Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology
We describe a model for predicting the size‐resolved distribution of atmospheric dust for climate and chemistry‐related studies. The dust distribution from 1990 to 1999 is simulated with our mineral aerosol entrainment and deposition module embedded in a chemical transport model. Mobilization proces...
Saved in:
Published in: | Journal of Geophysical Research - Atmospheres Vol. 108; no. D14; pp. 4416 - n/a |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
American Geophysical Union
27-07-2003
Blackwell Publishing Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We describe a model for predicting the size‐resolved distribution of atmospheric dust for climate and chemistry‐related studies. The dust distribution from 1990 to 1999 is simulated with our mineral aerosol entrainment and deposition module embedded in a chemical transport model. Mobilization processes include entrainment thresholds for saltation, moisture inhibition, drag partitioning, and saltation feedback. For mobilization we assume that soil texture is globally uniform and is replete with saltators. Soil erodibility is prescribed by a new physically based geomorphic index that is proportional to the runoff area upstream of each source region. Dry deposition processes include sedimentation and turbulent mix‐out. Nucleation scavenging and size‐resolved washout in both stratiform and convective cloud types are represented. Simulations of the 1990s broadly agree with station observations and satellite‐inferred dust distributions. Without invoking anthropogenic mechanisms the model captures the seasonal migration of the transatlantic African dust plume, and it captures the spring maximum in Asian dust outflow and concentration over the Pacific. We estimate the 1990s global annual mean and variability of D < 10 μm dust to be the following: emissions, 1490 ± 160 Tg yr−1; burden, 17 ± 2 Tg; and optical depth at 0.63 μm, 0.030 ± 0.004. This emission, burden, and optical depth are significantly lower than some recent estimates. The model underestimates transport and deposition of East Asian and Australian dust to some regions of the Pacific Ocean. An underestimate of long‐range transport of particles larger than 3 μm contributes to this bias. Our experiments support the hypothesis that dust emission “hot spots” exist in regions where alluvial sediments have accumulated and may be disturbed. |
---|---|
AbstractList | We describe a model for predicting the size-resolved distribution of atmospheric dust for climate and chemistry-related studies. The dust distribution from 1990 to 1999 is simulated with our mineral aerosol entrainment and deposition module embedded in a chemical transport model. Mobilization processes include entrainment thresholds for saltation, moisture inhibition, drag partitioning, and saltation feedback. For mobilization we assume that soil texture is globally uniform and is replete with saltators. Soil erodibility is prescribed by a new physically based geomorphic index that is proportional to the runoff area upstream of each source region. Dry deposition processes include sedimentation and turbulent mix-out. Nucleation scavenging and size-resolved washout in both stratiform and convective cloud types are represented. Simulations of the 1990s broadly agree with station observations and satellite- inferred dust distributions. Without invoking anthropogenic mechanisms the model captures the seasonal migration of the transatlantic African dust plume, and it captures the spring maximum in Asian dust outflow and concentration over the Pacific. We estimate the 1990s global annual mean and variability of D < 10 mu m dust to be the following: emissions, 1490 plus or minus 160 Tg yr super(-1); burden, 17 plus or minus 2 Tg; and optical depth at 0.63 mu m, 0.030 plus or minus 0.004. This emission, burden, and optical depth are significantly lower than some recent estimates. The model underestimates transport and deposition of East Asian and Australian dust to some regions of the Pacific Ocean. An underestimate of long-range transport of particles larger than 3 mu m contributes to this bias. Our experiments support the hypothesis that dust emission 'hot spots' exist in regions where alluvial sediments have accumulated and may be disturbed. We describe a model for predicting the size‐resolved distribution of atmospheric dust for climate and chemistry‐related studies. The dust distribution from 1990 to 1999 is simulated with our mineral aerosol entrainment and deposition module embedded in a chemical transport model. Mobilization processes include entrainment thresholds for saltation, moisture inhibition, drag partitioning, and saltation feedback. For mobilization we assume that soil texture is globally uniform and is replete with saltators. Soil erodibility is prescribed by a new physically based geomorphic index that is proportional to the runoff area upstream of each source region. Dry deposition processes include sedimentation and turbulent mix‐out. Nucleation scavenging and size‐resolved washout in both stratiform and convective cloud types are represented. Simulations of the 1990s broadly agree with station observations and satellite‐inferred dust distributions. Without invoking anthropogenic mechanisms the model captures the seasonal migration of the transatlantic African dust plume, and it captures the spring maximum in Asian dust outflow and concentration over the Pacific. We estimate the 1990s global annual mean and variability of D < 10 μm dust to be the following: emissions, 1490 ± 160 Tg yr −1 ; burden, 17 ± 2 Tg; and optical depth at 0.63 μm, 0.030 ± 0.004. This emission, burden, and optical depth are significantly lower than some recent estimates. The model underestimates transport and deposition of East Asian and Australian dust to some regions of the Pacific Ocean. An underestimate of long‐range transport of particles larger than 3 μm contributes to this bias. Our experiments support the hypothesis that dust emission “hot spots” exist in regions where alluvial sediments have accumulated and may be disturbed. We describe a model for predicting the size‐resolved distribution of atmospheric dust for climate and chemistry‐related studies. The dust distribution from 1990 to 1999 is simulated with our mineral aerosol entrainment and deposition module embedded in a chemical transport model. Mobilization processes include entrainment thresholds for saltation, moisture inhibition, drag partitioning, and saltation feedback. For mobilization we assume that soil texture is globally uniform and is replete with saltators. Soil erodibility is prescribed by a new physically based geomorphic index that is proportional to the runoff area upstream of each source region. Dry deposition processes include sedimentation and turbulent mix‐out. Nucleation scavenging and size‐resolved washout in both stratiform and convective cloud types are represented. Simulations of the 1990s broadly agree with station observations and satellite‐inferred dust distributions. Without invoking anthropogenic mechanisms the model captures the seasonal migration of the transatlantic African dust plume, and it captures the spring maximum in Asian dust outflow and concentration over the Pacific. We estimate the 1990s global annual mean and variability of D < 10 μm dust to be the following: emissions, 1490 ± 160 Tg yr−1; burden, 17 ± 2 Tg; and optical depth at 0.63 μm, 0.030 ± 0.004. This emission, burden, and optical depth are significantly lower than some recent estimates. The model underestimates transport and deposition of East Asian and Australian dust to some regions of the Pacific Ocean. An underestimate of long‐range transport of particles larger than 3 μm contributes to this bias. Our experiments support the hypothesis that dust emission “hot spots” exist in regions where alluvial sediments have accumulated and may be disturbed. |
Author | Bian, Huisheng Newman, David Zender, Charles S. |
Author_xml | – sequence: 1 givenname: Charles S. surname: Zender fullname: Zender, Charles S. email: zender@uci.edu organization: Department of Earth System Science, University of California at Irvine, California, Irvine, USA – sequence: 2 givenname: Huisheng surname: Bian fullname: Bian, Huisheng organization: Department of Earth System Science, University of California at Irvine, California, Irvine, USA – sequence: 3 givenname: David surname: Newman fullname: Newman, David organization: Department of Earth System Science, University of California at Irvine, California, Irvine, USA |
BookMark | eNp90M9P2zAUB3ALMWml47Y7OU0gLZv97DjuboiUsq7lxzRAmiZZTuIgQ2J3dqrR_x6XTIhd5sPz4X3e01dvD-1aZzVC7wn-RDBMPgPGMC9iyfNsB42AZDwFwLCLRpgwkWKA_C3aD-Eex8cyzjAZoV9LY7VXbVKsQ59Mbe-VsZ22faJsnRR65YLpjbPJYTE9Lo6SztW6_RIbofJm9dzZQjKZ4JDU2x1VazrVu9bdbd6hN41qg97_-4_R9en0x8lZuriYfT05XqQqY5inRFUKyloQljUi5hcMBOQlEC2qPAcQVJR1zmgDrNSKixidc0GrDCo6KQmjY_Rh2Lvy7vdah152JlS6bZXVbh0k4SSjXJAIPw6w8i4Erxu58jGt30iC5faK8vUVI6cD_2NavfmvlfPZ94JggnmcSocpE3r9-DKl_IPkOY309nwmfy6_UXp-eSVvoj8YvLpbv-h_cjwBpdKKxg |
