year: 2016
  end-page: 3359
  ident: B68
  article-title: AMIGO2, a toolbox for dynamic modeling, optimization and control in systems biology
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw411
  contributor:
    fullname: Banga, JR
– volume: 65
  start-page: 11
  year: 2021
  end-page: 29
  ident: B4
  article-title: Engineering heterologous molybdenum-cofactor-biosynthesis and nitrate-assimilation pathways enables nitrate utilization by Saccharomyces cerevisiae
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2021.02.004
  contributor:
    fullname: Daran, J-M
– volume: 45
  start-page: fuaa058
  year: 2021
  ident: B48
  article-title: The protective role of PHB and its degradation products against stress situations in bacteria
  publication-title: FEMS Microbiol Rev
  doi: 10.1093/femsre/fuaa058
  contributor:
    fullname: Pirttilä, AM
– volume: 83
  year: 2017
  ident: B50
  article-title: Management of multiple nitrogen sources during wine fermentation by Saccharomyces cerevisiae
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02617-16
  contributor:
    fullname: Camarasa, C
– volume: 15
  start-page: 5295
  year: 2004
  end-page: 5305
  ident: B52
  article-title: Genomic analysis of stationary-phase and exit in Saccharomyces cerevisiae: gene expression and identification of novel essential genes
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e03-11-0856
  contributor:
    fullname: Werner-Washburne, M
– volume: 30
  start-page: 279
  year: 2013
  end-page: 289
  ident: B42
  article-title: GABA transaminases from Saccharomyces cerevisiae and Arabidopsis thaliana complement function in cytosol and mitochondria
  publication-title: Yeast
  doi: 10.1002/yea.2962
  contributor:
    fullname: Locy, RD
– volume: 5
  start-page: 529
  year: 2019
  end-page: 575
  ident: B53
  article-title: Kinetic characteristics of alcohol fermentation in brewing: state of art and control of the fermentation process
  publication-title: The science of beverages ;Fermented beverages. ;Elsevier ;Duxford, United Kingdom
  contributor:
    fullname: Holban, AM
– volume: 10
  start-page: 3586
  year: 2019
  ident: B18
  article-title: A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-11581-3
  contributor:
    fullname: Nielsen, J
– volume: 54
  start-page: 199
  year: 2020
  end-page: 211
  ident: B49
  article-title: Ssaccharomyces uvarum yeast isolate consumes acetic acid during fermentation of high sugar juice and juice with high starting volatile acidity
  publication-title: Oeno One
  doi: 10.20870/oeno-one.2020.54.2.2594
  contributor:
    fullname: Inglis, DL
– volume: 5
  start-page: 75
  year: 2011
  ident: B15
  article-title: Expanding a dynamic flux balance model of yeast fermentation to genome-scale
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-5-75
  contributor:
    fullname: Agosin, E
– volume: 17
  start-page: 170
  year: 2018
  ident: B43
  article-title: The pleiotropic effects of the glutamate dehydrogenase (GDH) pathway in Saccharomyces cerevisiae
  publication-title: Microb Cell Fact
  doi: 10.1186/s12934-018-1018-4
  contributor:
    fullname: Alexandraki, D
– volume: 148
  start-page: 251
  year: 2006
  end-page: 270
  ident: B33
  article-title: Parameter estimation in metabolic flux balance models for batch fermentation—formulation & solution using differential variational inequalities (DVIs)
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-006-0086-8
  contributor:
    fullname: Biegler, LT
– volume: 58
  start-page: 2948
  year: 1992
  end-page: 2953
  ident: B55
  article-title: Molecular monitoring of wine fermentations conducted by active dry yeast strains
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.58.9.2948-2953.1992
  contributor:
    fullname: Ramón, D
– volume: 103
  start-page: 3167
  year: 2019
  end-page: 3179
  ident: B46
  article-title: Understanding lipogenesis by dynamically profiling transcriptional activity of lipogenic promoters in Yarrowia lipolytica
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-019-09664-8
  contributor:
    fullname: Xu, P
– volume: 10
  year: 2014
  ident: B62
