Enhancement of Electrocatalytic Oxygen Reduction Activity and Durability of Pt–Ni Rhombic Dodecahedral Nanoframes by Anchoring to Nitrogen-Doped Carbon Support

Pt-based nanostructured electrocatalysts supported on carbon black have been widely studied for the oxygen reduction reaction (ORR), which occurs at the cathode in polymer electrolyte fuel cells. Because sluggish ORR kinetics are known to govern the cell performance, there is a need to develop highl...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega Vol. 3; no. 8; pp. 9052 - 9059
Main Authors: Kato, Masaru, Ogura, Kazuya, Nakagawa, Shogo, Tokuda, Shoichi, Takahashi, Kiyonori, Nakamura, Takayoshi, Yagi, Ichizo
Format: Journal Article
Language:English
Published: United States American Chemical Society 31-08-2018
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pt-based nanostructured electrocatalysts supported on carbon black have been widely studied for the oxygen reduction reaction (ORR), which occurs at the cathode in polymer electrolyte fuel cells. Because sluggish ORR kinetics are known to govern the cell performance, there is a need to develop highly active and durable electrocatalysts. The ORR activity of Pt-based electrocatalysts can be improved by controlling their morphology and alloying Pt with transition metals such as Ni. Improving the catalyst durability remains challenging and there is a lack of catalyst design concepts and synthetic strategies. We report the enhancement of the ORR activity and durability of a nanostructured Pt–Ni electrocatalyst by strong metal/support interactions with a nitrogen-doped carbon (NC) support. Pt–Ni rhombic dodecahedral nanoframes (NFs) were immobilized on the NC support and showed higher ORR electrocatalytic activity and durability in acidic media than that supported on a nondoped carbon black. Durability tests demonstrated that NF/NC showed almost no activity loss even after 50 000 potential cycles under catalytic conditions, and the Ni dissolution from the NFs was suppressed at the NC support, as confirmed by energy dispersive X-ray spectroscopy analysis. Physicochemical measurements including surface-enhanced infrared absorption spectroscopy of surface-adsorbed CO revealed that the strong metal/support interactions of the NF with the NC support caused the downshift of the d-band center position of the surface Pt. Our findings demonstrate that tuning the electronic structure of nanostructured Pt alloy electrocatalysts via the strong metal/support interactions with heteroatom-doped carbon supports will allow the development of highly active and robust electrocatalysts.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.8b01373