CitedBy_id | crossref_primary_10_5194_acp_23_10677_2023 crossref_primary_10_1007_s11270_015_2481_8 crossref_primary_10_1029_2018MS001287 crossref_primary_10_5194_acp_23_9993_2023 crossref_primary_10_5194_gmd_15_8181_2022 crossref_primary_10_1016_j_atmosenv_2015_05_046 crossref_primary_10_1029_2019GL086867 crossref_primary_10_5194_acp_22_2095_2022 crossref_primary_10_1029_2003JD004381 crossref_primary_10_1007_s00382_019_04925_8 crossref_primary_10_1525_elementa_185 crossref_primary_10_1016_j_atmosenv_2007_04_047 crossref_primary_10_5194_acp_18_4201_2018 crossref_primary_10_1016_j_earscirev_2016_01_006 crossref_primary_10_5194_acp_16_12667_2016 crossref_primary_10_5194_acp_24_1193_2024 crossref_primary_10_1016_j_aeolia_2016_05_003 crossref_primary_10_1017_S1089332600002977 crossref_primary_10_1016_j_fmre_2024_02_004 crossref_primary_10_1021_acs_est_1c04779 crossref_primary_10_5194_acp_10_6409_2010 crossref_primary_10_1007_s12517_014_1730_2 crossref_primary_10_1007_s13143_013_0009_y crossref_primary_10_1021_la0487343 crossref_primary_10_1029_2007GL030262 crossref_primary_10_5194_gmd_13_2879_2020 crossref_primary_10_1016_j_atmosenv_2006_09_048 crossref_primary_10_5194_acp_18_16253_2018 crossref_primary_10_1029_2005GB002541 crossref_primary_10_1007_s12040_014_0466_4 crossref_primary_10_1016_j_atmosenv_2018_03_025 crossref_primary_10_1029_2019JD031807 crossref_primary_10_1016_j_atmosenv_2013_01_013 crossref_primary_10_1021_ac3017373 crossref_primary_10_1029_2018GL079376 crossref_primary_10_5194_acp_23_13911_2023 crossref_primary_10_1029_2020EA001392 crossref_primary_10_1016_j_atmosenv_2019_116883 crossref_primary_10_5194_gmd_9_607_2016 crossref_primary_10_1175_1520_0442_2003_016_3617_TROEWO_2_0_CO_2 crossref_primary_10_1029_2005JD006832 crossref_primary_10_5194_acp_22_14489_2022 crossref_primary_10_3390_ijerph18126587 crossref_primary_10_1016_j_palaeo_2020_109728 crossref_primary_10_1029_2021MS002909 crossref_primary_10_3389_feart_2020_00226 crossref_primary_10_1029_2006JD007444 crossref_primary_10_1029_2006JD007443 crossref_primary_10_1007_s00382_008_0464_9 crossref_primary_10_1029_2005JD006850 crossref_primary_10_1016_j_jclepro_2024_142493 crossref_primary_10_1029_2022RG000796 crossref_primary_10_1029_2008JD010476 crossref_primary_10_5194_acp_10_8649_2010 crossref_primary_10_1016_j_catena_2021_105160 crossref_primary_10_1029_2018GL081225 crossref_primary_10_1029_2005JD006847 crossref_primary_10_3390_atmos15050531 crossref_primary_10_1016_j_atmosenv_2018_11_063 crossref_primary_10_1029_2007JD008427 crossref_primary_10_1038_s41467_018_03997_0 crossref_primary_10_1029_2007JD008443 crossref_primary_10_5194_gmd_14_7673_2021 crossref_primary_10_1016_j_aeolia_2011_02_001 crossref_primary_10_1002_2016JD025939 crossref_primary_10_1016_j_aeolia_2011_02_002 crossref_primary_10_1016_j_marchem_2012_07_006 crossref_primary_10_3390_atmos12070872 crossref_primary_10_1016_j_aeolia_2014_02_002 crossref_primary_10_5194_acp_20_12939_2020 crossref_primary_10_1073_pnas_2001674117 crossref_primary_10_1016_j_atmosenv_2018_05_060 crossref_primary_10_5194_gmd_16_5339_2023 crossref_primary_10_1175_JCLI_D_20_0803_1 crossref_primary_10_1007_s13143_022_00281_6 crossref_primary_10_5194_acp_16_1491_2016 crossref_primary_10_2151_sola_2017_006 crossref_primary_10_1016_j_aeolia_2016_12_002 crossref_primary_10_1029_2008JD011541 crossref_primary_10_3402_tellusb_v67_27170 crossref_primary_10_1016_j_aeolia_2016_12_005 crossref_primary_10_5194_acp_9_1095_2009 crossref_primary_10_1029_2003JD004374 crossref_primary_10_1155_2012_850704 crossref_primary_10_5194_acp_13_10733_2013 crossref_primary_10_5194_acp_22_9583_2022 crossref_primary_10_5194_amt_8_3577_2015 crossref_primary_10_1029_2019GL084211 crossref_primary_10_1016_j_jqsrt_2009_04_004 crossref_primary_10_1029_2006GL027771 crossref_primary_10_1029_2006GL028623 crossref_primary_10_5194_acp_21_8111_2021 crossref_primary_10_1175_2009JTECHA1231_1 crossref_primary_10_1029_2020JD032807 crossref_primary_10_1016_j_aeolia_2018_07_004 crossref_primary_10_5194_acp_15_11117_2015 crossref_primary_10_1038_ncomms15333 crossref_primary_10_1016_j_scitotenv_2010_09_025 crossref_primary_10_5194_gmd_8_3999_2015 crossref_primary_10_1029_2012JD017611 crossref_primary_10_1016_j_aeolia_2021_100769 crossref_primary_10_1007_s11027_023_10070_9 crossref_primary_10_5194_acp_20_10545_2020 crossref_primary_10_1016_j_atmosres_2019_104812 crossref_primary_10_5194_acp_11_13001_2011 crossref_primary_10_1002_jgrd_50842 crossref_primary_10_5194_acp_16_6771_2016 crossref_primary_10_1016_j_aeolia_2015_09_004 crossref_primary_10_5194_acp_14_13043_2014 crossref_primary_10_1016_j_aeolia_2013_09_002 crossref_primary_10_1016_j_jaridenv_2005_06_029 crossref_primary_10_1016_j_atmosres_2012_12_013 crossref_primary_10_1029_2006JG000334 crossref_primary_10_1007_s13143_013_0027_9 crossref_primary_10_1002_2016JD025333 crossref_primary_10_1002_joc_3909 crossref_primary_10_1038_s41561_023_01254_8 crossref_primary_10_1016_j_atmosenv_2023_119584 crossref_primary_10_5194_acp_12_1_2012 crossref_primary_10_1002_qj_736 crossref_primary_10_1016_j_aeolia_2016_11_001 crossref_primary_10_3390_ijerph15040736 crossref_primary_10_1007_s13351_014_3296_z crossref_primary_10_1016_j_geomorph_2007_12_014 crossref_primary_10_1002_qj_719 crossref_primary_10_5194_gmd_14_5789_2021 crossref_primary_10_1029_2007JD009741 crossref_primary_10_3390_app10134536 crossref_primary_10_1029_2020PA004046 crossref_primary_10_1126_sciadv_abe6102 crossref_primary_10_1016_j_scitotenv_2021_149307 crossref_primary_10_3390_land11020176 crossref_primary_10_1016_j_atmosres_2020_105364 crossref_primary_10_1029_2012MS000150 crossref_primary_10_1002_esp_4714 crossref_primary_10_1175_2009JCLI2847_1 crossref_primary_10_1029_2020MS002346 crossref_primary_10_5194_acp_13_3777_2013 crossref_primary_10_1016_j_atmosenv_2015_07_022 crossref_primary_10_5194_gmd_17_3507_2024 crossref_primary_10_1016_j_atmosenv_2015_07_023 crossref_primary_10_1029_2019JD030799 crossref_primary_10_1029_2020GL088978 crossref_primary_10_1029_2002JD003143 crossref_primary_10_1029_2020JD033942 crossref_primary_10_1002_2014JD022646 crossref_primary_10_1016_j_gloplacha_2006_07_024 crossref_primary_10_5194_gmd_13_3817_2020 crossref_primary_10_1029_2004JD004912 crossref_primary_10_5194_acp_12_11199_2012 crossref_primary_10_5194_bg_15_6659_2018 crossref_primary_10_1016_j_still_2023_105910 crossref_primary_10_1007_s11157_012_9282_y crossref_primary_10_1029_2019JD030967 crossref_primary_10_1002_2017GL072584 crossref_primary_10_5194_acp_12_10209_2012 crossref_primary_10_5194_acp_10_8821_2010 crossref_primary_10_1002_2017JD026780 crossref_primary_10_1088_1748_9326_ac31ec crossref_primary_10_3390_land11060819 crossref_primary_10_1029_2005JD005907 crossref_primary_10_1029_2019JD030961 crossref_primary_10_1007_s00376_009_8170_z crossref_primary_10_1016_j_earscirev_2016_12_010 crossref_primary_10_1029_2020JF005545 crossref_primary_10_1007_s40333_018_0100_4 crossref_primary_10_1175_JCLI_D_12_00029_1 crossref_primary_10_1175_JCLI4056_1 crossref_primary_10_1029_2008GB003240 crossref_primary_10_1016_j_apr_2019_01_008 crossref_primary_10_5194_acp_21_10295_2021 crossref_primary_10_1080_02786826_2021_1888866 crossref_primary_10_1002_2015JD024713 crossref_primary_10_5194_gmd_12_3835_2019 crossref_primary_10_1029_2006JD007832 crossref_primary_10_1007_s40333_022_0066_0 crossref_primary_10_5194_acp_12_10857_2012 crossref_primary_10_1007_s00382_023_06706_w crossref_primary_10_5194_gmd_4_85_2011 crossref_primary_10_1007_s00376_009_9023_5 crossref_primary_10_3390_atmos10120790 crossref_primary_10_1002_qj_770 crossref_primary_10_5194_acp_22_2909_2022 crossref_primary_10_1007_s13351_017_6142_2 crossref_primary_10_5194_acp_18_10615_2018 crossref_primary_10_2139_ssrn_2603176 crossref_primary_10_5194_acp_19_2947_2019 crossref_primary_10_1029_2006JD007801 crossref_primary_10_1016_j_scitotenv_2021_149980 crossref_primary_10_5194_gmd_11_1929_2018 crossref_primary_10_1016_j_atmosenv_2017_09_008 crossref_primary_10_1016_j_marchem_2008_08_003 crossref_primary_10_5194_bg_12_5771_2015 crossref_primary_10_5194_acp_11_3263_2011 crossref_primary_10_1016_j_aeolia_2019_100560 crossref_primary_10_5194_acp_14_2245_2014 crossref_primary_10_1016_j_atmosenv_2020_117771 crossref_primary_10_1002_2017JD027642 crossref_primary_10_1029_2008JD009871 crossref_primary_10_5194_acp_10_3999_2010 crossref_primary_10_5194_acp_24_4265_2024 crossref_primary_10_1029_2007GL029971 crossref_primary_10_5194_bg_16_1525_2019 crossref_primary_10_1016_j_quascirev_2010_09_007 crossref_primary_10_1002_esp_5312 crossref_primary_10_1175_JCLI_D_16_0776_1 crossref_primary_10_5194_cp_17_1091_2021 crossref_primary_10_1016_j_aeolia_2015_07_009 crossref_primary_10_5194_acp_8_6907_2008 crossref_primary_10_1007_s10653_015_9685_0 crossref_primary_10_1002_2015JD023282 crossref_primary_10_1016_j_scitotenv_2023_162335 crossref_primary_10_1016_j_atmosenv_2022_119446 crossref_primary_10_5194_acp_11_1255_2011 crossref_primary_10_3390_geosciences11110458 crossref_primary_10_1029_2020MS002413 crossref_primary_10_5194_acp_20_13835_2020 crossref_primary_10_1016_j_atmosres_2011_07_012 crossref_primary_10_1029_2019JD030248 crossref_primary_10_1007_s12665_016_5403_1 crossref_primary_10_1029_2008JD010956 crossref_primary_10_1016_j_atmosres_2013_11_007 crossref_primary_10_5194_acp_17_769_2017 crossref_primary_10_1029_2008JD010952 crossref_primary_10_1029_2021JD034564 crossref_primary_10_1002_jgrd_50685 crossref_primary_10_1002_2013JD020997 crossref_primary_10_1002_2013JD020996 crossref_primary_10_5194_gmd_13_3241_2020 crossref_primary_10_1016_j_atmosres_2020_105302 crossref_primary_10_1039_D1EA00101A crossref_primary_10_1029_2004JD004574 crossref_primary_10_1029_2009JD012995 crossref_primary_10_1029_2020GL089688 crossref_primary_10_5194_acp_15_12231_2015 crossref_primary_10_1175_2007JCLI1766_1 crossref_primary_10_1029_2008JD009955 crossref_primary_10_3390_cli3030627 crossref_primary_10_1016_j_aeolia_2016_02_002 crossref_primary_10_1029_2010JD014709 crossref_primary_10_5194_gmd_14_5487_2021 crossref_primary_10_2151_jmsj_83A_255 crossref_primary_10_5194_gmd_11_4909_2018 crossref_primary_10_1016_j_jaridenv_2014_11_002 crossref_primary_10_5194_acp_14_4749_2014 crossref_primary_10_5572_KOSAE_2009_25_6_539 crossref_primary_10_1029_2021GB007184 crossref_primary_10_1017_S0016774600001566 crossref_primary_10_5194_acp_13_3547_2013 crossref_primary_10_1002_jgrf_20040 crossref_primary_10_1080_16742834_2015_1126154 crossref_primary_10_1007_s00703_015_0390_4 crossref_primary_10_1016_j_gloplacha_2006_03_001 crossref_primary_10_1016_j_atmosenv_2016_12_035 crossref_primary_10_1029_2011GL050455 crossref_primary_10_1038_s43247_023_00825_2 crossref_primary_10_3390_s19245530 crossref_primary_10_5194_acp_22_8989_2022 crossref_primary_10_1029_2023JD040058 crossref_primary_10_1029_2020MS002456 crossref_primary_10_1016_j_atmosenv_2009_03_054 crossref_primary_10_1029_2020GB006787 crossref_primary_10_5194_bg_5_631_2008 crossref_primary_10_1016_j_geoderma_2024_116958 crossref_primary_10_5194_amt_9_1113_2016 crossref_primary_10_1029_2007GC001813 crossref_primary_10_1029_2018JF004713 crossref_primary_10_1029_2008JD009923 crossref_primary_10_1002_esp_3321 crossref_primary_10_1002_2016GL067911 crossref_primary_10_1029_2005JD006059 crossref_primary_10_1002_2014JD022471 crossref_primary_10_5194_gmd_14_6403_2021 crossref_primary_10_1029_2023MS003636 crossref_primary_10_1016_j_scitotenv_2023_163452 crossref_primary_10_5194_acp_16_8227_2016 crossref_primary_10_1016_j_epsl_2007_02_033 crossref_primary_10_1038_ngeo2912 