  article-title: Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003580
  contributor:
    fullname: Herrgård, M
– volume: 11
  start-page: 1690
  year: 2015
  end-page: 1701
  ident: B37
  article-title: Biomass composition: the “elephant in the room” of metabolic modelling
  publication-title: Metabolomics
  doi: 10.1007/s11306-015-0819-2
  contributor:
    fullname: Oliver, SG
– volume: 65
  start-page: 65
  year: 2020
  end-page: 74
  ident: B8
  article-title: Current state of aromatics production using yeast: achievements and challenges
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2020.01.008
  contributor:
    fullname: Nielsen, J
– volume: 37
  start-page: 403
  year: 2019
  end-page: 409
  ident: B26
  article-title: Advances in 2-phenylethanol production from engineered microorganisms
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2019.02.005
  contributor:
    fullname: Zhuge, B
– volume: 70
  start-page: 3392
  year: 2004
  end-page: 3400
  ident: B36
  article-title: Biomass content governs fermentation rate in nitrogen-deficient wine musts
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.70.6.3392-3400.2004
  contributor:
    fullname: Agosin, E
– volume: 101
  start-page: 465
  year: 2017
  end-page: 474
  ident: B54
  article-title: Metabolically engineered Saccharomyces cerevisiae for enhanced isoamyl alcohol production
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-016-7970-1
  contributor:
    fullname: Ching, C-B
– volume: 142
  start-page: 2299
  year: 1996
  end-page: 2310
  ident: B35
  article-title: Physiological effects of nitrogen starvation in an anaerobic batch culture of Saccharomyces cerevisiae
  publication-title: Microbiology (Reading)
  doi: 10.1099/13500872-142-8-2299
  contributor:
    fullname: Villadsen, J
– volume: 274
  start-page: 546
  year: 1996
  end-page: 567
  ident: B59
  article-title: Life with 6000 genes
  publication-title: Science
  doi: 10.1126/science.274.5287.546
  contributor:
    fullname: Oliver, SG
– volume: 20
  start-page: 1369
  year: 2003
  end-page: 1385
  ident: B45
  article-title: Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation
  publication-title: Yeast
  doi: 10.1002/yea.1046
  contributor:
    fullname: Blondin, B
– volume: 17
  start-page: fox050
  year: 2017
  ident: B13
  article-title: Genome-scale modeling of yeast: chronology, applications and critical perspectives
  publication-title: FEMS Yeast Res
  doi: 10.1093/femsyr/fox050
  contributor:
    fullname: Rocha, I
– volume: 13
  start-page: 109
  year: 2014
  ident: B27
  article-title: Efficient ammonium uptake and mobilization of vacuolar arginine by Saccharomyces cerevisiae wine strains during wine fermentation
  publication-title: Microb Cell Fact
  doi: 10.1186/s12934-014-0109-0
  contributor:
    fullname: Camarasa, C
– volume: 114
  start-page: 1405
  year: 2013
  end-page: 1414
  ident: B20
  article-title: Production of aroma compounds by cryotolerant Saccharomyces species and hybrids at low and moderate fermentation temperatures
  publication-title: J Appl Microbiol
  doi: 10.1111/jam.12126
  contributor:
    fullname: Belloch, C
– volume: 35
  start-page: 100
  year: 2015
  end-page: 109
  ident: B10
  article-title: Genomics and the making of yeast biodiversity
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2015.10.008
  contributor:
    fullname: Kurtzman, CP
– volume: 164
  start-page: 1185
  year: 2016
  end-page: 1197
  ident: B1
  article-title: Engineering cellular metabolism
  publication-title: Cell
  doi: 10.1016/j.cell.2016.02.004
  contributor:
    fullname: Keasling, JD
– volume: 6
  start-page: 1290
  year: 2011
  end-page: 1307
  ident: B69
  article-title: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox v2.0
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2011.308
  contributor:
    fullname: Palsson, BØ
– volume: 85
  start-page: 103287
  year: 2020
  ident: B56
  article-title: Nitrogen sources preferences of non-Saccharomyces yeasts to sustain growth and fermentation under winemaking conditions
  publication-title: Food Microbiol
  doi: 10.1016/j.fm.2019.103287
  contributor:
    fullname: Guillamón, JM
– volume: 97
  start-page: 1190
  year: 2007
  end-page: 1204
  ident: B14
  article-title: Genome‐scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed‐batch culture
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.21332
  contributor:
    fullname: Mahadevan, R
– volume: 43
  start-page: 175
  year: 2009
  end-page: 190
  ident: B70
  article-title: Improved scatter search for the global optimization of computationally expensive dynamic models
  publication-title: J Glob Optim
  doi: 10.1007/s10898-007-9172-y
  contributor:
    fullname: Marti, R
– volume: 77
  start-page: 49
  year: 2002
  end-page: 60
  ident: B28
  article-title: Kinetic model for nitrogen-limited wine fermentations
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.10133
  contributor:
    fullname: Block, DE
– year: 1988
  ident: B67
  publication-title: An introduction to the bootstrap. ;Chapman & Hall ;New York, NY
  contributor:
    fullname: Tibshirani, R
– volume: 13
  start-page: 935
  year: 2017
  ident: B12
  article-title: Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20167411
  contributor:
    fullname: Nielsen, J
– volume: 78
  start-page: 8102
  year: 2012
  end-page: 8111
  ident: B31
  article-title: Sequential use of nitrogen compounds by Saccharomyces cerevisiae during wine fermentation: a model based on kinetic and regulation characteristics of nitrogen permeases
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02294-12
  contributor:
    fullname: Camarasa, C
– volume: 13
  start-page: 85
  year: 2014
  ident: B30
  article-title: Use of chemostat cultures mimicking different phases of wine fermentations as a tool for quantitative physiological analysis
  publication-title: Microb Cell Fact
  doi: 10.1186/1475-2859-13-85
  contributor:
    fullname: Ferrer, P
– volume: 276
  start-page: 244
  year: 2001
  end-page: 250
  ident: B44
  article-title: Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M007103200
  contributor:
    fullname: Moye-Rowley, WS
– volume: 28
  start-page: 245
  year: 2010
  end-page: 248
  ident: B61
  article-title: What is flux balance analysis?
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1614
  contributor:
    fullname: Palsson, BØ
– volume: 25
  start-page: 159
  year: 2014
  end-page: 173
  ident: B16
  article-title: Construction of robust dynamic genome-scale metabolic model structures of Saccharomyces cerevisiae through iterative re-parameterization
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2014.07.004
  contributor:
    fullname: Agosin, E
– volume: 60
  start-page: 3724
  year: 1994
  end-page: 3731
  ident: B60
  article-title: Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.60.10.3724-3731.1994
  contributor:
    fullname: Palsson, BØ
– volume: 252
  start-page: 1
  year: 2017
  end-page: 9
  ident: B23
  article-title: Sensory profile and volatile aroma composition of reduced alcohol merlot wines fermented with Metschnikowia pulcherrima and Saccharomyces uvarum
  publication-title: Int J Food Microbiol
  doi: 10.1016/j.ijfoodmicro.2017.04.002
  contributor:
    fullname: Curtin, C
– volume: 10
  start-page: 264
  year: 2017
  end-page: 278
  ident: B21
  article-title: Yeast’s balancing act between ethanol and glycerol production in low-alcohol wines
  publication-title: Microb Biotechnol
  doi: 10.1111/1751-7915.12488
  contributor:
    fullname: Pretorius, IS
– volume: 73
  start-page: 5363
  year: 2007
  end-page: 5369
  ident: B51
  article-title: Saccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01029-07
  contributor:
    fullname: Pérez-Ortín, JE
– volume: 8
  start-page: 1195
  year: 2020
  ident: B32
  article-title: Curation and analysis of a Saccharomyces cerevisiae genome-scale metabolic model for predicting production of sensory impact molecules under enological conditions
  publication-title: Processes
  doi: 10.3390/pr8091195
  contributor:
    fullname: Block, DE
– volume: 19
  start-page: 16
  year: 2004
  end-page: 25
  ident: B39
  article-title: Succinic acid—how is it formed, what is its effect on titratable acidity, and what factors influence its concentration in wine?