crossref_primary_10_1007_s10653_018_0203_z crossref_primary_10_1016_j_earscirev_2008_03_001 crossref_primary_10_1029_2021JF006073 crossref_primary_10_1029_2020MS002431 crossref_primary_10_5194_acp_19_523_2019 crossref_primary_10_1016_j_quaint_2010_11_009 crossref_primary_10_1002_2016MS000723 crossref_primary_10_1007_s00704_012_0760_5 crossref_primary_10_1007_s11270_024_07018_3 crossref_primary_10_5194_amt_14_309_2021 crossref_primary_10_1038_s41612_022_00250_w crossref_primary_10_1016_j_aeolia_2012_10_010 crossref_primary_10_1360_TB_2022_0476 crossref_primary_10_5194_acp_22_12873_2022 crossref_primary_10_1016_j_atmosenv_2022_119234 crossref_primary_10_1029_2019JD030470 crossref_primary_10_5194_acp_12_7903_2012 crossref_primary_10_5194_gmd_9_3199_2016 crossref_primary_10_1029_2021JD035629 crossref_primary_10_1002_qj_927 crossref_primary_10_5194_acp_18_12551_2018 crossref_primary_10_1029_2019GB006513 crossref_primary_10_5194_acp_11_11521_2011 crossref_primary_10_5194_acp_20_10401_2020 crossref_primary_10_5194_acp_21_57_2021 crossref_primary_10_1016_j_gloplacha_2006_02_002 crossref_primary_10_1002_jgrd_50036 crossref_primary_10_1016_j_chemosphere_2015_03_037 crossref_primary_10_1016_j_geoderma_2012_06_019 crossref_primary_10_1016_j_gloplacha_2006_02_005 crossref_primary_10_5194_acp_24_4105_2024 crossref_primary_10_1029_2010JD014527 crossref_primary_10_1007_s12517_019_4580_0 crossref_primary_10_1007_s00382_020_05307_1 crossref_primary_10_1029_2023JD038584 crossref_primary_10_5194_acp_12_2933_2012 crossref_primary_10_1002_2017GL076353 crossref_primary_10_1016_j_atmosenv_2017_06_015 crossref_primary_10_1016_j_jmarsys_2008_05_015 crossref_primary_10_1126_sciadv_adg3715 crossref_primary_10_1029_2005JD006653 crossref_primary_10_1007_s00382_019_04944_5 crossref_primary_10_1029_2007JF000758 crossref_primary_10_5194_acp_17_3253_2017 crossref_primary_10_1016_j_palaeo_2015_05_028 crossref_primary_10_1029_2009JD013682 crossref_primary_10_5194_gmd_14_3741_2021 crossref_primary_10_1016_j_jaridenv_2021_104637 crossref_primary_10_1029_2009JD013207 crossref_primary_10_1038_s41598_017_05431_9 crossref_primary_10_1002_2017JD027267 crossref_primary_10_5194_acp_21_17433_2021 crossref_primary_10_1029_2003GL017880 crossref_primary_10_1029_2018GL077346 crossref_primary_10_1016_j_epsl_2010_04_010 crossref_primary_10_1029_2009JD012390 crossref_primary_10_1029_2006JD007690 crossref_primary_10_1007_s11869_016_0420_5 crossref_primary_10_1016_j_apr_2023_101953 crossref_primary_10_1002_2014EF000290 crossref_primary_10_5194_acp_6_5143_2006 crossref_primary_10_1029_2019MS001766 crossref_primary_10_1016_j_earscirev_2009_12_001 crossref_primary_10_1088_1748_9326_abc718 crossref_primary_10_5194_acp_15_12011_2015 crossref_primary_10_1016_j_envsoft_2008_06_006 crossref_primary_10_5194_acp_21_3973_2021 crossref_primary_10_1029_2003JD004456 crossref_primary_10_1002_grl_50409 crossref_primary_10_1029_2006GL025827 crossref_primary_10_1016_j_atmosenv_2021_118689 crossref_primary_10_1029_2022JD036457 crossref_primary_10_1016_j_atmosenv_2008_08_037 crossref_primary_10_1007_s11069_022_05722_z crossref_primary_10_1029_2023JD039479 crossref_primary_10_1029_2019GL085739 crossref_primary_10_5194_acp_11_11689_2011 crossref_primary_10_1029_2008JD011180 crossref_primary_10_5194_acp_14_1239_2014 crossref_primary_10_5194_acp_8_3473_2008 crossref_primary_10_1016_j_atmosres_2020_104892 crossref_primary_10_1029_2003GL018501 crossref_primary_10_1016_j_atmosenv_2012_06_029 crossref_primary_10_1007_s00382_015_2600_7 crossref_primary_10_1029_2012GB004301 crossref_primary_10_1029_2019JD032233 crossref_primary_10_1029_2018GL081861 crossref_primary_10_1029_2019JD031388 crossref_primary_10_1029_2006JD008344 crossref_primary_10_1016_j_atmosenv_2017_04_010 crossref_primary_10_1029_2020JD034459 crossref_primary_10_1016_j_powtec_2021_08_071 crossref_primary_10_5194_acp_21_2745_2021 crossref_primary_10_1029_2004JD005674 crossref_primary_10_1016_j_rse_2006_09_009 crossref_primary_10_1016_j_foreco_2011_12_005 crossref_primary_10_1038_s41467_017_02774_9 crossref_primary_10_1016_j_atmosenv_2008_09_069 crossref_primary_10_1016_j_scitotenv_2021_149189 crossref_primary_10_1016_j_gloplacha_2006_02_011 crossref_primary_10_5194_acp_11_6049_2011 crossref_primary_10_1175_JAS_D_18_0287_1 crossref_primary_10_5194_acp_20_55_2020 crossref_primary_10_1016_j_atmosenv_2021_118241 crossref_primary_10_1002_2014JD022062 crossref_primary_10_1029_2019MS001737 crossref_primary_10_1029_2017JD028125 crossref_primary_10_1175_2008JCLI2116_1 crossref_primary_10_1016_j_jaridenv_2015_01_008 crossref_primary_10_1038_s41598_017_09458_w crossref_primary_10_5194_acp_14_10411_2014 crossref_primary_10_5194_gmd_17_1387_2024 crossref_primary_10_1175_MWR_D_18_0103_1 crossref_primary_10_5194_acp_22_6393_2022 crossref_primary_10_1016_j_atmosenv_2011_06_078 crossref_primary_10_1088_1755_1307_7_1_012018 crossref_primary_10_1016_j_rse_2023_113982 crossref_primary_10_1039_C3EM00641G crossref_primary_10_1016_j_atmosenv_2019_05_042 crossref_primary_10_1029_2006JD007988 crossref_primary_10_1016_j_jaerosci_2020_105634 crossref_primary_10_1175_JCLI_D_18_0742_1 crossref_primary_10_1029_2020JD034263 crossref_primary_10_1088_1755_1307_7_1_012012 crossref_primary_10_1029_2008JD010154 crossref_primary_10_1029_2021JD035093 crossref_primary_10_1002_grl_50143 crossref_primary_10_5194_acp_22_7207_2022 crossref_primary_10_1029_2018JD029095 crossref_primary_10_1016_j_atmosenv_2019_04_017 crossref_primary_10_1029_2010JD014155 crossref_primary_10_1029_2022JD036955 crossref_primary_10_1002_grl_50591 crossref_primary_10_5194_acp_11_479_2011 crossref_primary_10_5194_gmd_3_43_2010 crossref_primary_10_1029_2008JD011236 crossref_primary_10_1038_s41467_022_29468_1 crossref_primary_10_5194_acp_16_10809_2016 crossref_primary_10_1016_j_scitotenv_2020_139174 crossref_primary_10_1016_j_aeolia_2018_01_008 crossref_primary_10_1016_j_aeolia_2018_10_003 crossref_primary_10_1029_2005JD006937 crossref_primary_10_5194_acp_17_7193_2017 crossref_primary_10_5194_acp_22_8639_2022 crossref_primary_10_5194_acp_7_3309_2007 crossref_primary_10_5194_acp_23_4149_2023 crossref_primary_10_5194_acp_23_6487_2023 crossref_primary_10_1016_j_atmosenv_2011_05_023 crossref_primary_10_1029_2004JD005082 crossref_primary_10_1039_D1EA00081K crossref_primary_10_1029_2019JD030836 crossref_primary_10_21443_1560_9278_2022_25_1_61_73 crossref_primary_10_5194_acp_14_13023_2014 crossref_primary_10_1029_2017MS001219 crossref_primary_10_1016_j_atmosenv_2023_120044 crossref_primary_10_1007_s11707_016_0561_8 crossref_primary_10_5194_bg_6_779_2009 crossref_primary_10_1029_2021MS002845 crossref_primary_10_1002_2016JD024758 crossref_primary_10_1029_2012JD017907 crossref_primary_10_1021_jp910045u crossref_primary_10_3390_rs11010004 crossref_primary_10_5194_acp_13_7097_2013 crossref_primary_10_1016_j_scitotenv_2023_162808 crossref_primary_10_1002_2013JD021099 crossref_primary_10_1016_j_atmosenv_2016_06_041 crossref_primary_10_1029_2003JD004222 crossref_primary_10_1002_esp_1719 crossref_primary_10_1029_2005JD006717 crossref_primary_10_5194_gmd_11_989_2018 crossref_primary_10_1029_2021RG000762 crossref_primary_10_1175_JCLI3605_1 crossref_primary_10_1007_s10546_016_0140_2 crossref_primary_10_5194_acp_21_1889_2021 crossref_primary_10_1016_j_marchem_2008_11_002 crossref_primary_10_1016_j_orggeochem_2014_07_004 crossref_primary_10_5194_acp_6_4687_2006 crossref_primary_10_1029_2022GL102470 crossref_primary_10_5194_acp_21_17665_2021 crossref_primary_10_1029_2008JD011444 crossref_primary_10_1126_sciadv_aau2768 crossref_primary_10_1016_j_yqres_2010_01_001 crossref_primary_10_1029_2003JD004233 crossref_primary_10_1016_j_rser_2017_06_043 crossref_primary_10_5194_acp_12_10545_2012 crossref_primary_10_5572_KOSAE_2013_29_2_186 crossref_primary_10_1029_2023GL106540 crossref_primary_10_5194_acp_12_7825_2012 crossref_primary_10_1016_j_rse_2006_02_020 crossref_primary_10_5572_KOSAE_2019_35_2_149 crossref_primary_10_1016_j_rser_2015_03_099 crossref_primary_10_1029_2004JD005276 crossref_primary_10_1016_j_envpol_2017_03_066 crossref_primary_10_3390_rs14153593 crossref_primary_10_5194_essd_14_2785_2022 crossref_primary_10_1029_2004JD005037 crossref_primary_10_1002_2016GL069324 crossref_primary_10_5194_acp_11_1989_2011 crossref_primary_10_1016_j_envsoft_2015_12_021 crossref_primary_10_1029_2021RG000745 crossref_primary_10_1029_2021JD036384 crossref_primary_10_1111_j_1600_0889_2006_00209_x crossref_primary_10_1029_2006JD007767 crossref_primary_10_5194_acp_9_2441_2009 crossref_primary_10_5194_acp_23_5023_2023 crossref_primary_10_5194_acp_22_3553_2022 crossref_primary_10_3389_feart_2022_802658 crossref_primary_10_5194_acp_16_8157_2016 crossref_primary_10_1029_2021EF002252 crossref_primary_10_5194_acp_14_1441_2014 crossref_primary_10_1016_j_marchem_2013_09_005 crossref_primary_10_1029_2004JD005288 crossref_primary_10_1029_2005JD006502 crossref_primary_10_1029_2008GL035587 crossref_primary_10_1088_1755_1315_358_2_022058 crossref_primary_10_1016_j_scitotenv_2016_03_086 crossref_primary_10_1029_2012JD017966 crossref_primary_10_1016_j_aeolia_2020_100592 crossref_primary_10_1002_2016JD025482 crossref_primary_10_5194_acp_23_10163_2023 crossref_primary_10_1029_2023WR035517 crossref_primary_10_1029_2007GB002975 crossref_primary_10_1002_2017JD027719 crossref_primary_10_1016_j_rse_2023_113581 crossref_primary_10_1002_2016JD025472 crossref_primary_10_1029_2002JD003039 crossref_primary_10_5194_bg_16_831_2019 crossref_primary_10_3390_atmos6111771 crossref_primary_10_1088_1748_9326_acf479 crossref_primary_10_1029_2005GC000977 crossref_primary_10_1016_j_atmosenv_2016_08_022 crossref_primary_10_1029_2007GB002964 crossref_primary_10_1029_2006GL026339 crossref_primary_10_1007_s00704_021_03871_y crossref_primary_10_1002_2015JD023304 crossref_primary_10_1021_acs_est_2c01175 crossref_primary_10_1080_01431161_2018_1524589 crossref_primary_10_1016_j_aeolia_2015_01_001 crossref_primary_10_1029_2020GL090924 crossref_primary_10_5194_gmd_12_33_2019 crossref_primary_10_1016_j_psep_2019_09_012 crossref_primary_10_1007_s00382_021_05690_3 crossref_primary_10_1002_2015JD024424 crossref_primary_10_1002_2015JD023338 crossref_primary_10_5194_acp_15_9897_2015 crossref_primary_10_1029_2008JD011624 crossref_primary_10_5194_acp_18_12845_2018 crossref_primary_10_1029_2007GB002984 crossref_primary_10_1007_s10533_023_01089_w