  publication-title: Wine Ind J
  contributor:
    fullname: Pretorius, IS
– volume: 48
  start-page: 77
  year: 2017
  end-page: 84
  ident: B6
  article-title: Exploring the potential of Saccharomyces cerevisiae for biopharmaceutical protein production
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2017.03.017
  contributor:
    fullname: Nielsen, J
– volume: 90
  start-page: 103484
  year: 2020
  ident: B38
  article-title: A time course metabolism comparison among Saccharomyces cerevisiae, S. uvarum and S. kudriavzevii species in wine fermentation
  publication-title: Food Microbiol
  doi: 10.1016/j.fm.2020.103484
  contributor:
    fullname: Querol, A
– volume: 98
  start-page: 986
  year: 2007
  end-page: 998
  ident: B34
  article-title: Coupling kinetic expressions and metabolic networks for predicting wine fermentations
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.21494
  contributor:
    fullname: Agosin, E
– volume: 192
  start-page: 271
  year: 2016
  end-page: 282
  ident: B47
  article-title: Bacterial polyhydroxyalkanoates: still fabulous?
  publication-title: Microbiol Res
  doi: 10.1016/j.micres.2016.07.010
  contributor:
    fullname: Kiewisz, R
– ident: e_1_3_2_59_2
  doi: 10.1093/nar/gkq1268
– ident: e_1_3_2_18_2
  doi: 10.1186/s12918-017-0408-2
– ident: e_1_3_2_6_2
  doi: 10.1111/1462-2920.13617
– ident: e_1_3_2_65_2
  doi: 10.1186/1752-0509-4-11
– volume: 60
  start-page: 508
  year: 2009
  ident: e_1_3_2_42_2
  article-title: Role of γ-aminobutyric acid as a source of nitrogen and succinate in wine
  publication-title: Am J Enol Vit
  doi: 10.5344/ajev.2009.60.4.508
  contributor:
    fullname: Bach B
– ident: e_1_3_2_57_2
  doi: 10.1016/j.fm.2019.103287
– ident: e_1_3_2_9_2
  doi: 10.1016/j.copbio.2020.01.008
– ident: e_1_3_2_11_2
  doi: 10.1016/j.gde.2015.10.008
– ident: e_1_3_2_36_2
  doi: 10.1099/13500872-142-8-2299
– ident: e_1_3_2_19_2
  doi: 10.1038/s41467-019-11581-3
– ident: e_1_3_2_38_2
  doi: 10.1007/s11306-015-0819-2
– ident: e_1_3_2_55_2
  doi: 10.1007/s00253-016-7970-1
– ident: e_1_3_2_22_2
  doi: 10.1111/1751-7915.12488
– ident: e_1_3_2_41_2
  doi: 10.1099/mic.0.26007-0
– ident: e_1_3_2_5_2
  doi: 10.1016/j.ymben.2021.02.004
– ident: e_1_3_2_63_2
  doi: 10.1371/journal.pcbi.1003580
– ident: e_1_3_2_60_2
  doi: 10.1126/science.274.5287.546
– ident: e_1_3_2_32_2
  doi: 10.1128/AEM.02294-12
– ident: e_1_3_2_28_2
  doi: 10.1186/s12934-014-0109-0
– ident: e_1_3_2_23_2
  doi: 10.3389/fmicb.2017.00150
– ident: e_1_3_2_15_2
  doi: 10.1002/bit.21332
– ident: e_1_3_2_12_2
  doi: 10.1038/msb.2009.77
– volume-title: An introduction to the bootstrap.
  year: 1988
  ident: e_1_3_2_68_2
  contributor:
    fullname: Efron B
– ident: e_1_3_2_47_2
  doi: 10.1007/s00253-019-09664-8
– ident: e_1_3_2_46_2
  doi: 10.1002/yea.1046
– ident: e_1_3_2_10_2
  doi: 10.1146/annurev-micro-091213-113025
– ident: e_1_3_2_34_2
  doi: 10.1007/s10479-006-0086-8
– ident: e_1_3_2_2_2
  doi: 10.1016/j.cell.2016.02.004
– ident: e_1_3_2_37_2
  doi: 10.1128/AEM.70.6.3392-3400.2004
– ident: e_1_3_2_7_2
  doi: 10.1016/j.copbio.2017.03.017
– ident: e_1_3_2_8_2
  doi: 10.3390/fermentation4030054
– ident: e_1_3_2_50_2
  doi: 10.20870/oeno-one.2020.54.2.2594
– ident: e_1_3_2_3_2
  doi: 10.1038/s41467-019-12961-5
– ident: e_1_3_2_26_2
  doi: 10.1111/1462-2920.15135
– ident: e_1_3_2_58_2
  doi: 10.3389/fgene.2019.00082
– ident: e_1_3_2_31_2
  doi: 10.1186/1475-2859-13-85
– ident: e_1_3_2_54_2
  doi: 10.1016/B978-0-12-815271-3.00013-0
– ident: e_1_3_2_48_2
  doi: 10.1016/j.micres.2016.07.010
– ident: e_1_3_2_39_2
  doi: 10.1016/j.fm.2020.103484
– ident: e_1_3_2_25_2
  doi: 10.1111/j.1365-2672.2009.04196.x
– ident: e_1_3_2_51_2
  doi: 10.1128/AEM.02617-16
– volume-title: Identification of parametric models from experimental data.