crossref_primary_10_5194_acp_11_7781_2011 crossref_primary_10_1088_1748_9326_aa65a4 crossref_primary_10_5194_acp_16_14775_2016 crossref_primary_10_1002_qj_844 crossref_primary_10_1080_02786826_2020_1769837 crossref_primary_10_1029_2021JD034614 crossref_primary_10_1029_2004GL021272 crossref_primary_10_5194_acp_16_15097_2016 crossref_primary_10_1175_MWR_D_14_00198_1 crossref_primary_10_1371_journal_pone_0165616 crossref_primary_10_1029_2006JG000236 crossref_primary_10_5194_gmd_15_8669_2022 crossref_primary_10_5572_KOSAE_2016_32_3_256 crossref_primary_10_1029_2021GL097287 crossref_primary_10_5194_gmd_9_1683_2016 crossref_primary_10_1038_s41561_023_01264_6 crossref_primary_10_5194_acp_17_14181_2017 crossref_primary_10_5194_gmd_6_929_2013 crossref_primary_10_3390_atmos5040889 crossref_primary_10_1007_s11270_006_1895_8 crossref_primary_10_1029_2006GL026126 crossref_primary_10_1002_jgrd_50515 crossref_primary_10_1029_2003JD004067 crossref_primary_10_1038_s41467_022_35147_y crossref_primary_10_1071_EN09122 crossref_primary_10_5194_acp_17_993_2017 crossref_primary_10_1080_16742834_2017_1320935 crossref_primary_10_1029_2003GB002145 crossref_primary_10_1029_2008JD010995 crossref_primary_10_5194_acp_10_10771_2010 crossref_primary_10_1016_j_atmosenv_2011_08_035 crossref_primary_10_1111_j_1600_0889_2006_00238_x crossref_primary_10_1007_s00382_011_1078_1 crossref_primary_10_1016_j_earscirev_2006_06_004 crossref_primary_10_1073_pnas_2007513117 crossref_primary_10_1007_s00382_020_05222_5 crossref_primary_10_1002_2015JD023742 crossref_primary_10_1071_EN09116 crossref_primary_10_1063_5_0129481 crossref_primary_10_1007_s13143_013_0002_5 crossref_primary_10_1016_j_envpol_2016_03_021 crossref_primary_10_1029_2011GB004186 crossref_primary_10_5194_gmd_16_6087_2023 crossref_primary_10_1029_2003JD004085 crossref_primary_10_1029_2011JD016909 crossref_primary_10_1029_2007JD008973 crossref_primary_10_5194_acp_11_1929_2011 crossref_primary_10_1016_j_dynatmoce_2014_07_002 crossref_primary_10_5194_amt_12_5741_2019 crossref_primary_10_3390_rs10101595 crossref_primary_10_1175_BAMS_D_12_00121_1 crossref_primary_10_5194_bg_10_851_2013 crossref_primary_10_5194_gmd_8_341_2015 crossref_primary_10_1002_2016JD025886 crossref_primary_10_3389_fenvs_2022_877874 crossref_primary_10_1029_2024JD040826 crossref_primary_10_5194_gmd_7_1409_2014 crossref_primary_10_1016_j_geoderma_2016_01_011 crossref_primary_10_1002_2017JD026677 crossref_primary_10_1002_joc_4093 crossref_primary_10_1016_j_geoderma_2018_05_038 crossref_primary_10_1007_s13351_023_2195_6 crossref_primary_10_1007_s11430_016_9051_0 crossref_primary_10_1029_2006GB002711 crossref_primary_10_1038_s41467_022_35403_1 crossref_primary_10_5194_gmd_14_4249_2021 crossref_primary_10_1038_s41561_019_0335_5 crossref_primary_10_5194_gmd_10_1107_2017 crossref_primary_10_1029_2021GL095501 crossref_primary_10_1016_j_jaridenv_2008_05_008 crossref_primary_10_1029_2012GL051136 crossref_primary_10_5194_acp_15_9063_2015 crossref_primary_10_1029_2023JD039158 crossref_primary_10_1016_j_atmosres_2012_09_024 crossref_primary_10_1029_2019JF005104 crossref_primary_10_1016_j_aeolia_2011_07_001 crossref_primary_10_1016_j_scitotenv_2020_137896 crossref_primary_10_5194_acp_16_11991_2016 crossref_primary_10_5194_acp_8_7181_2008 crossref_primary_10_1029_2012GL051360 crossref_primary_10_1038_s41558_021_01216_1 crossref_primary_10_5194_gmd_17_1327_2024 crossref_primary_10_1016_j_atmosenv_2023_119831 crossref_primary_10_1029_2019JD032316 crossref_primary_10_1029_2023JD040386 crossref_primary_10_1029_2009JG001115 crossref_primary_10_1016_j_atmosres_2009_09_011 crossref_primary_10_1088_0034_4885_75_10_106901 crossref_primary_10_1088_1748_9326_acf50c crossref_primary_10_1029_2004JF000281 crossref_primary_10_5194_acp_11_2225_2011 crossref_primary_10_1016_j_envpol_2017_12_025 crossref_primary_10_1029_2006JD007170 crossref_primary_10_3390_atmos9070240 crossref_primary_10_1016_j_palaeo_2020_109585 crossref_primary_10_1016_j_atmosenv_2017_12_014 crossref_primary_10_1029_2008JF001097 crossref_primary_10_1029_2003JD003868 crossref_primary_10_1029_2004JD005746 crossref_primary_10_1002_jgrd_50538 crossref_primary_10_1016_j_atmosenv_2020_117616 crossref_primary_10_1002_2014JD021688 crossref_primary_10_1029_2005JD007007 crossref_primary_10_1029_2003JD003639 crossref_primary_10_1002_2014JD021682 crossref_primary_10_1073_pnas_1014798108 crossref_primary_10_5194_acp_20_15983_2020 crossref_primary_10_5194_acp_12_11057_2012 crossref_primary_10_5194_acp_14_7233_2014 crossref_primary_10_3390_cli3030753 crossref_primary_10_3390_atmos11121282 crossref_primary_10_1371_journal_pone_0268714 crossref_primary_10_1029_2012JD017767 crossref_primary_10_1016_j_solener_2018_08_066 crossref_primary_10_1016_j_jqsrt_2009_02_035 crossref_primary_10_1002_2016MS000874 crossref_primary_10_1016_j_atmosenv_2023_119644 crossref_primary_10_1029_2020GL088020 crossref_primary_10_5194_acp_24_5671_2024 crossref_primary_10_1029_2019JD031414 crossref_primary_10_1175_2010JCLI3378_1 crossref_primary_10_1016_j_jqsrt_2014_05_024 crossref_primary_10_5194_gmd_12_131_2019 crossref_primary_10_5194_acp_22_10115_2022 crossref_primary_10_1016_j_agrformet_2023_109628 crossref_primary_10_1029_2002JD002821 crossref_primary_10_1029_2006JC004061 crossref_primary_10_1002_qj_3497 crossref_primary_10_5194_acp_14_9171_2014 crossref_primary_10_1007_s11869_012_0170_y crossref_primary_10_1016_j_atmosenv_2015_10_014 crossref_primary_10_1016_j_atmosenv_2019_117163 crossref_primary_10_1029_2004JD005501 crossref_primary_10_1029_2023GB007967 crossref_primary_10_5194_acp_15_537_2015 crossref_primary_10_5194_acp_16_6977_2016 crossref_primary_10_1029_2018JD028363 crossref_primary_10_5194_gmd_11_4603_2018 crossref_primary_10_1029_2009JD012678 crossref_primary_10_5194_acp_19_2787_2019 crossref_primary_10_5194_acp_19_3137_2019 crossref_primary_10_1016_j_epsl_2021_117299 crossref_primary_10_1002_2016JD025020 crossref_primary_10_1016_j_gr_2015_10_002 crossref_primary_10_1038_s41467_020_18258_2 crossref_primary_10_1016_j_atmosenv_2015_10_048 crossref_primary_10_1016_j_aeolia_2022_100852 crossref_primary_10_1016_j_aeolia_2013_11_002 crossref_primary_10_1029_2004JD004861 crossref_primary_10_1016_j_aeolia_2022_100849 crossref_primary_10_1002_2013MS000279 crossref_primary_10_5194_acp_11_5431_2011 crossref_primary_10_5194_acp_10_1689_2010 crossref_primary_10_5194_gmd_13_977_2020 crossref_primary_10_1016_j_agee_2019_01_001 crossref_primary_10_1371_journal_pone_0232746 crossref_primary_10_5194_acp_14_5513_2014 crossref_primary_10_1016_j_atmosenv_2007_08_003 crossref_primary_10_1029_2021GL092443 crossref_primary_10_1029_2009JD012692 crossref_primary_10_1002_2016JD025483 crossref_primary_10_1029_2010RG000328 crossref_primary_10_1146_annurev_marine_010908_163727 crossref_primary_10_1016_j_atmosenv_2018_08_013 crossref_primary_10_1029_2021JD035383 crossref_primary_10_5194_acp_10_3297_2010 crossref_primary_10_1016_j_aeolia_2016_07_002 crossref_primary_10_1002_2013PA002550 crossref_primary_10_1080_16000889_2021_1909815 crossref_primary_10_1177_0309133309341604 crossref_primary_10_1002_2016MS000823 crossref_primary_10_5194_acp_21_6035_2021 crossref_primary_10_1021_acs_est_6b04666 crossref_primary_10_1029_2006JD008216 crossref_primary_10_1016_j_atmosenv_2020_118090 crossref_primary_10_5194_acp_9_3935_2009 crossref_primary_10_5194_acp_17_13391_2017 crossref_primary_10_1016_j_atmosenv_2011_04_061 crossref_primary_10_1016_j_atmosenv_2018_05_032 crossref_primary_10_1016_j_atmosenv_2021_118348 crossref_primary_10_1175_JCLI_D_12_00517_1 crossref_primary_10_1016_j_jaerosci_2009_01_005 crossref_primary_10_1029_2022GH000767 crossref_primary_10_1029_2019JD031081 crossref_primary_10_3390_biology11060842 crossref_primary_10_1029_2008JD011078 crossref_primary_10_1029_2011JD016794 crossref_primary_10_1016_j_chemgeo_2009_02_005 crossref_primary_10_5194_acp_11_873_2011 crossref_primary_10_5194_acp_21_4319_2021 crossref_primary_10_1039_C6RA09601H crossref_primary_10_5194_acp_18_11345_2018 crossref_primary_10_1016_j_scitotenv_2020_143272 crossref_primary_10_5194_acp_14_5735_2014 crossref_primary_10_1007_s11869_012_0174_7 crossref_primary_10_5194_acp_14_7485_2014 crossref_primary_10_1080_07055900_2017_1356263 crossref_primary_10_1029_2002JD002845 crossref_primary_10_1021_acs_est_0c03754 crossref_primary_10_1029_2005JD006797 crossref_primary_10_5194_acp_24_2287_2024 crossref_primary_10_1029_2004JD005359 crossref_primary_10_3402_tellusb_v66_23191 crossref_primary_10_1029_2003JD003483 crossref_primary_10_1029_2023JD039543 crossref_primary_10_1080_02726351_2012_669029 crossref_primary_10_1016_j_gloplacha_2010_07_009 crossref_primary_10_5194_gmd_14_7189_2021 crossref_primary_10_1007_s10035_019_0934_2 crossref_primary_10_1016_j_jastp_2020_105415 crossref_primary_10_1016_j_jmarsys_2012_11_004 crossref_primary_10_5194_acp_20_7801_2020 crossref_primary_10_5194_gmd_11_3945_2018 crossref_primary_10_1002_2017MS000937 crossref_primary_10_1002_2013JD020046 crossref_primary_10_1002_2017MS000936 crossref_primary_10_1002_2016GB005408 crossref_primary_10_1016_j_atmosenv_2018_06_047 crossref_primary_10_1021_acs_est_2c03967 crossref_primary_10_5194_gmd_5_581_2012 crossref_primary_10_5194_acp_14_3751_2014 crossref_primary_10_1002_met_141 crossref_primary_10_5194_acp_20_829_2020 crossref_primary_10_5194_acp_18_14175_2018 crossref_primary_10_5194_acp_19_14585_2019 crossref_primary_10_1029_2019GB006448 crossref_primary_10_1029_2008JD010195 crossref_primary_10_1002_2014JD023051 crossref_primary_10_1016_j_catena_2019_104337 crossref_primary_10_1029_2018GH000145 crossref_primary_10_1073_pnas_2014761117 crossref_primary_10_1525_elementa_2021_00043 crossref_primary_10_5194_acp_15_3497_2015 crossref_primary_10_1016_j_aeolia_2017_01_001 crossref_primary_10_1002_jpln_200800218 crossref_primary_10_5194_esd_3_121_2012 crossref_primary_10_1029_2008JD011041 crossref_primary_10_1175_JAMC_D_16_0351_1 crossref_primary_10_1038_s41467_017_02620_y crossref_primary_10_1002_qj_2326 crossref_primary_10_1016_j_atmosenv_2006_11_030 crossref_primary_10_1016_j_atmosenv_2018_07_033 crossref_primary_10_1029_2005JD006579 crossref_primary_10_1016_j_quascirev_2011_09_025 crossref_primary_10_1029_2006JD007129 crossref_primary_10_1007_s11802_015_2472_9 crossref_primary_10_1029_2004GB002402 crossref_primary_10_5194_gmd_6_883_2013 crossref_primary_10_1016_j_atmosenv_2018_06_016 crossref_primary_10_5194_acp_18_3677_2018 crossref_primary_10_1007_s12145_023_00978_w crossref_primary_10_1029_2009JD012063 crossref_primary_10_3390_rs15071719 crossref_primary_10_1002_grl_50968 crossref_primary_10_1016_j_dsr2_2008_12_006 crossref_primary_10_1016_j_atmosenv_2018_07_043 crossref_primary_10_1029_2020PA003957 crossref_primary_10_1007_s00382_011_1139_5 crossref_primary_10_1002_2014MS000360 |