  year: 1997
  ident: e_1_3_2_64_2
  contributor:
    fullname: Walter E
– ident: e_1_3_2_45_2
  doi: 10.1074/jbc.M007103200
– ident: e_1_3_2_14_2
  doi: 10.1093/femsyr/fox050
– ident: e_1_3_2_17_2
  doi: 10.1016/j.ymben.2014.07.004
– ident: e_1_3_2_16_2
  doi: 10.1186/1752-0509-5-75
– ident: e_1_3_2_56_2
  doi: 10.1128/aem.58.9.2948-2953.1992
– ident: e_1_3_2_53_2
  doi: 10.1091/mbc.e03-11-0856
– ident: e_1_3_2_61_2
  doi: 10.1128/aem.60.10.3724-3731.1994
– ident: e_1_3_2_62_2
  doi: 10.1038/nbt.1614
– ident: e_1_3_2_13_2
  doi: 10.15252/msb.20167411
– ident: e_1_3_2_27_2
  doi: 10.1016/j.biotechadv.2019.02.005
– ident: e_1_3_2_72_2
  doi: 10.1016/s0168-1605(01)00552-9
– ident: e_1_3_2_66_2
  doi: 10.1007/BF00058655
– ident: e_1_3_2_29_2
  doi: 10.1002/bit.10133
– ident: e_1_3_2_44_2
  doi: 10.1186/s12934-018-1018-4
– ident: e_1_3_2_20_2
  doi: 10.1038/msb.2010.47
– ident: e_1_3_2_67_2
  doi: 10.1007/978-3-642-21551-3_33
– ident: e_1_3_2_69_2
  doi: 10.1093/bioinformatics/btw411
– ident: e_1_3_2_4_2
  doi: 10.1002/bit.27370
– ident: e_1_3_2_35_2
  doi: 10.1002/bit.21494
– ident: e_1_3_2_43_2
  doi: 10.1002/yea.2962
– ident: e_1_3_2_70_2
  doi: 10.1038/nprot.2011.308
– ident: e_1_3_2_21_2
  doi: 10.1111/jam.12126
– ident: e_1_3_2_71_2
  doi: 10.1007/s10898-007-9172-y
– ident: e_1_3_2_30_2
  doi: 10.1371/journal.pone.0060135
– volume: 19
  start-page: 16
  year: 2004
  ident: e_1_3_2_40_2
  article-title: Succinic acid—how is it formed, what is its effect on titratable acidity, and what factors influence its concentration in wine?
  publication-title: Wine Ind J
  contributor:
    fullname: Coulter AD
– ident: e_1_3_2_24_2
  doi: 10.1016/j.ijfoodmicro.2017.04.002
– ident: e_1_3_2_52_2
  doi: 10.1128/AEM.01029-07
– ident: e_1_3_2_33_2
  doi: 10.3390/pr8091195
– ident: e_1_3_2_49_2
  doi: 10.1093/femsre/fuaa058
– ident: e_1_3_2_42_2
  doi: 10.5344/ajev.2009.60.4.508
SSID ssj0001637129
Score 2.356154
Snippet Yeasts constitute over 1,500 species with great potential for biotechnology. Still, the yeast Saccharomyces cerevisiae dominates industrial applications, and...
Nonconventional yeast species hold the promise to provide novel metabolic routes to produce industrially relevant compounds and tolerate specific stressors,...
Yeasts constitute over 1,500 species with great potential for biotechnology. Still, the yeast Saccharomyces cerevisiae dominates industrial applications, and...
SourceID doaj
pubmedcentral
proquest
crossref
asm2
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0026021
SubjectTerms Research Article
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEA71QPBF_FF1rZYUBEGIvU12k93H1uu1T33wLOhT2CQTroXbLe4dtn-I_6-TZO_oVUEQ3469kA2Zycw3m-T7CHlXYI5p6soxZ6VhBZYMrFalY8p6l9cgSohah2czdf61mpwEmpyN1Fc4E5bogdPEHQp0EG6sN2PfoLP5CrvAbjCPWWUQHcfoO5Z3iqn4dUUKhZls2MbEGHy4GBjAP0YWLRa4QUdNv-Bb-SjS9v8Ja94_MnknB02fkMcDeKRHadBPyQ60z8jDJCd5-5z8PKLxPu31HFNT-tmZqxTR6CRJz9NTaLsFsBnaBtsEHRw6m3c_ejoZpFKW9DO47oYeh0OPFjMbjYJE9FtQ-aFRrx562nmK0JHOGhvubXWLW4w3oe9VTy9bOsV4P1xqanfJxfTky6czNsgusKYs5JJJq3xZugIaKQO9vsNF7uqx4U6CKgHxIaI8bivvGovTXNXGKJmDBOFlbV0uXpBR27XwilApxNiHjTpfiMLXaEdAPFOY3ABHaGMy8j7YQA_rptexJOGVXltLR2tpnmfkw9pM-jrxcPxj4_63xsfB6puGgW87PkAv1IMX6r95YUYO1j6jcX2GTZemhW7VayzZsCIssPjPyMvkQ5tXCZwVXooyI2rLu7bGsv1PezmPHOBYlyvEwq__x-D3yCMeTurEL-VvyGj5fQVvyYPerfbjqvoF0SgpIQ
  priority: 102
  providerName: Directory of Open Access Journals
Title A Multiphase Multiobjective Dynamic Genome-Scale Model Shows Different Redox Balancing among Yeast Species of the Saccharomyces Genus in Fermentation
URI https://www.ncbi.nlm.nih.gov/pubmed/34342535
https://journals.asm.org/doi/10.1128/mSystems.00260-21
https://search.proquest.com/docview/2557534274
https://pubmed.ncbi.nlm.nih.gov/PMC8407324
https://doaj.org/article/36382bcfb0fa488f8d19fd1190c7b118
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZoJSReEHfCYDISEhKS28ZO7ORxW1f2AkIUJHiy4ttaRJxqaTX2Q_i_HDvJtAJPe6tSJ7Fybt-xj8-H0JsMYkxVFoYYzRXJIGUgpcgNEdqZtLQst5Hr8GwpPn4r5qehTU4-nIWJRftarSf-Zz3x61WsrdzUejrUiU0_fTiBpEQAEJiO0Aiw4Y0UPS6scCYgiPU7mOB-p3Xf_HsSG2gRGthhWMZAWwPJ27hqa7oXlWLz_v8hzr8LJ29EosUDdL-HkPiom-pDdMf6R-huRyp59Rj9PsLxVO1mBQGq-9moH51fw_OOgB6_t76pLVmChGBMYMPBy1Vz2eJ5T5iyxZ-taX7h41D6qCG-4UhLhL8Hrh8cWettixuHAUDiZaXD6a2mvgKvE569a_Ha4wV4_f5ok3-Cvi5Ov5yckZ58gVR5xreEa-Hy3GS24jw02Tdg6qacKWq4FbkFlAhYj-rCmUrDFy9KpQRPLbfM8VKblD1FY994-xxhztjMhe06Bx_dlVRpC6gmU6myFACOStDbIAPZW08rY2JCCzkITkbBSZom6N0gJrnpunHccnD7z-DjIPXrgaHrdrzQXJzLXvckA2cFs3dq5ipwfK4AdQaVBkylhYJMLUGvB52RYKVh66Xyttm1EhI3yAszKrIEPet06PpVgyomSOxp195c9v8Bw4idwHtDeHHrOw_QPRqKdOIi-Us03l7s7Cs0as3uMK5OHEbb-gPi1Cpp