Cites_doi | 10.1029/2000JD000053 10.1029/JC086iC04p03236 10.1016/S0967-0645(97)88508-6 10.1016/0004-6981(76)90258-4 10.1029/91GB01778 10.1029/97JD02087 10.1016/S1352-2310(99)00236-8 10.1007/BF00155203 10.1029/95JD00690 10.1016/S0034-4257(98)00031-5 10.1029/98JD00207 10.1080/07055900.1995.9649539 10.1029/97JD02298 10.1111/j.1365-3091.1982.tb01713.x 10.1029/1999JD900777 10.1029/93JD00396 10.1029/2000JD900106 10.1029/2002JD002485 10.1029/JD093iD10p12645 10.1034/j.1600-0889.1992.t01-1-00005.x 10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2 10.1029/97JD00960 10.1029/2000JD0000032 10.4141/cjss89-008 10.1029/2002JD003039 10.1029/2000JD900668 10.1029/93JD02456 10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2 10.1016/S0065-2687(08)60142-9 10.1038/320735a0 10.1029/2000JD900795 10.1029/JD095iD09p13927 10.1038/381681a0 10.1029/96JD04009 10.1029/PA005i001p00001 10.1029/95JD02051 10.1175/1520-0477(1998)079<0815:DDASVA>2.0.CO;2 10.1029/1999JD900484 10.1029/2000GL011599 10.1029/96JD02964 10.1007/BF00709229 10.1029/JD090iD01p02391 10.1029/2000JD900498 10.1029/2000GB001360 10.1029/98JD00900 10.1007/s00585-999-0149-7 10.1029/2002JD002097 10.1029/96JD01818 10.1029/2001JD900171 10.1029/96JD03680 10.1029/94JD01928 10.1029/1999JD900169 10.1029/96JD02132 10.1007/978-94-009-9905-3 10.1029/2000RG000095 10.1029/2002GL015248 10.3402/tellusb.v44i4.15464 10.1017/CBO9780511573071 10.1007/978-94-017-3354-0_13 10.1029/1999JD900084 10.1016/0960-1686(93)90021-P 10.1029/2000JD900508 10.1029/93JD03478 10.1175/1520-0442(1998)011<1179:THATCO>2.0.CO;2 10.1029/JD092iD03p03017 10.1175/1520-0450(1997)036<0868:TDASCO>2.0.CO;2 10.1029/92JD00894 10.1029/97JD02779 10.1016/0004-6981(78)90163-4 10.1029/2000JD900339 10.1016/0004-6981(89)90153-4 10.1029/92GB01822 10.1029/2000JD900507 10.1029/2002JD002821 10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2 10.1029/1999JD900072 10.1029/97JD00403 10.1097/00010694-199510000-00009 10.1071/SR9960309 10.1029/JB084iB09p04643 10.1017/S0022112064001173 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 10.1038/380419a0 10.1038/380416a0 |
ContentType | Journal Article |
Copyright | 2008 American Geophysical Union Copyright 2003 by the American Geophysical Union. |
Copyright_xml | – notice: 2008 American Geophysical Union – notice: Copyright 2003 by the American Geophysical Union. |
DBID | BSCLL AAYXX CITATION 7TG 7TN 7TV C1K F1W H96 KL. L.G |
DOI | 10.1029/2002JD002775 |
DatabaseName | Istex CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Pollution Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Pollution Abstracts Meteorological & Geoastrophysical Abstracts - Academic Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2002JD002775 JGRD10106 ark_67375_WNG_ZMK33NPQ_V 2002JD002775 |
Genre | article |
GeographicLocations | I, Pacific Australia Asia Africa |
GeographicLocations_xml | – name: Asia – name: Africa – name: I, Pacific – name: Australia |
GroupedDBID | 1OC 24P 7XC A ALMA_UNASSIGNED_HOLDINGS BENPR BRXPI DRFUL DRSTM DU5 G-S GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O MSFUL MSSTM MXFUL OA P-X WIN WYJ 12K AAXRX ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG BSCLL DCZOG MEWTI MXSTM WHG WXSBR XSW ~OA ~~A AAYXX CITATION 7TG 7TN 7TV C1K F1W H96 KL. L.G |
ID | FETCH-LOGICAL-a5406-1aca2bd8145f8027842827b21e8c7722838bd743f24bea685646683c52c39b143 |
ISSN | 0148-0227 |
IngestDate | Fri Aug 16 22:09:45 EDT 2024 Thu Nov 21 21:06:29 EST 2024 Sat Aug 24 00:45:57 EDT 2024 Wed Oct 30 09:54:54 EDT 2024 Tue Jan 05 21:14:39 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | D14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a5406-1aca2bd8145f8027842827b21e8c7722838bd743f24bea685646683c52c39b143 |
Notes | istex:40C9AFF6656322A2270F7EA61A5E8FA8EF420592 ark:/67375/WNG-ZMK33NPQ-V ArticleID:2002JD002775 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2002JD002775 |
PQID | 16153681 |
PQPubID | 23462 |
PageCount | 19 |
ParticipantIDs | wiley_primary_10_1029_2002JD002775_JGRD10106 agu_primary_2002JD002775 istex_primary_ark_67375_WNG_ZMK33NPQ_V crossref_primary_10_1029_2002JD002775 proquest_miscellaneous_16153681 |
PublicationCentury | 2000 |
PublicationDate | 27 July 2003 |
PublicationDateYYYYMMDD | 2003-07-27 |
PublicationDate_xml | – month: 07 year: 2003 text: 27 July 2003 day: 27 |
PublicationDecade | 2000 |
PublicationTitle | Journal of Geophysical Research - Atmospheres |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2003 |
Publisher | American Geophysical Union Blackwell Publishing Ltd |
Publisher_xml | – name: American Geophysical Union – name: Blackwell Publishing Ltd |
References | Bagnold, R. A., The Physics of Blown Sand and Desert Dunes, Methuen, New York, 1941. Mahowald, N., K. Kohfeld, M. Hansson, Y. Balkanski, S. P. Harrison, I. C. Printice, M. Schulz, and H. Rodhe, Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments, J. Geophys. Res., 104, 15,895-15,916, 1999. Dentener, F. J., G. R. Carmichael, Y. Zhang, J. Lelieveld, and P. J. Crutzen, Role of mineral aerosol as a reactive surface in the global troposphere, J. Geophys. Res., 101, 22,869-22,889, 1996. Patterson, E. M., Optical properties of the crustal aerosol: Relation to chemical and physical characteristics, J. Geophys. Res., 86, 3236-3246, 1981. Sokolik, I. N., A. V. Andronova, and T. C. Johnson, Complex refractive index of atmospheric dust aerosols, Atmos. Environ., Part A, 27, 2495-2502, 1993. Woodward, S., Modeling the atmospheric lifecycle and radiative impact of mineral dust in the Hadley Centre climate model, J. Geophys. Res., 106, 18,155-18,166, 2001. D'Almeida, G. A., On the variability of desert aerosol radiative characteristics, J. Geophys. Res., 92, 3017-3026, 1987. Bonan, G. B., S. Levis, L. Kergoat, and K. W. Oleson, Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models, Global Biogeochem. Cycles, 16(2), 1021, doi:10.1029/2000GB001360, 2002. Holtslag, A. A. M., and B. A. Boville, Local versus non-local boundary layer diffusion in a global climate model, J. Clim., 6, 1825-1842, 1993. Alfaro, S.,C., A. Gaudichet, L. Gomes, and M. Maillé, Modeling the size distribution of a soil aerosol produced by sandblasting, J. Geophys. Res., 102, 11,239-11,249, 1997. Rasch, P. J., N. M. Mahowald, and B. E. Eaton, Representations of transport, convection, and the hydrologic cycle in chemical transport models: Implications for the modeling of short-lived and soluble species, J. Geophys. Res., 102, 28,127-28,138, 1997. Zender, C. S., D. J. Newman, and O. Torres, Spatial heterogeneity in aeolian erodibility: Uniform, topographic, geomorphic, and hydrologic hypotheses, J. Geophys., 108, doi:10.1029/2002JD003039, in press, 2003. Raupach, M. R., Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index, Boundary Layer Meteorol., 71, 211-216, 1994. Balkanski, Y. J., D. J. Jacob, G. M. Gardner, W. C. Graustein, and K. K. Turekian, Transport and residence times of tropospheric aerosols inferred from a global three-dimensional simulation of 210Pb, J. Geophys. Res., 98, 20,573-20,586, 1993. Pruppacher, H. R., and J. D. Klett, Microphysics of Clouds and Precipitation, D. Reidel, Norwell, Mass., 1978. Prospero, J. M., and R. T. Nees, Impact of the North African drought and El Niño on mineral dust in the Barbados trade winds, Nature, 320, 735-738, 1986. Jenson, S. K., and J. O. Domingue, Extracting topographic structure from digital elevation data for geographic information system analysis, Photogramm. Eng. Remote Sens., 54, 1593-1600, 1988. Gillette, D. A., B. Marticorena, and G. Bergametti, Change in the aerodynamic roughness height by saltating grains: Experimental assessment, test of theory, and operational parameterization, J. Geophys. Res., 103, 6203-6209, 1998. Ginoux, P., M. Chin, I. Tegen, J. Prospero, B. Holben, O. Dubovik, and S.-J. Lin, Sources and distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res., 106, 20,255-20,273, 2001. Grini, A., C. S. Zender, and P. Colarco, Saltation sandblasting behavior during mineral dust aerosol production, Geophys. Res. Lett., 29(18), 1868, doi:10.1029/2002GL015248, 2002. Tegen, I., A. A. Lacis, and I. Fung, The influence on climate forcing of mineral aerosols from disturbed soils, Nature, 380, 419-422, 1996. Collins, W. D., P. J. Rasch, B. E. Eaton, D. W. Fillmore, J. T. Kiehl, C. T. Beck, and C. S. Zender, Simulation of aerosol distributions and radiative forcing for INDOEX: Regional climate impacts, J. Geophys. Res., 107(D19), 8028, doi:10.1029/2000JD0000032, 2002. Kalnay, E., The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77, 437-471, 1996. Hack, J. J., Parameterization of moist convection in the National Center for Atmospheric Research community climate model (CCM2), J. Geophys. Res., 99, 5551-5568, 1994. Mahowald, N. M., C. S. Zender, C. Luo, D. Savoie, O. Torres, and J. del Corral, Understanding the 30-year Barbados desert dust record, J. Geophys. Res., 107(D21), 4561, doi:10.1029/2002JD002097, 2002. Seinfeld, J. H., and S. N. Pandis, Atmospheric Chemistry and Physics, John Wiley, New York, 1997. Hänel, G., The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air, Adv. Geophys., 19, 73-188, 1976. Slinn, W. G. N., L. Hasse, B. B. Hicks, A. W. Hogan, D. Lal, P. S. Liss, K. O. Munnich, G. A. Sehmel, and O. Vittori, Some aspects of the transfer of atmospheric trace constituents past the air-sea interface, Atmos. Environ., 12, 2055-2087, 1978. Genthon, C., Simulations of desert dust and sea-salt aerosols in Antarctica with a general circulation model of the atmosphere, Tellus, Ser. B, 44, 371-389, 1992. Maring, H., D. L. Savoie, M. A. Izaguirre, C. McCormick, R. Arimoto, J. M. Prospero, and C. Pilinis, Aerosol physical and optical properties and their relationship to aerosol composition in the free troposphere at Izaña, Tenerife, Canary Islands, during July 1995, J. Geophys. Res., 105, 14,677-14,700, 2000. Swap, R., M. Garstang, S. Greco, R. Talbot, and P. Kållberg, Saharan dust in the Amazon Basin, Tellus, Ser. B, 44, 133-149, 1992. White, B. R., Soil transport by winds on Mars, J. Geophys. Res., 84, 4643-4651, 1979. Martin, J. H., Glacial-interglacial CO2 change: The iron hypothesis, Paleoceanography, 5, 1-13, 1990. Husar, R. B., J. M. Prospero, and L. L. Stowe, Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product, J. Geophys. Res., 102, 16,889-16,909, 1997. Prospero, J. M., Long-term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality, J. Geophys. Res., 104, 15,917-15,928, 1999. Reid, J. S., et al., Comparison of size and morphological measurements of coarse mode dust particles from Africa, J. Geophys. Res, doi:10.1029/2002JD002485, in press, 2003. Sokolik, I. N., D. M. Winker, G. Bergametti, D. A. Gillette, G. Carmichael, Y. J. Kaufman, L. Gomes, L. Schuetz, and J. E. Penner, Introduction to special section: Outstanding problems in quantifying the radiative impacts of mineral dust, J. Geophys. Res., 106, 18,015-18,027, 2001. Shao, Y., and L. M. Leslie, Wind erosion prediction over the Australian continent, J. Geophys. Res., 102, 30,091-30,105, 1997. Webb, R. S., C. E. Rosenzweig, and E. R. Levine, Specifying land surface characteristics in general circulation models: soil profile data set and derived water-holding capacities, Global Biogeochem. Cycles, 7, 97-108, 1993. Chin, M., et al., Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements, J. Atmos. Sci., 59, 461-483, 2002. Holben, B. N., et al., AERONET: A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1-16, 1998. Gillette, D. A., E. Hardebeck, and J. Parker, Large-scale variability of wind erosion mass flux rates at Owens Lake: 2. Role of roughness change, particle limitation, change of threshold friction velocity, and the Owen effect, J. Geophys. Res., 102, 25,989-25,998, 1997. Greeley, R., and J. D. Iversen, Wind as a Geological Process, Cambridge Planet. Sci., Ser., vol. 4, Cambridge Univ. Press, New York, 1985. Prospero, J. M., P. Ginoux, O. Torres, and S. Nicholson, Environmental characterization of global sources of atmospheric soil dust derived from the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product, Rev. Geophys., 40(1), 1002, doi:10.1029/2000RG000095, 2002. Collins, W. D., P. J. Rasch, B. E. Eaton, B. Khattatov, J.-F. Lamarque, and C. S. Zender, Forecasting aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX, J. Geophys. Res., 106, 7313-7336, 2001. Shinn, E. A., G. Smith, J. Prospero, P. Betzer, M. Hayes, V. Garrison, and R. Barber, African dust and the demise of Caribbean coral reefs, Geophys. Res. Lett., 27, 3029-3032, 2000. Zhang, Y., C. Seigneur, J. H. Seinfeld, M. Jacobson, S. L. Clegg, and F. S. Binkowski, A comparative review of inorganic aerosol thermodynamic equilibrium modules: Similarities, differences, and their likely causes, Atmos. Environ., 34, 117-137, 2000. Duce, R., et al., The atmospheric input of trace species to the world ocean, Global Biogeochem. Cycles, 5, 193-259, 1991. Li, X., H. Maring, D. Savoie, K. Voss, and J. M. Prospero, Dominance of mineral dust in aerosol light-scattering in the North Atlantic trade winds, Nature, 380, 416-419, 1996. Torres, O., P. K. Bhartia, J. R. Herman, Z. Ahmad, and J. Gleason, Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis, J. Geophys. Res., 103, 17,099-17,110, 1998. Guieu, C., R. Chester, M. Nimmo, J. M. Martin, S. Guerzoni, E. Nicolas, J. Mateu, and S. Keyse, Atmospheric input of dissolved and particulate metals to the northwestern Mediterranean, Deep Sea Res., Part II, 44, 655-674, 1997. McKenna-Neuman, C., and W. G. Nickling, A theoretical and wind tunnel investigation of the effect of capillarity water on the entrainment of sediment by wind, Can. J. Soil Sci., 69, 79-96, 1989. Perlwitz, J., I. Tegen, and R. L. Miller, Interactive soil dust aerosol model in the GISS GCM: 1. Sensitivity of the soil dust cycle to radiative properties of soil dust aerosols, J. Geophys. Res., 106, 18,167-18,192, 2001. Sokolik, I. 2002; 16 1990; 95 1993; 7 2002; 59 1993; 27 1997; 44 1995; 33 1996; 381 1996; 380 1992; 97 1996; 101 1981; 86 2001; 106 1978 1996; 34 1993; 6 1996; 77 1997; 102 1980; 37 1982; 29 2001 2002; 40 1999; 17 1987 2002; 107 1941 1985; 90 1984 1982 1992; 44 1994; 71 1995; 160 1998; 11 1989; 23 2000; 27 1978; 12 1985; 4 1987; 92 1988; 54 1997 1996 1964; 20 2003 1991 1996; 57 1996; 16 1999; 104 1988; 93 1989; 69 1998; 66 1991; 5 1999 1976; 10 2003; 108 2002; 29 2000; 34 2000; 105 1986; 320 1993; 98 1997; 36 1964 1994; 99 1998; 103 1995; 100 1999; 72 1992; 60 1990; 5 1979; 84 1976; 19 1998; 79 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_15_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 Jenson S. K. (e_1_2_7_41_1) 1988; 54 e_1_2_7_49_1 e_1_2_7_90_1 Gillette D. A. (e_1_2_7_23_1) 1999; 72 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_33_1 e_1_2_7_56_1 Hillel D. (e_1_2_7_36_1) 1982 e_1_2_7_37_1 e_1_2_7_79_1 Cogley J. G. (e_1_2_7_13_1) 1991 e_1_2_7_8_1 Pye K. (e_1_2_7_66_1) 1987 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 Bagnold R. A. (e_1_2_7_6_1) 1941 Seinfeld J. H. (e_1_2_7_75_1) 1997 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 Genthon C. (e_1_2_7_21_1) 1992; 44 e_1_2_7_20_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 Shettle E. P. (e_1_2_7_81_1) 1984 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 Belly P. Y. (e_1_2_7_9_1) 1964 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_35_1 e_1_2_7_39_1 Andreae M. O. (e_1_2_7_4_1) 1996 e_1_2_7_80_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_91_1 Prospero J. M. (e_1_2_7_61_1) 1996 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 Penner J. E. (e_1_2_7_58_1) 2001 e_1_2_7_38_1 Kergoat L. (e_1_2_7_43_1) 1999 |
References_xml | – volume: 106 start-page: 7337 year: 2001 end-page: 7355 article-title: Understanding the Indian Ocean Experiment INDOEX aerosol distributions with an aerosol assimilation publication-title: J. Geophys. Res. – volume: 6 start-page: 1825 year: 1993 end-page: 1842 article-title: Local versus non‐local boundary layer diffusion in a global climate model publication-title: J. Clim. – volume: 105 start-page: 1367 year: 2000 end-page: 1386 article-title: A description of the global sulfur cycle and its controlling processes in the National Center for Atmospheric Research Community Climate Model, version 3 publication-title: J. Geophys. Res. – year: 2003 article-title: Comparison of size and morphological measurements of coarse mode dust particles from Africa publication-title: J. Geophys. Res – volume: 34 start-page: 309 year: 1996 end-page: 342 article-title: A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region publication-title: Aust. J. Soil Res. – volume: 106 start-page: 7313 year: 2001 end-page: 7336 article-title: Forecasting aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX publication-title: J. Geophys. Res. – start-page: 74 year: 1984 end-page: 77 – volume: 106 start-page: 18,167 year: 2001 end-page: 18,192 article-title: Interactive soil dust aerosol model in the GISS GCM: 1. Sensitivity of the soil dust cycle to radiative properties of soil dust aerosols publication-title: J. Geophys. Res. – volume: 93 start-page: 12,645 year: 1988 end-page: 12,662 article-title: Threshold friction velocities for dust production for agricultural soils publication-title: J. Geophys. Res. – volume: 11 start-page: 1151 year: 1998 end-page: 1178 article-title: The hydrologic and thermodynamic characteristics of the NCAR CCM3 publication-title: J. Clim. – volume: 102 start-page: 28,127 year: 1997 end-page: 28,138 article-title: Representations of transport, convection, and the hydrologic cycle in chemical transport models: Implications for the modeling of short‐lived and soluble species publication-title: J. Geophys. Res. – volume: 27 start-page: 2495 year: 1993 end-page: 2502 article-title: Complex refractive index of atmospheric dust aerosols publication-title: Atmos. Environ., Part A – start-page: 291 year: 2001 end-page: 336 – volume: 90 start-page: 2391 year: 1985 end-page: 2408 article-title: Atmospheric trace elements at Enewetak Atoll: 2. Transport to the ocean by wet and dry deposition publication-title: J. Geophys. Res. – volume: 102 start-page: 11,239 year: 1997 end-page: 11,249 article-title: Modeling the size distribution of a soil aerosol produced by sandblasting publication-title: J. Geophys. Res. – volume: 59 start-page: 461 year: 2002 end-page: 483 article-title: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements publication-title: J. Atmos. Sci. – volume: 29 start-page: 111 year: 1982 end-page: 119 article-title: Saltation threshold on Earth, Mars, and Venus publication-title: Sedimentology – volume: 102 start-page: 16,911 year: 1997 end-page: 16,922 article-title: Global distribution of UV‐absorbing aerosols from Nimbus 7/TOMS data publication-title: J. Geophys. Res. – volume: 54 start-page: 1593 year: 1988 end-page: 1600 article-title: Extracting topographic structure from digital elevation data for geographic information system analysis publication-title: Photogramm. Eng. Remote Sens. – volume: 103 start-page: 17,099 year: 1998 end-page: 17,110 article-title: Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis publication-title: J. Geophys. Res. – volume: 102 start-page: 16,889 year: 1997 end-page: 16,909 article-title: Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product publication-title: J. Geophys. Res. – volume: 380 start-page: 419 year: 1996 end-page: 422 article-title: The influence on climate forcing of mineral aerosols from disturbed soils publication-title: Nature – volume: 108 year: 2003 article-title: Interannual variability in atmospheric mineral aerosols from a 22‐year model simulation and observational data publication-title: J. Geophys. Res. – year: 1964 – volume: 105 start-page: 14,677 year: 2000 end-page: 14,700 article-title: Aerosol physical and optical properties and their relationship to aerosol composition in the free troposphere at Izaña, Tenerife, Canary Islands, during July 1995 publication-title: J. Geophys. Res. – volume: 106 start-page: 20,239 year: 2001 end-page: 20,254 article-title: A model for mineral dust emission publication-title: J. Geophys. Res. – volume: 102 start-page: 4387 year: 1997 end-page: 4404 article-title: Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources publication-title: J. Geophys. Res. – year: 1987 – volume: 5 start-page: 1 year: 1990 end-page: 13 article-title: Glacial‐interglacial CO change: The iron hypothesis publication-title: Paleoceanography – volume: 40 issue: 1 year: 2002 article-title: Environmental characterization of global sources of atmospheric soil dust derived from the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product publication-title: Rev. Geophys. – volume: 102 start-page: 25,989 year: 1997 end-page: 25,998 article-title: Large‐scale variability of wind erosion mass flux rates at Owens Lake: 2. Role of roughness change, particle limitation, change of threshold friction velocity, and the Owen effect publication-title: J. Geophys. Res. – volume: 4 year: 1985 – volume: 66 start-page: 1 year: 1998 end-page: 16 article-title: AERONET: A federated instrument network and data archive for aerosol characterization publication-title: Remote Sens. Environ. – volume: 98 start-page: 20,573 year: 1993 end-page: 20,586 article-title: Transport and residence times of tropospheric aerosols inferred from a global three‐dimensional simulation of Pb publication-title: J. Geophys. Res. – volume: 17 start-page: 149 year: 1999 end-page: 157 article-title: Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi‐arid areas publication-title: Ann. Geophys. – volume: 102 start-page: 16,923 year: 1997 end-page: 16,934 article-title: Development, validation, and potential enhancements to the second‐generation operational aerosol product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration publication-title: J. Geophys. Res. – volume: 380 start-page: 416 year: 1996 end-page: 419 article-title: Dominance of mineral dust in aerosol light‐scattering in the North Atlantic trade winds publication-title: Nature – volume: 101 start-page: 22,869 year: 1996 end-page: 22,889 article-title: Role of mineral aerosol as a reactive surface in the global troposphere publication-title: J. Geophys. Res. – volume: 103 start-page: 6203 year: 1998 end-page: 6209 article-title: Change in the aerodynamic roughness height by saltating grains: Experimental assessment, test of theory, and operational parameterization publication-title: J. Geophys. Res. – volume: 104 start-page: 24,273 year: 1999 end-page: 24,279 article-title: Threshold friction velocities for large pebble gravel beds publication-title: J. Geophys. Res. – volume: 98 start-page: 12,719 year: 1993 end-page: 12,726 article-title: Effect of saltation bombardment on the entrainment of dust by wind publication-title: J. Geophys. Res. – start-page: 133 year: 1996 end-page: 151 – volume: 381 start-page: 681 year: 1996 end-page: 683 article-title: Direct radiative forcing by anthropogenic airborne mineral aerosols publication-title: Nature – volume: 7 start-page: 97 year: 1993 end-page: 108 article-title: Specifying land surface characteristics in general circulation models: soil profile data set and derived water‐holding capacities publication-title: Global Biogeochem. Cycles – volume: 19 start-page: 73 year: 1976 end-page: 188 article-title: The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air publication-title: Adv. Geophys. – volume: 16 issue: 2 year: 2002 article-title: Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models publication-title: Global Biogeochem. Cycles – volume: 106 start-page: 18,075 year: 2001 end-page: 18,084 article-title: Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas publication-title: J. Geophys. Res. – volume: 44 start-page: 133 year: 1992 end-page: 149 article-title: Saharan dust in the Amazon Basin publication-title: Tellus, Ser. B – volume: 99 start-page: 5551 year: 1994 end-page: 5568 article-title: Parameterization of moist convection in the National Center for Atmospheric Research community climate model (CCM2) publication-title: J. Geophys. Res. – volume: 60 start-page: 375 year: 1992 end-page: 395 article-title: Drag and drag partition on rough surfaces publication-title: Boundary Layer Meteorol. – volume: 106 start-page: 20,255 year: 2001 end-page: 20,273 article-title: Sources and distributions of dust aerosols simulated with the GOCART model publication-title: J. Geophys. Res. – year: 1978 – volume: 71 start-page: 211 year: 1994 end-page: 216 article-title: Simplified expressions for vegetation roughness length and zero‐plane displacement as functions of canopy height and area index publication-title: Boundary Layer Meteorol. – volume: 57 start-page: 19 year: 1996 end-page: 52 – volume: 160 start-page: 304 year: 1995 end-page: 309 article-title: Threshold wind velocities of wet soils as affected by wind blown sand publication-title: Soil Sci. – volume: 36 start-page: 868 year: 1997 end-page: 882 article-title: The diurnal and seasonal cycles of wind‐borne dust over Africa North of the equator publication-title: J. Appl. Meteorol. – volume: 92 start-page: 3017 year: 1987 end-page: 3026 article-title: On the variability of desert aerosol radiative characteristics publication-title: J. Geophys. Res. – volume: 12 start-page: 2055 year: 1978 end-page: 2087 article-title: Some aspects of the transfer of atmospheric trace constituents past the air‐sea interface publication-title: Atmos. Environ. – start-page: 73 year: 1999 end-page: 89 – volume: 99 start-page: 22,897 year: 1994 end-page: 22,914 article-title: Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness publication-title: J. Geophys. Res. – volume: 100 start-page: 18,707 year: 1995 end-page: 18,726 article-title: Contribution to the atmospheric mineral aerosol load from land surface modification publication-title: J. Geophys. Res. – year: 1982 – volume: 33 start-page: 407 year: 1995 end-page: 446 article-title: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model publication-title: Atmos. Ocean – volume: 20 start-page: 225 year: 1964 end-page: 242 article-title: Saltation of uniform grains in air publication-title: J. Fluid Mech. – volume: 44 start-page: 371 year: 1992 end-page: 389 article-title: Simulations of desert dust and sea‐salt aerosols in Antarctica with a general circulation model of the atmosphere publication-title: Tellus, Ser. B – volume: 29 issue: 18 year: 2002 article-title: Saltation sandblasting behavior during mineral dust aerosol production publication-title: Geophys. Res. Lett. – volume: 77 start-page: 437 year: 1996 end-page: 471 article-title: The NCEP/NCAR 40‐year reanalysis project publication-title: Bull. Am. Meteorol. Soc. – volume: 44 start-page: 655 year: 1997 end-page: 674 article-title: Atmospheric input of dissolved and particulate metals to the northwestern Mediterranean publication-title: Deep Sea Res., Part II – year: 1997 – volume: 103 start-page: 10,579 year: 1998 end-page: 10,592 article-title: Role of aerosol size distribution and source location in a three‐dimensional simulation of a Saharan dust episode tested against satellite‐derived optical thickness publication-title: J. Geophys. Res. – volume: 10 start-page: 44 year: 1976 end-page: 50 article-title: Statistical aspects of the washout of polydisperse aerosols publication-title: Atmos. Environ. – volume: 106 start-page: 18,015 year: 2001 end-page: 18,027 article-title: Introduction to special section: Outstanding problems in quantifying the radiative impacts of mineral dust publication-title: J. Geophys. Res. – volume: 97 start-page: 11,575 year: 1992 end-page: 11,589 article-title: Sources of nitrate and ozone in the marine boundary layer of the tropical North Atlantic publication-title: J. Geophys. Res. – volume: 69 start-page: 79 year: 1989 end-page: 96 article-title: A theoretical and wind tunnel investigation of the effect of capillarity water on the entrainment of sediment by wind publication-title: Can. J. Soil Sci. – volume: 86 start-page: 3236 year: 1981 end-page: 3246 article-title: Optical properties of the crustal aerosol: Relation to chemical and physical characteristics publication-title: J. Geophys. Res. – volume: 84 start-page: 4643 year: 1979 end-page: 4651 article-title: Soil transport by winds on Mars publication-title: J. Geophys. Res. – volume: 100 start-page: 16,415 year: 1995 end-page: 16,430 article-title: Modeling the atmospheric dust cycle: 1. Design of a soil‐derived dust emission scheme publication-title: J. Geophys. Res. – year: 1941 – volume: 5 start-page: 193 year: 1991 end-page: 259 article-title: The atmospheric input of trace species to the world ocean publication-title: Global Biogeochem. Cycles – year: 1996 – volume: 79 start-page: 815 year: 1998 end-page: 829 article-title: Desertification, drought, and surface vegetation: An example from the West African Sahel publication-title: Bull. Am. Meteorol. Soc. – volume: 104 start-page: 15,917 year: 1999 end-page: 15,928 article-title: Long‐term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality publication-title: J. Geophys. Res. – volume: 16 start-page: 347 year: 1996 end-page: 398 – volume: 104 start-page: 16,827 year: 1999 end-page: 16,842 article-title: A new model for dust emission by saltation bombardment publication-title: J. Geophys. Res. – volume: 34 start-page: 117 year: 2000 end-page: 137 article-title: A comparative review of inorganic aerosol thermodynamic equilibrium modules: Similarities, differences, and their likely causes publication-title: Atmos. Environ. – volume: 104 start-page: 15,895 year: 1999 end-page: 15,916 article-title: Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments publication-title: J. Geophys. Res. – volume: 107 issue: D19 year: 2002 article-title: Simulation of aerosol distributions and radiative forcing for INDOEX: Regional climate impacts publication-title: J. Geophys. Res. – volume: 108 year: 2003 article-title: Spatial heterogeneity in aeolian erodibility: Uniform, topographic, geomorphic, and hydrologic hypotheses publication-title: J. Geophys. – volume: 72 start-page: 67 year: 1999 end-page: 77 article-title: A qualitative geophysical explanation for “hot spot” dust emitting source regions publication-title: Beitr. Phys. Atmos. – volume: 107 issue: D21 year: 2002 article-title: Understanding the 30‐year Barbados desert dust record publication-title: J. Geophys. Res. – volume: 320 start-page: 735 year: 1986 end-page: 738 article-title: Impact of the North African drought and El Niño on