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZYEYIX7mPhaiQkJKS0iZ3YyeO2rhSxTYgOCZ6s-EaLlqRaWsF-CP-XYyeZVuCpb1Hi3HRu37GPz4fQmwRiTJFnOtSKyTCBlCHMeapDrqyOc0NT47kOpzN--jUbH7k2OWm_F8YX7Su5GFbn5bBazH1t5bJUo75ObPTp5BCSEg5AYLSDboK9RtG1JN1PrTDKIYx1a5jggEdl1_576FtohcTxw9CEgr46mrdB0ZRkIy759v3_w5x_l05ei0WTe1v-xX10twOfeL-9_ADdMNVDdKulo7x8hH7vY78fdzmH0NYe1vJH6xHxuKWux-9NVZcmnIFsYYzj0cGzef2zweOOamWFPxtd_8IHrmhSQWTEntAIf3MsQdjz3ZsG1xYD9MSzQrl9X3V5Cf7KPXvd4EWFJxAvuk1R1WP0ZXJ0djgNO9qGsEgTtgqZ4jZNdWIKxlx7fg1OQueRJJoZnhrAl4ASicqsLhRIKsul5Cw2zFDLcqVjuosGVV2ZPYQZpZF1C30WhGVzIpUBPJTIWBoC0EgG6K2TnejsrhE-pSGZ6AUuvMAFiQP0rhevWLZ9PLYc3Pwz-MBpy9VA16_bn6gvvotO3oKCm4OvtzKyBbhMm4EhgDEAGlNcQo4XoNe9rgmwb7doU1SmXjcCUj7IKBPCkwA9aXXv6lW9CgeIb2jlxrdsXgFl9D3EO-V7uvWdr9Dt6dnJsTj-cPrxGbpDXKmPn2p_jgari7V5gXYavX7pLfMP_sE--A
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEB7RIBAv3Ic5FwkJCclxvLZ37ce2aSgCqoqABE8r70VS1XZUJ4L-EP4vs2snaoCn8mbFk8TWXN_szs4H8CrFHFMWuQ61YjJMsWQIC57pkCur48IkmfFch4dTfvQ1Hx-4MTkbqi_ftK_kfFifVsN6PvO9lYtKRes-sej44z4WJRyBQLTQNtqBq-izI3qhUPfLKyzhmMr6fUwMwlHVjwAf-jFaIXUcMUmaoM06qrdB2VZ0Kzf5Ef7_wp1_tk9eyEeTW__xJrfhZg9CyW4ncgeumPouXOtoKc_vwa9d4s_lLmaY4rrLRp50kZGMOwp78tbUTWXCKeoYZRyfDpnOmh8tGfeUK0vyyejmJ9lzzZMKMyTxxEbkm2MLIp733rSksQQhKJmWyp3_aqpzjFvut1ctmddkgnmjPxxV34cvk4PP-4dhT98QllnKliFT3GaZTk3JmBvTrzFY6GIkqWaGZwZxJqJFqnKrS4XaygspOYsNM4llhdJx8gAGdVObR0BYkoys2_CzqDBbUKkM4qJUxtJQhEgygNdOf6L3v1b40obmYq104ZUuaBzAm7WKxaKb53FJ4fYv4T1nMRtBN7fbf9CcfRe9zkWC4Q6f3sqRLTF02hwdAp0CUZniEmu9AF6u7U2gn7vNm7I2zaoVWPphZZlSngbwsLO_zV-tzTgAvmWZW8-yfQcN0s8S7w3w8aW_-QKuH48n4sO7o_dP4AZ1HT9-xf0pDJZnK_MMdlq9eu6d8zfhSkF4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multiphase+Multiobjective+Dynamic+Genome-Scale+Model+Shows+Different+Redox+Balancing+among+Yeast+Species+of+the+Saccharomyces+Genus+in+Fermentation&rft.jtitle=mSystems&rft.au=Henriques%2C+David&rft.au=Minebois%2C+Romain&rft.au=Mendoza%2C+Sebasti%C3%A1n+N&rft.au=Mac%C3%ADas%2C+Laura+G&rft.date=2021-08-31&rft.issn=2379-5077&rft.eissn=2379-5077&rft.volume=6&rft.issue=4&rft.spage=e0026021&rft.epage=e0026021&rft_id=info:doi/10.1128%2FmSystems.00260-21&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-5077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-5077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-5077&client=summon