mineral dust in the Barbados trade winds publication-title: Nature – volume: 27 start-page: 3029 year: 2000 end-page: 3032 article-title: African dust and the demise of Caribbean coral reefs publication-title: Geophys. Res. Lett. – volume: 37 start-page: 2712 year: 1980 end-page: 2733 article-title: A model for the spectral albedo of snow, I: Pure snow publication-title: J. Atmos. Sci. – volume: 106 start-page: 18,155 year: 2001 end-page: 18,166 article-title: Modeling the atmospheric lifecycle and radiative impact of mineral dust in the Hadley Centre climate model publication-title: J. Geophys. Res. – year: 1991 – volume: 102 start-page: 30,091 year: 1997 end-page: 30,105 article-title: Wind erosion prediction over the Australian continent publication-title: J. Geophys. Res. – volume: 95 start-page: 13,927 year: 1990 end-page: 13,935 article-title: Submicron desert dusts: A sandblasting process publication-title: J. Geophys. Res. – year: 1999 – volume: 23 start-page: 1293 year: 1989 end-page: 1304 article-title: Parameterization of surface resistances to gaseous dry deposition in region‐scale numerical models publication-title: Atmos. Environ. – ident: e_1_2_7_26_1 doi: 10.1029/2000JD000053 – ident: e_1_2_7_57_1 doi: 10.1029/JC086iC04p03236 – ident: e_1_2_7_31_1 doi: 10.1016/S0967-0645(97)88508-6 – ident: e_1_2_7_17_1 doi: 10.1016/0004-6981(76)90258-4 – ident: e_1_2_7_19_1 doi: 10.1029/91GB01778 – ident: e_1_2_7_67_1 doi: 10.1029/97JD02087 – ident: e_1_2_7_100_1 doi: 10.1016/S1352-2310(99)00236-8 – ident: e_1_2_7_70_1 doi: 10.1007/BF00155203 – ident: e_1_2_7_50_1 doi: 10.1029/95JD00690 – ident: e_1_2_7_37_1 doi: 10.1016/S0034-4257(98)00031-5 – ident: e_1_2_7_25_1 doi: 10.1029/98JD00207 – ident: e_1_2_7_99_1 doi: 10.1080/07055900.1995.9649539 – ident: e_1_2_7_78_1 doi: 10.1029/97JD02298 – ident: e_1_2_7_10_1 – ident: e_1_2_7_40_1 doi: 10.1111/j.1365-3091.1982.tb01713.x – ident: e_1_2_7_68_1 doi: 10.1029/1999JD900777 – ident: e_1_2_7_79_1 doi: 10.1029/93JD00396 – ident: e_1_2_7_49_1 doi: 10.1029/2000JD900106 – ident: e_1_2_7_72_1 doi: 10.1029/2002JD002485 – ident: e_1_2_7_22_1 doi: 10.1029/JD093iD10p12645 – ident: e_1_2_7_88_1 doi: 10.1034/j.1600-0889.1992.t01-1-00005.x – ident: e_1_2_7_27_1 – volume-title: Introduction to Soil Physics year: 1982 ident: e_1_2_7_36_1 contributor: fullname: Hillel D. – ident: e_1_2_7_38_1 doi: 10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2 – ident: e_1_2_7_24_1 doi: 10.1029/97JD00960 – ident: e_1_2_7_15_1 doi: 10.1029/2000JD0000032 – ident: e_1_2_7_54_1 doi: 10.4141/cjss89-008 – ident: e_1_2_7_98_1 doi: 10.1029/2002JD003039 – ident: e_1_2_7_59_1 doi: 10.1029/2000JD900668 – ident: e_1_2_7_7_1 doi: 10.1029/93JD02456 – ident: e_1_2_7_12_1 doi: 10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2 – ident: e_1_2_7_34_1 doi: 10.1016/S0065-2687(08)60142-9 – ident: e_1_2_7_63_1 doi: 10.1038/320735a0 – volume-title: Atmospheric Chemistry and Physics year: 1997 ident: e_1_2_7_75_1 contributor: fullname: Seinfeld J. H. – ident: e_1_2_7_97_1 doi: 10.1029/2000JD900795 – ident: e_1_2_7_28_1 doi: 10.1029/JD095iD09p13927 – ident: e_1_2_7_84_1 doi: 10.1038/381681a0 – ident: e_1_2_7_39_1 doi: 10.1029/96JD04009 – ident: e_1_2_7_52_1 doi: 10.1029/PA005i001p00001 – ident: e_1_2_7_90_1 doi: 10.1029/95JD02051 – ident: e_1_2_7_55_1 doi: 10.1175/1520-0477(1998)079<0815:DDASVA>2.0.CO;2 – ident: e_1_2_7_8_1 doi: 10.1029/1999JD900484 – ident: e_1_2_7_82_1 doi: 10.1029/2000GL011599 – ident: e_1_2_7_51_1 doi: 10.1029/96JD02964 – ident: e_1_2_7_71_1 doi: 10.1007/BF00709229 – ident: e_1_2_7_5_1 doi: 10.1029/JD090iD01p02391 – ident: e_1_2_7_86_1 doi: 10.1029/2000JD900498 – ident: e_1_2_7_11_1 doi: 10.1029/2000GB001360 – ident: e_1_2_7_92_1 doi: 10.1029/98JD00900 – ident: e_1_2_7_20_1 doi: 10.1007/s00585-999-0149-7 – ident: e_1_2_7_47_1 doi: 10.1029/2002JD002097 – ident: e_1_2_7_18_1 doi: 10.1029/96JD01818 – ident: e_1_2_7_77_1 doi: 10.1029/2001JD900171 – ident: e_1_2_7_35_1 doi: 10.1029/96JD03680 – start-page: 19 volume-title: Particle Flux in the Ocean year: 1996 ident: e_1_2_7_61_1 contributor: fullname: Prospero J. M. – ident: e_1_2_7_89_1 doi: 10.1029/94JD01928 – ident: e_1_2_7_45_1 doi: 10.1029/1999JD900169 – volume-title: Sand movement by wind year: 1964 ident: e_1_2_7_9_1 contributor: fullname: Belly P. Y. – volume-title: Global hydrographic data release 2.0 year: 1991 ident: e_1_2_7_13_1 contributor: fullname: Cogley J. G. – ident: e_1_2_7_87_1 doi: 10.1029/96JD02132 – ident: e_1_2_7_65_1 doi: 10.1007/978-94-009-9905-3 – ident: e_1_2_7_64_1 doi: 10.1029/2000RG000095 – start-page: 291 volume-title: Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change year: 2001 ident: e_1_2_7_58_1 contributor: fullname: Penner J. E. – ident: e_1_2_7_30_1 doi: 10.1029/2002GL015248 – volume: 72 start-page: 67 year: 1999 ident: e_1_2_7_23_1 article-title: A qualitative geophysical explanation for “hot spot” dust emitting source regions publication-title: Beitr. Phys. Atmos. contributor: fullname: Gillette D. A. – volume: 44 start-page: 371 year: 1992 ident: e_1_2_7_21_1 article-title: Simulations of desert dust and sea‐salt aerosols in Antarctica with a general circulation model of the atmosphere publication-title: Tellus, Ser. B doi: 10.3402/tellusb.v44i4.15464 contributor: fullname: Genthon C. – ident: e_1_2_7_29_1 doi: 10.1017/CBO9780511573071 – ident: e_1_2_7_60_1 doi: 10.1007/978-94-017-3354-0_13 – ident: e_1_2_7_46_1 doi: 10.1029/1999JD900084 – ident: e_1_2_7_85_1 doi: 10.1016/0960-1686(93)90021-P – start-page: 347 volume-title: Future Climates of the World: A Modelling Perspective, World Surv. Climatol. year: 1996 ident: e_1_2_7_4_1 contributor: fullname: Andreae M. O. – volume-title: The Physics of Blown Sand and Desert Dunes year: 1941 ident: e_1_2_7_6_1 contributor: fullname: Bagnold R. A. – ident: e_1_2_7_69_1 doi: 10.1029/2000JD900508 – ident: e_1_2_7_32_1 doi: 10.1029/93JD03478 – ident: e_1_2_7_33_1 doi: 10.1175/1520-0442(1998)011<1179:THATCO>2.0.CO;2 – ident: e_1_2_7_16_1 doi: 10.1029/JD092iD03p03017 – ident: e_1_2_7_53_1 doi: 10.1175/1520-0450(1997)036<0868:TDASCO>2.0.CO;2 – ident: e_1_2_7_73_1 doi: 10.1029/92JD00894 – ident: e_1_2_7_74_1 doi: 10.1029/97JD02779 – ident: e_1_2_7_83_1 doi: 10.1016/0004-6981(78)90163-4 – ident: e_1_2_7_2_1 doi: 10.1029/2000JD900339 – ident: e_1_2_7_94_1 doi: 10.1016/0004-6981(89)90153-4 – ident: e_1_2_7_93_1 doi: 10.1029/92GB01822 – ident: e_1_2_7_14_1 doi: 10.1029/2000JD900507 – volume: 54 start-page: 1593 year: 1988 ident: e_1_2_7_41_1 article-title: Extracting topographic structure from digital elevation data for geographic information system analysis publication-title: Photogramm. Eng. Remote Sens. contributor: fullname: Jenson S. K. – ident: e_1_2_7_48_1 doi: 10.1029/2002JD002821 – ident: e_1_2_7_96_1 doi: 10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2 – ident: e_1_2_7_62_1 doi: 10.1029/1999JD900072 – ident: e_1_2_7_3_1 doi: 10.1029/97JD00403 – ident: e_1_2_7_76_1 doi: 10.1097/00010694-199510000-00009 – ident: e_1_2_7_80_1 doi: 10.1071/SR9960309 – ident: e_1_2_7_95_1 doi: 10.1029/JB084iB09p04643 – ident: e_1_2_7_56_1 doi: 10.1017/S0022112064001173 – start-page: 73 volume-title: Advances in Environmental and Ecological Modelling year: 1999 ident: e_1_2_7_43_1 contributor: fullname: Kergoat L. – ident: e_1_2_7_42_1 doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 – volume-title: Aeolian Dust and Dust Deposits year: 1987 ident: e_1_2_7_66_1 contributor: fullname: Pye K. – start-page: 74 volume-title: IRS '84: Current Problems in Atmospheric Radiation year: 1984 ident: e_1_2_7_81_1 contributor: fullname: Shettle E. P. – ident: e_1_2_7_91_1 doi: 10.1038/380419a0 – ident: e_1_2_7_44_1 doi: 10.1038/380416a0 |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 |
Score | 2.421572 |
Snippet | We describe a model for predicting the size‐resolved distribution of atmospheric dust for climate and chemistry‐related studies. The dust distribution from... We describe a model for predicting the size-resolved distribution of atmospheric dust for climate and chemistry-related studies. The dust distribution from... |
SourceID | proquest crossref wiley istex agu |
SourceType | Aggregation Database Publisher |
StartPage | 4416 |
SubjectTerms | aerosol climatology aerosol scavenging Aerosols Aerosols and particles Atmospheric Composition and Structure Biological and Chemical Constituent sources and sinks ecosystem fertilization Erosion and weathering mineral deposition mineral dust aerosol Oceanography Planetology saltation sandblasting Solid Surface Planets |
Title | Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology |
URI | https://api.istex.fr/ark:/67375/WNG-ZMK33NPQ-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2002JD002775 https://search.proquest.com/docview/16153681 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rb9MwELe6VUgICUEBtTz9ASZQCSRO6rp8q5bQaqhl7AVMSFGeCKElU9MI9t9zZ-fhMmliH_gS-VwnUfrz-R4-3xHyPAzCVMRRbIAsiw3HCU1jIibcEGkq7HDC0sDEw8nzw_Hyi3A9x-t06oJdbd9_RRr6AGs8OXsNtJuHQge0AXO4Aupw_SfcFz9kHumhWxbroZfJEhBNILmb1EFaqFm63tRFr4CshoOuATBCm0UEh1sgRIoh1vbAE5Sg27Y--Mv67CzJz2vQ63g-6XZcn-UFJi9ooxVPZf06bbd_ePim9dYrl-y8xGj9Sq5Kb_WvylnbhuHX3gob3aDq8L_mwMS0hUr-yD7QOrjBmLm5KptCm36uOmlaiehGgF1a_02G6VMx8GTPRYtbVWXZTLPdjBtdNVKK-L3ZgWuh1bxFugxWMlhIu1Pv-OtB48aT6XjaqCLLkeeEFQFLqdggmE7YOuHoxEgneE04IApUdc3qH6yOccCnvNU_A9Ws7-WGmtXFFeP3hg2lW2JSlTq6Q25Xc4ZO1eS9SzpJ1iP9aYG7MvnZBd2hsq1mU9EjN1TB1AtozZKqNViAtZevJAU37LbTs0dufYySIKtyscNN--pB98i3ijkoMgfVmIPCbKctc9CXyBqvqGSMd1RjCzlQsgVFtqAaW9wnx--9o925UZUXMQIwU7hhBVHAwlgAZqmQG_BMsHHIrEREYHOC3i3CGBTslDlhEnABQHMu7GjEInsSgp3xgGxneZb0CU0Ej4Tg8XjM0d80Cp1xwlOOQQvMjE02IH3AxD9XCWR8Ha4BeVED1fwuA0PY5K9xOxLFZlCw-olBmeOR_3k5808XH2x7uf_JPxmQZzXMPogK3P8LsiQvC18ad1xYA_Jaon_l-_xm7j-83vBH5GbL-I_J9npVJk_IVhGXTyvm-QPl2NNP |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mineral+Dust+Entrainment+and+Deposition+%28DEAD%29+model%3A+Description+and+1990s+dust+climatology&rft.jtitle=Journal+of+Geophysical+Research%3A+Atmospheres&rft.au=Zender%2C+Charles+S.&rft.au=Bian%2C+Huisheng&rft.au=Newman%2C+David&rft.date=2003-07-27&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=108&rft.issue=D14&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2002JD002775&rft.externalDBID=10.1029%252F2002JD002775&rft.externalDocID=JGRD10106 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |