Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology

We describe a model for predicting the size‐resolved distribution of atmospheric dust for climate and chemistry‐related studies. The dust distribution from 1990 to 1999 is simulated with our mineral aerosol entrainment and deposition module embedded in a chemical transport model. Mobilization proces...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research - Atmospheres Vol. 108; no. D14; pp. 4416 - n/a
Main Authors: Zender, Charles S., Bian, Huisheng, Newman, David
Format: Journal Article
Language:English
Published: American Geophysical Union 27-07-2003
Blackwell Publishing Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We describe a model for predicting the size‐resolved distribution of atmospheric dust for climate and chemistry‐related studies. The dust distribution from 1990 to 1999 is simulated with our mineral aerosol entrainment and deposition module embedded in a chemical transport model. Mobilization processes include entrainment thresholds for saltation, moisture inhibition, drag partitioning, and saltation feedback. For mobilization we assume that soil texture is globally uniform and is replete with saltators. Soil erodibility is prescribed by a new physically based geomorphic index that is proportional to the runoff area upstream of each source region. Dry deposition processes include sedimentation and turbulent mix‐out. Nucleation scavenging and size‐resolved washout in both stratiform and convective cloud types are represented. Simulations of the 1990s broadly agree with station observations and satellite‐inferred dust distributions. Without invoking anthropogenic mechanisms the model captures the seasonal migration of the transatlantic African dust plume, and it captures the spring maximum in Asian dust outflow and concentration over the Pacific. We estimate the 1990s global annual mean and variability of D < 10 μm dust to be the following: emissions, 1490 ± 160 Tg yr−1; burden, 17 ± 2 Tg; and optical depth at 0.63 μm, 0.030 ± 0.004. This emission, burden, and optical depth are significantly lower than some recent estimates. The model underestimates transport and deposition of East Asian and Australian dust to some regions of the Pacific Ocean. An underestimate of long‐range transport of particles larger than 3 μm contributes to this bias. Our experiments support the hypothesis that dust emission “hot spots” exist in regions where alluvial sediments have accumulated and may be disturbed.
AbstractList We describe a model for predicting the size-resolved distribution of atmospheric dust for climate and chemistry-related studies. The dust distribution from 1990 to 1999 is simulated with our mineral aerosol entrainment and deposition module embedded in a chemical transport model. Mobilization processes include entrainment thresholds for saltation, moisture inhibition, drag partitioning, and saltation feedback. For mobilization we assume that soil texture is globally uniform and is replete with saltators. Soil erodibility is prescribed by a new physically based geomorphic index that is proportional to the runoff area upstream of each source region. Dry deposition processes include sedimentation and turbulent mix-out. Nucleation scavenging and size-resolved washout in both stratiform and convective cloud types are represented. Simulations of the 1990s broadly agree with station observations and satellite- inferred dust distributions. Without invoking anthropogenic mechanisms the model captures the seasonal migration of the transatlantic African dust plume, and it captures the spring maximum in Asian dust outflow and concentration over the Pacific. We estimate the 1990s global annual mean and variability of D < 10 mu m dust to be the following: emissions, 1490 plus or minus 160 Tg yr super(-1); burden, 17 plus or minus 2 Tg; and optical depth at 0.63 mu m, 0.030 plus or minus 0.004. This emission, burden, and optical depth are significantly lower than some recent estimates. The model underestimates transport and deposition of East Asian and Australian dust to some regions of the Pacific Ocean. An underestimate of long-range transport of particles larger than 3 mu m contributes to this bias. Our experiments support the hypothesis that dust emission 'hot spots' exist in regions where alluvial sediments have accumulated and may be disturbed.
We describe a model for predicting the size‐resolved distribution of atmospheric dust for climate and chemistry‐related studies. The dust distribution from 1990 to 1999 is simulated with our mineral aerosol entrainment and deposition module embedded in a chemical transport model. Mobilization processes include entrainment thresholds for saltation, moisture inhibition, drag partitioning, and saltation feedback. For mobilization we assume that soil texture is globally uniform and is replete with saltators. Soil erodibility is prescribed by a new physically based geomorphic index that is proportional to the runoff area upstream of each source region. Dry deposition processes include sedimentation and turbulent mix‐out. Nucleation scavenging and size‐resolved washout in both stratiform and convective cloud types are represented. Simulations of the 1990s broadly agree with station observations and satellite‐inferred dust distributions. Without invoking anthropogenic mechanisms the model captures the seasonal migration of the transatlantic African dust plume, and it captures the spring maximum in Asian dust outflow and concentration over the Pacific. We estimate the 1990s global annual mean and variability of D < 10 μm dust to be the following: emissions, 1490 ± 160 Tg yr −1 ; burden, 17 ± 2 Tg; and optical depth at 0.63 μm, 0.030 ± 0.004. This emission, burden, and optical depth are significantly lower than some recent estimates. The model underestimates transport and deposition of East Asian and Australian dust to some regions of the Pacific Ocean. An underestimate of long‐range transport of particles larger than 3 μm contributes to this bias. Our experiments support the hypothesis that dust emission “hot spots” exist in regions where alluvial sediments have accumulated and may be disturbed.
We describe a model for predicting the size‐resolved distribution of atmospheric dust for climate and chemistry‐related studies. The dust distribution from 1990 to 1999 is simulated with our mineral aerosol entrainment and deposition module embedded in a chemical transport model. Mobilization processes include entrainment thresholds for saltation, moisture inhibition, drag partitioning, and saltation feedback. For mobilization we assume that soil texture is globally uniform and is replete with saltators. Soil erodibility is prescribed by a new physically based geomorphic index that is proportional to the runoff area upstream of each source region. Dry deposition processes include sedimentation and turbulent mix‐out. Nucleation scavenging and size‐resolved washout in both stratiform and convective cloud types are represented. Simulations of the 1990s broadly agree with station observations and satellite‐inferred dust distributions. Without invoking anthropogenic mechanisms the model captures the seasonal migration of the transatlantic African dust plume, and it captures the spring maximum in Asian dust outflow and concentration over the Pacific. We estimate the 1990s global annual mean and variability of D < 10 μm dust to be the following: emissions, 1490 ± 160 Tg yr−1; burden, 17 ± 2 Tg; and optical depth at 0.63 μm, 0.030 ± 0.004. This emission, burden, and optical depth are significantly lower than some recent estimates. The model underestimates transport and deposition of East Asian and Australian dust to some regions of the Pacific Ocean. An underestimate of long‐range transport of particles larger than 3 μm contributes to this bias. Our experiments support the hypothesis that dust emission “hot spots” exist in regions where alluvial sediments have accumulated and may be disturbed.
Author Bian, Huisheng
Newman, David
Zender, Charles S.
Author_xml – sequence: 1
  givenname: Charles S.
  surname: Zender
  fullname: Zender, Charles S.
  email: zender@uci.edu
  organization: Department of Earth System Science, University of California at Irvine, California, Irvine, USA
– sequence: 2
  givenname: Huisheng
  surname: Bian
  fullname: Bian, Huisheng
  organization: Department of Earth System Science, University of California at Irvine, California, Irvine, USA
– sequence: 3
  givenname: David
  surname: Newman
  fullname: Newman, David
  organization: Department of Earth System Science, University of California at Irvine, California, Irvine, USA
BookMark eNp90M9P2zAUB3ALMWml47Y7OU0gLZv97DjuboiUsq7lxzRAmiZZTuIgQ2J3dqrR_x6XTIhd5sPz4X3e01dvD-1aZzVC7wn-RDBMPgPGMC9iyfNsB42AZDwFwLCLRpgwkWKA_C3aD-Eex8cyzjAZoV9LY7VXbVKsQ59Mbe-VsZ22faJsnRR65YLpjbPJYTE9Lo6SztW6_RIbofJm9dzZQjKZ4JDU2x1VazrVu9bdbd6hN41qg97_-4_R9en0x8lZuriYfT05XqQqY5inRFUKyloQljUi5hcMBOQlEC2qPAcQVJR1zmgDrNSKixidc0GrDCo6KQmjY_Rh2Lvy7vdah152JlS6bZXVbh0k4SSjXJAIPw6w8i4Erxu58jGt30iC5faK8vUVI6cD_2NavfmvlfPZ94JggnmcSocpE3r9-DKl_IPkOY309nwmfy6_UXp-eSVvoj8YvLpbv-h_cjwBpdKKxg
CitedBy_id crossref_primary_10_5194_acp_23_10677_2023
crossref_primary_10_1007_s11270_015_2481_8
crossref_primary_10_1029_2018MS001287
crossref_primary_10_5194_acp_23_9993_2023
crossref_primary_10_5194_gmd_15_8181_2022
crossref_primary_10_1016_j_atmosenv_2015_05_046
crossref_primary_10_1029_2019GL086867
crossref_primary_10_5194_acp_22_2095_2022
crossref_primary_10_1029_2003JD004381
crossref_primary_10_1007_s00382_019_04925_8
crossref_primary_10_1525_elementa_185
crossref_primary_10_1016_j_atmosenv_2007_04_047
crossref_primary_10_5194_acp_18_4201_2018
crossref_primary_10_1016_j_earscirev_2016_01_006
crossref_primary_10_5194_acp_16_12667_2016
crossref_primary_10_5194_acp_24_1193_2024
crossref_primary_10_1016_j_aeolia_2016_05_003
crossref_primary_10_1017_S1089332600002977
crossref_primary_10_1016_j_fmre_2024_02_004
crossref_primary_10_1021_acs_est_1c04779
crossref_primary_10_5194_acp_10_6409_2010
crossref_primary_10_1007_s12517_014_1730_2
crossref_primary_10_1007_s13143_013_0009_y
crossref_primary_10_1021_la0487343
crossref_primary_10_1029_2007GL030262
crossref_primary_10_5194_gmd_13_2879_2020
crossref_primary_10_1016_j_atmosenv_2006_09_048
crossref_primary_10_5194_acp_18_16253_2018
crossref_primary_10_1029_2005GB002541
crossref_primary_10_1007_s12040_014_0466_4
crossref_primary_10_1016_j_atmosenv_2018_03_025
crossref_primary_10_1029_2019JD031807
crossref_primary_10_1016_j_atmosenv_2013_01_013
crossref_primary_10_1021_ac3017373
crossref_primary_10_1029_2018GL079376
crossref_primary_10_5194_acp_23_13911_2023
crossref_primary_10_1029_2020EA001392
crossref_primary_10_1016_j_atmosenv_2019_116883
crossref_primary_10_5194_gmd_9_607_2016
crossref_primary_10_1175_1520_0442_2003_016_3617_TROEWO_2_0_CO_2
crossref_primary_10_1029_2005JD006832
crossref_primary_10_5194_acp_22_14489_2022
crossref_primary_10_3390_ijerph18126587
crossref_primary_10_1016_j_palaeo_2020_109728
crossref_primary_10_1029_2021MS002909
crossref_primary_10_3389_feart_2020_00226
crossref_primary_10_1029_2006JD007444
crossref_primary_10_1029_2006JD007443
crossref_primary_10_1007_s00382_008_0464_9
crossref_primary_10_1029_2005JD006850
crossref_primary_10_1016_j_jclepro_2024_142493
crossref_primary_10_1029_2022RG000796
crossref_primary_10_1029_2008JD010476
crossref_primary_10_5194_acp_10_8649_2010
crossref_primary_10_1016_j_catena_2021_105160
crossref_primary_10_1029_2018GL081225
crossref_primary_10_1029_2005JD006847
crossref_primary_10_3390_atmos15050531
crossref_primary_10_1016_j_atmosenv_2018_11_063
crossref_primary_10_1029_2007JD008427
crossref_primary_10_1038_s41467_018_03997_0
crossref_primary_10_1029_2007JD008443
crossref_primary_10_5194_gmd_14_7673_2021
crossref_primary_10_1016_j_aeolia_2011_02_001
crossref_primary_10_1002_2016JD025939
crossref_primary_10_1016_j_aeolia_2011_02_002
crossref_primary_10_1016_j_marchem_2012_07_006
crossref_primary_10_3390_atmos12070872
crossref_primary_10_1016_j_aeolia_2014_02_002
crossref_primary_10_5194_acp_20_12939_2020
crossref_primary_10_1073_pnas_2001674117
crossref_primary_10_1016_j_atmosenv_2018_05_060
crossref_primary_10_5194_gmd_16_5339_2023
crossref_primary_10_1175_JCLI_D_20_0803_1
crossref_primary_10_1007_s13143_022_00281_6
crossref_primary_10_5194_acp_16_1491_2016
crossref_primary_10_2151_sola_2017_006
crossref_primary_10_1016_j_aeolia_2016_12_002
crossref_primary_10_1029_2008JD011541
crossref_primary_10_3402_tellusb_v67_27170
crossref_primary_10_1016_j_aeolia_2016_12_005
crossref_primary_10_5194_acp_9_1095_2009
crossref_primary_10_1029_2003JD004374
crossref_primary_10_1155_2012_850704
crossref_primary_10_5194_acp_13_10733_2013
crossref_primary_10_5194_acp_22_9583_2022
crossref_primary_10_5194_amt_8_3577_2015
crossref_primary_10_1029_2019GL084211
crossref_primary_10_1016_j_jqsrt_2009_04_004
crossref_primary_10_1029_2006GL027771
crossref_primary_10_1029_2006GL028623
crossref_primary_10_5194_acp_21_8111_2021
crossref_primary_10_1175_2009JTECHA1231_1
crossref_primary_10_1029_2020JD032807
crossref_primary_10_1016_j_aeolia_2018_07_004
crossref_primary_10_5194_acp_15_11117_2015
crossref_primary_10_1038_ncomms15333
crossref_primary_10_1016_j_scitotenv_2010_09_025
crossref_primary_10_5194_gmd_8_3999_2015
crossref_primary_10_1029_2012JD017611
crossref_primary_10_1016_j_aeolia_2021_100769
crossref_primary_10_1007_s11027_023_10070_9
crossref_primary_10_5194_acp_20_10545_2020
crossref_primary_10_1016_j_atmosres_2019_104812
crossref_primary_10_5194_acp_11_13001_2011
crossref_primary_10_1002_jgrd_50842
crossref_primary_10_5194_acp_16_6771_2016
crossref_primary_10_1016_j_aeolia_2015_09_004
crossref_primary_10_5194_acp_14_13043_2014
crossref_primary_10_1016_j_aeolia_2013_09_002
crossref_primary_10_1016_j_jaridenv_2005_06_029
crossref_primary_10_1016_j_atmosres_2012_12_013
crossref_primary_10_1029_2006JG000334
crossref_primary_10_1007_s13143_013_0027_9
crossref_primary_10_1002_2016JD025333
crossref_primary_10_1002_joc_3909
crossref_primary_10_1038_s41561_023_01254_8
crossref_primary_10_1016_j_atmosenv_2023_119584
crossref_primary_10_5194_acp_12_1_2012
crossref_primary_10_1002_qj_736
crossref_primary_10_1016_j_aeolia_2016_11_001
crossref_primary_10_3390_ijerph15040736
crossref_primary_10_1007_s13351_014_3296_z
crossref_primary_10_1016_j_geomorph_2007_12_014
crossref_primary_10_1002_qj_719
crossref_primary_10_5194_gmd_14_5789_2021
crossref_primary_10_1029_2007JD009741
crossref_primary_10_3390_app10134536
crossref_primary_10_1029_2020PA004046
crossref_primary_10_1126_sciadv_abe6102
crossref_primary_10_1016_j_scitotenv_2021_149307
crossref_primary_10_3390_land11020176
crossref_primary_10_1016_j_atmosres_2020_105364
crossref_primary_10_1029_2012MS000150
crossref_primary_10_1002_esp_4714
crossref_primary_10_1175_2009JCLI2847_1
crossref_primary_10_1029_2020MS002346
crossref_primary_10_5194_acp_13_3777_2013
crossref_primary_10_1016_j_atmosenv_2015_07_022
crossref_primary_10_5194_gmd_17_3507_2024
crossref_primary_10_1016_j_atmosenv_2015_07_023
crossref_primary_10_1029_2019JD030799
crossref_primary_10_1029_2020GL088978
crossref_primary_10_1029_2002JD003143
crossref_primary_10_1029_2020JD033942
crossref_primary_10_1002_2014JD022646
crossref_primary_10_1016_j_gloplacha_2006_07_024
crossref_primary_10_5194_gmd_13_3817_2020
crossref_primary_10_1029_2004JD004912
crossref_primary_10_5194_acp_12_11199_2012
crossref_primary_10_5194_bg_15_6659_2018
crossref_primary_10_1016_j_still_2023_105910
crossref_primary_10_1007_s11157_012_9282_y
crossref_primary_10_1029_2019JD030967
crossref_primary_10_1002_2017GL072584
crossref_primary_10_5194_acp_12_10209_2012
crossref_primary_10_5194_acp_10_8821_2010
crossref_primary_10_1002_2017JD026780
crossref_primary_10_1088_1748_9326_ac31ec
crossref_primary_10_3390_land11060819
crossref_primary_10_1029_2005JD005907
crossref_primary_10_1029_2019JD030961
crossref_primary_10_1007_s00376_009_8170_z
crossref_primary_10_1016_j_earscirev_2016_12_010
crossref_primary_10_1029_2020JF005545
crossref_primary_10_1007_s40333_018_0100_4
crossref_primary_10_1175_JCLI_D_12_00029_1
crossref_primary_10_1175_JCLI4056_1
crossref_primary_10_1029_2008GB003240
crossref_primary_10_1016_j_apr_2019_01_008
crossref_primary_10_5194_acp_21_10295_2021
crossref_primary_10_1080_02786826_2021_1888866
crossref_primary_10_1002_2015JD024713
crossref_primary_10_5194_gmd_12_3835_2019
crossref_primary_10_1029_2006JD007832
crossref_primary_10_1007_s40333_022_0066_0
crossref_primary_10_5194_acp_12_10857_2012
crossref_primary_10_1007_s00382_023_06706_w
crossref_primary_10_5194_gmd_4_85_2011
crossref_primary_10_1007_s00376_009_9023_5
crossref_primary_10_3390_atmos10120790
crossref_primary_10_1002_qj_770
crossref_primary_10_5194_acp_22_2909_2022
crossref_primary_10_1007_s13351_017_6142_2
crossref_primary_10_5194_acp_18_10615_2018
crossref_primary_10_2139_ssrn_2603176
crossref_primary_10_5194_acp_19_2947_2019
crossref_primary_10_1029_2006JD007801
crossref_primary_10_1016_j_scitotenv_2021_149980
crossref_primary_10_5194_gmd_11_1929_2018
crossref_primary_10_1016_j_atmosenv_2017_09_008
crossref_primary_10_1016_j_marchem_2008_08_003
crossref_primary_10_5194_bg_12_5771_2015
crossref_primary_10_5194_acp_11_3263_2011
crossref_primary_10_1016_j_aeolia_2019_100560
crossref_primary_10_5194_acp_14_2245_2014
crossref_primary_10_1016_j_atmosenv_2020_117771
crossref_primary_10_1002_2017JD027642
crossref_primary_10_1029_2008JD009871
crossref_primary_10_5194_acp_10_3999_2010
crossref_primary_10_5194_acp_24_4265_2024
crossref_primary_10_1029_2007GL029971
crossref_primary_10_5194_bg_16_1525_2019
crossref_primary_10_1016_j_quascirev_2010_09_007
crossref_primary_10_1002_esp_5312
crossref_primary_10_1175_JCLI_D_16_0776_1
crossref_primary_10_5194_cp_17_1091_2021
crossref_primary_10_1016_j_aeolia_2015_07_009
crossref_primary_10_5194_acp_8_6907_2008
crossref_primary_10_1007_s10653_015_9685_0
crossref_primary_10_1002_2015JD023282
crossref_primary_10_1016_j_scitotenv_2023_162335
crossref_primary_10_1016_j_atmosenv_2022_119446
crossref_primary_10_5194_acp_11_1255_2011
crossref_primary_10_3390_geosciences11110458
crossref_primary_10_1029_2020MS002413
crossref_primary_10_5194_acp_20_13835_2020
crossref_primary_10_1016_j_atmosres_2011_07_012
crossref_primary_10_1029_2019JD030248
crossref_primary_10_1007_s12665_016_5403_1
crossref_primary_10_1029_2008JD010956
crossref_primary_10_1016_j_atmosres_2013_11_007
crossref_primary_10_5194_acp_17_769_2017
crossref_primary_10_1029_2008JD010952
crossref_primary_10_1029_2021JD034564
crossref_primary_10_1002_jgrd_50685
crossref_primary_10_1002_2013JD020997
crossref_primary_10_1002_2013JD020996
crossref_primary_10_5194_gmd_13_3241_2020
crossref_primary_10_1016_j_atmosres_2020_105302
crossref_primary_10_1039_D1EA00101A
crossref_primary_10_1029_2004JD004574
crossref_primary_10_1029_2009JD012995
crossref_primary_10_1029_2020GL089688
crossref_primary_10_5194_acp_15_12231_2015
crossref_primary_10_1175_2007JCLI1766_1
crossref_primary_10_1029_2008JD009955
crossref_primary_10_3390_cli3030627
crossref_primary_10_1016_j_aeolia_2016_02_002
crossref_primary_10_1029_2010JD014709
crossref_primary_10_5194_gmd_14_5487_2021
crossref_primary_10_2151_jmsj_83A_255
crossref_primary_10_5194_gmd_11_4909_2018
crossref_primary_10_1016_j_jaridenv_2014_11_002
crossref_primary_10_5194_acp_14_4749_2014
crossref_primary_10_5572_KOSAE_2009_25_6_539
crossref_primary_10_1029_2021GB007184
crossref_primary_10_1017_S0016774600001566
crossref_primary_10_5194_acp_13_3547_2013
crossref_primary_10_1002_jgrf_20040
crossref_primary_10_1080_16742834_2015_1126154
crossref_primary_10_1007_s00703_015_0390_4
crossref_primary_10_1016_j_gloplacha_2006_03_001
crossref_primary_10_1016_j_atmosenv_2016_12_035
crossref_primary_10_1029_2011GL050455
crossref_primary_10_1038_s43247_023_00825_2
crossref_primary_10_3390_s19245530
crossref_primary_10_5194_acp_22_8989_2022
crossref_primary_10_1029_2023JD040058
crossref_primary_10_1029_2020MS002456
crossref_primary_10_1016_j_atmosenv_2009_03_054
crossref_primary_10_1029_2020GB006787
crossref_primary_10_5194_bg_5_631_2008
crossref_primary_10_1016_j_geoderma_2024_116958
crossref_primary_10_5194_amt_9_1113_2016
crossref_primary_10_1029_2007GC001813
crossref_primary_10_1029_2018JF004713
crossref_primary_10_1029_2008JD009923
crossref_primary_10_1002_esp_3321
crossref_primary_10_1002_2016GL067911
crossref_primary_10_1029_2005JD006059
crossref_primary_10_1002_2014JD022471
crossref_primary_10_5194_gmd_14_6403_2021
crossref_primary_10_1029_2023MS003636
crossref_primary_10_1016_j_scitotenv_2023_163452
crossref_primary_10_5194_acp_16_8227_2016
crossref_primary_10_1016_j_epsl_2007_02_033
crossref_primary_10_1038_ngeo2912
crossref_primary_10_1007_s10653_018_0203_z
crossref_primary_10_1016_j_earscirev_2008_03_001
crossref_primary_10_1029_2021JF006073
crossref_primary_10_1029_2020MS002431
crossref_primary_10_5194_acp_19_523_2019
crossref_primary_10_1016_j_quaint_2010_11_009
crossref_primary_10_1002_2016MS000723
crossref_primary_10_1007_s00704_012_0760_5
crossref_primary_10_1007_s11270_024_07018_3
crossref_primary_10_5194_amt_14_309_2021
crossref_primary_10_1038_s41612_022_00250_w
crossref_primary_10_1016_j_aeolia_2012_10_010
crossref_primary_10_1360_TB_2022_0476
crossref_primary_10_5194_acp_22_12873_2022
crossref_primary_10_1016_j_atmosenv_2022_119234
crossref_primary_10_1029_2019JD030470
crossref_primary_10_5194_acp_12_7903_2012
crossref_primary_10_5194_gmd_9_3199_2016
crossref_primary_10_1029_2021JD035629
crossref_primary_10_1002_qj_927
crossref_primary_10_5194_acp_18_12551_2018
crossref_primary_10_1029_2019GB006513
crossref_primary_10_5194_acp_11_11521_2011
crossref_primary_10_5194_acp_20_10401_2020
crossref_primary_10_5194_acp_21_57_2021
crossref_primary_10_1016_j_gloplacha_2006_02_002
crossref_primary_10_1002_jgrd_50036
crossref_primary_10_1016_j_chemosphere_2015_03_037
crossref_primary_10_1016_j_geoderma_2012_06_019
crossref_primary_10_1016_j_gloplacha_2006_02_005
crossref_primary_10_5194_acp_24_4105_2024
crossref_primary_10_1029_2010JD014527
crossref_primary_10_1007_s12517_019_4580_0
crossref_primary_10_1007_s00382_020_05307_1
crossref_primary_10_1029_2023JD038584
crossref_primary_10_5194_acp_12_2933_2012
crossref_primary_10_1002_2017GL076353
crossref_primary_10_1016_j_atmosenv_2017_06_015
crossref_primary_10_1016_j_jmarsys_2008_05_015
crossref_primary_10_1126_sciadv_adg3715
crossref_primary_10_1029_2005JD006653
crossref_primary_10_1007_s00382_019_04944_5
crossref_primary_10_1029_2007JF000758
crossref_primary_10_5194_acp_17_3253_2017
crossref_primary_10_1016_j_palaeo_2015_05_028
crossref_primary_10_1029_2009JD013682
crossref_primary_10_5194_gmd_14_3741_2021
crossref_primary_10_1016_j_jaridenv_2021_104637
crossref_primary_10_1029_2009JD013207
crossref_primary_10_1038_s41598_017_05431_9
crossref_primary_10_1002_2017JD027267
crossref_primary_10_5194_acp_21_17433_2021
crossref_primary_10_1029_2003GL017880
crossref_primary_10_1029_2018GL077346
crossref_primary_10_1016_j_epsl_2010_04_010
crossref_primary_10_1029_2009JD012390
crossref_primary_10_1029_2006JD007690
crossref_primary_10_1007_s11869_016_0420_5
crossref_primary_10_1016_j_apr_2023_101953
crossref_primary_10_1002_2014EF000290
crossref_primary_10_5194_acp_6_5143_2006
crossref_primary_10_1029_2019MS001766
crossref_primary_10_1016_j_earscirev_2009_12_001
crossref_primary_10_1088_1748_9326_abc718
crossref_primary_10_5194_acp_15_12011_2015
crossref_primary_10_1016_j_envsoft_2008_06_006
crossref_primary_10_5194_acp_21_3973_2021
crossref_primary_10_1029_2003JD004456
crossref_primary_10_1002_grl_50409
crossref_primary_10_1029_2006GL025827
crossref_primary_10_1016_j_atmosenv_2021_118689
crossref_primary_10_1029_2022JD036457
crossref_primary_10_1016_j_atmosenv_2008_08_037
crossref_primary_10_1007_s11069_022_05722_z
crossref_primary_10_1029_2023JD039479
crossref_primary_10_1029_2019GL085739
crossref_primary_10_5194_acp_11_11689_2011
crossref_primary_10_1029_2008JD011180
crossref_primary_10_5194_acp_14_1239_2014
crossref_primary_10_5194_acp_8_3473_2008
crossref_primary_10_1016_j_atmosres_2020_104892
crossref_primary_10_1029_2003GL018501
crossref_primary_10_1016_j_atmosenv_2012_06_029
crossref_primary_10_1007_s00382_015_2600_7
crossref_primary_10_1029_2012GB004301
crossref_primary_10_1029_2019JD032233
crossref_primary_10_1029_2018GL081861
crossref_primary_10_1029_2019JD031388
crossref_primary_10_1029_2006JD008344
crossref_primary_10_1016_j_atmosenv_2017_04_010
crossref_primary_10_1029_2020JD034459
crossref_primary_10_1016_j_powtec_2021_08_071
crossref_primary_10_5194_acp_21_2745_2021
crossref_primary_10_1029_2004JD005674
crossref_primary_10_1016_j_rse_2006_09_009
crossref_primary_10_1016_j_foreco_2011_12_005
crossref_primary_10_1038_s41467_017_02774_9
crossref_primary_10_1016_j_atmosenv_2008_09_069
crossref_primary_10_1016_j_scitotenv_2021_149189
crossref_primary_10_1016_j_gloplacha_2006_02_011
crossref_primary_10_5194_acp_11_6049_2011
crossref_primary_10_1175_JAS_D_18_0287_1
crossref_primary_10_5194_acp_20_55_2020
crossref_primary_10_1016_j_atmosenv_2021_118241
crossref_primary_10_1002_2014JD022062
crossref_primary_10_1029_2019MS001737
crossref_primary_10_1029_2017JD028125
crossref_primary_10_1175_2008JCLI2116_1
crossref_primary_10_1016_j_jaridenv_2015_01_008
crossref_primary_10_1038_s41598_017_09458_w
crossref_primary_10_5194_acp_14_10411_2014
crossref_primary_10_5194_gmd_17_1387_2024
crossref_primary_10_1175_MWR_D_18_0103_1
crossref_primary_10_5194_acp_22_6393_2022
crossref_primary_10_1016_j_atmosenv_2011_06_078
crossref_primary_10_1088_1755_1307_7_1_012018
crossref_primary_10_1016_j_rse_2023_113982
crossref_primary_10_1039_C3EM00641G
crossref_primary_10_1016_j_atmosenv_2019_05_042
crossref_primary_10_1029_2006JD007988
crossref_primary_10_1016_j_jaerosci_2020_105634
crossref_primary_10_1175_JCLI_D_18_0742_1
crossref_primary_10_1029_2020JD034263
crossref_primary_10_1088_1755_1307_7_1_012012
crossref_primary_10_1029_2008JD010154
crossref_primary_10_1029_2021JD035093
crossref_primary_10_1002_grl_50143
crossref_primary_10_5194_acp_22_7207_2022
crossref_primary_10_1029_2018JD029095
crossref_primary_10_1016_j_atmosenv_2019_04_017
crossref_primary_10_1029_2010JD014155
crossref_primary_10_1029_2022JD036955
crossref_primary_10_1002_grl_50591
crossref_primary_10_5194_acp_11_479_2011
crossref_primary_10_5194_gmd_3_43_2010
crossref_primary_10_1029_2008JD011236
crossref_primary_10_1038_s41467_022_29468_1
crossref_primary_10_5194_acp_16_10809_2016
crossref_primary_10_1016_j_scitotenv_2020_139174
crossref_primary_10_1016_j_aeolia_2018_01_008
crossref_primary_10_1016_j_aeolia_2018_10_003
crossref_primary_10_1029_2005JD006937
crossref_primary_10_5194_acp_17_7193_2017
crossref_primary_10_5194_acp_22_8639_2022
crossref_primary_10_5194_acp_7_3309_2007
crossref_primary_10_5194_acp_23_4149_2023
crossref_primary_10_5194_acp_23_6487_2023
crossref_primary_10_1016_j_atmosenv_2011_05_023
crossref_primary_10_1029_2004JD005082
crossref_primary_10_1039_D1EA00081K
crossref_primary_10_1029_2019JD030836
crossref_primary_10_21443_1560_9278_2022_25_1_61_73
crossref_primary_10_5194_acp_14_13023_2014
crossref_primary_10_1029_2017MS001219
crossref_primary_10_1016_j_atmosenv_2023_120044
crossref_primary_10_1007_s11707_016_0561_8
crossref_primary_10_5194_bg_6_779_2009
crossref_primary_10_1029_2021MS002845
crossref_primary_10_1002_2016JD024758
crossref_primary_10_1029_2012JD017907
crossref_primary_10_1021_jp910045u
crossref_primary_10_3390_rs11010004
crossref_primary_10_5194_acp_13_7097_2013
crossref_primary_10_1016_j_scitotenv_2023_162808
crossref_primary_10_1002_2013JD021099
crossref_primary_10_1016_j_atmosenv_2016_06_041
crossref_primary_10_1029_2003JD004222
crossref_primary_10_1002_esp_1719
crossref_primary_10_1029_2005JD006717
crossref_primary_10_5194_gmd_11_989_2018
crossref_primary_10_1029_2021RG000762
crossref_primary_10_1175_JCLI3605_1
crossref_primary_10_1007_s10546_016_0140_2
crossref_primary_10_5194_acp_21_1889_2021
crossref_primary_10_1016_j_marchem_2008_11_002
crossref_primary_10_1016_j_orggeochem_2014_07_004
crossref_primary_10_5194_acp_6_4687_2006
crossref_primary_10_1029_2022GL102470
crossref_primary_10_5194_acp_21_17665_2021
crossref_primary_10_1029_2008JD011444
crossref_primary_10_1126_sciadv_aau2768
crossref_primary_10_1016_j_yqres_2010_01_001
crossref_primary_10_1029_2003JD004233
crossref_primary_10_1016_j_rser_2017_06_043
crossref_primary_10_5194_acp_12_10545_2012
crossref_primary_10_5572_KOSAE_2013_29_2_186
crossref_primary_10_1029_2023GL106540
crossref_primary_10_5194_acp_12_7825_2012
crossref_primary_10_1016_j_rse_2006_02_020
crossref_primary_10_5572_KOSAE_2019_35_2_149
crossref_primary_10_1016_j_rser_2015_03_099
crossref_primary_10_1029_2004JD005276
crossref_primary_10_1016_j_envpol_2017_03_066
crossref_primary_10_3390_rs14153593
crossref_primary_10_5194_essd_14_2785_2022
crossref_primary_10_1029_2004JD005037
crossref_primary_10_1002_2016GL069324
crossref_primary_10_5194_acp_11_1989_2011
crossref_primary_10_1016_j_envsoft_2015_12_021
crossref_primary_10_1029_2021RG000745
crossref_primary_10_1029_2021JD036384
crossref_primary_10_1111_j_1600_0889_2006_00209_x
crossref_primary_10_1029_2006JD007767
crossref_primary_10_5194_acp_9_2441_2009
crossref_primary_10_5194_acp_23_5023_2023
crossref_primary_10_5194_acp_22_3553_2022
crossref_primary_10_3389_feart_2022_802658
crossref_primary_10_5194_acp_16_8157_2016
crossref_primary_10_1029_2021EF002252
crossref_primary_10_5194_acp_14_1441_2014
crossref_primary_10_1016_j_marchem_2013_09_005
crossref_primary_10_1029_2004JD005288
crossref_primary_10_1029_2005JD006502
crossref_primary_10_1029_2008GL035587
crossref_primary_10_1088_1755_1315_358_2_022058
crossref_primary_10_1016_j_scitotenv_2016_03_086
crossref_primary_10_1029_2012JD017966
crossref_primary_10_1016_j_aeolia_2020_100592
crossref_primary_10_1002_2016JD025482
crossref_primary_10_5194_acp_23_10163_2023
crossref_primary_10_1029_2023WR035517
crossref_primary_10_1029_2007GB002975
crossref_primary_10_1002_2017JD027719
crossref_primary_10_1016_j_rse_2023_113581
crossref_primary_10_1002_2016JD025472
crossref_primary_10_1029_2002JD003039
crossref_primary_10_5194_bg_16_831_2019
crossref_primary_10_3390_atmos6111771
crossref_primary_10_1088_1748_9326_acf479
crossref_primary_10_1029_2005GC000977
crossref_primary_10_1016_j_atmosenv_2016_08_022
crossref_primary_10_1029_2007GB002964
crossref_primary_10_1029_2006GL026339
crossref_primary_10_1007_s00704_021_03871_y
crossref_primary_10_1002_2015JD023304
crossref_primary_10_1021_acs_est_2c01175
crossref_primary_10_1080_01431161_2018_1524589
crossref_primary_10_1016_j_aeolia_2015_01_001
crossref_primary_10_1029_2020GL090924
crossref_primary_10_5194_gmd_12_33_2019
crossref_primary_10_1016_j_psep_2019_09_012
crossref_primary_10_1007_s00382_021_05690_3
crossref_primary_10_1002_2015JD024424
crossref_primary_10_1002_2015JD023338
crossref_primary_10_5194_acp_15_9897_2015
crossref_primary_10_1029_2008JD011624
crossref_primary_10_5194_acp_18_12845_2018
crossref_primary_10_1029_2007GB002984
crossref_primary_10_1007_s10533_023_01089_w
crossref_primary_10_5194_acp_11_7781_2011
crossref_primary_10_1088_1748_9326_aa65a4
crossref_primary_10_5194_acp_16_14775_2016
crossref_primary_10_1002_qj_844
crossref_primary_10_1080_02786826_2020_1769837
crossref_primary_10_1029_2021JD034614
crossref_primary_10_1029_2004GL021272
crossref_primary_10_5194_acp_16_15097_2016
crossref_primary_10_1175_MWR_D_14_00198_1
crossref_primary_10_1371_journal_pone_0165616
crossref_primary_10_1029_2006JG000236
crossref_primary_10_5194_gmd_15_8669_2022
crossref_primary_10_5572_KOSAE_2016_32_3_256
crossref_primary_10_1029_2021GL097287
crossref_primary_10_5194_gmd_9_1683_2016
crossref_primary_10_1038_s41561_023_01264_6
crossref_primary_10_5194_acp_17_14181_2017
crossref_primary_10_5194_gmd_6_929_2013
crossref_primary_10_3390_atmos5040889
crossref_primary_10_1007_s11270_006_1895_8
crossref_primary_10_1029_2006GL026126
crossref_primary_10_1002_jgrd_50515
crossref_primary_10_1029_2003JD004067
crossref_primary_10_1038_s41467_022_35147_y
crossref_primary_10_1071_EN09122
crossref_primary_10_5194_acp_17_993_2017
crossref_primary_10_1080_16742834_2017_1320935
crossref_primary_10_1029_2003GB002145
crossref_primary_10_1029_2008JD010995
crossref_primary_10_5194_acp_10_10771_2010
crossref_primary_10_1016_j_atmosenv_2011_08_035
crossref_primary_10_1111_j_1600_0889_2006_00238_x
crossref_primary_10_1007_s00382_011_1078_1
crossref_primary_10_1016_j_earscirev_2006_06_004
crossref_primary_10_1073_pnas_2007513117
crossref_primary_10_1007_s00382_020_05222_5
crossref_primary_10_1002_2015JD023742
crossref_primary_10_1071_EN09116
crossref_primary_10_1063_5_0129481
crossref_primary_10_1007_s13143_013_0002_5
crossref_primary_10_1016_j_envpol_2016_03_021
crossref_primary_10_1029_2011GB004186
crossref_primary_10_5194_gmd_16_6087_2023
crossref_primary_10_1029_2003JD004085
crossref_primary_10_1029_2011JD016909
crossref_primary_10_1029_2007JD008973
crossref_primary_10_5194_acp_11_1929_2011
crossref_primary_10_1016_j_dynatmoce_2014_07_002
crossref_primary_10_5194_amt_12_5741_2019
crossref_primary_10_3390_rs10101595
crossref_primary_10_1175_BAMS_D_12_00121_1
crossref_primary_10_5194_bg_10_851_2013
crossref_primary_10_5194_gmd_8_341_2015
crossref_primary_10_1002_2016JD025886
crossref_primary_10_3389_fenvs_2022_877874
crossref_primary_10_1029_2024JD040826
crossref_primary_10_5194_gmd_7_1409_2014
crossref_primary_10_1016_j_geoderma_2016_01_011
crossref_primary_10_1002_2017JD026677
crossref_primary_10_1002_joc_4093
crossref_primary_10_1016_j_geoderma_2018_05_038
crossref_primary_10_1007_s13351_023_2195_6
crossref_primary_10_1007_s11430_016_9051_0
crossref_primary_10_1029_2006GB002711
crossref_primary_10_1038_s41467_022_35403_1
crossref_primary_10_5194_gmd_14_4249_2021
crossref_primary_10_1038_s41561_019_0335_5
crossref_primary_10_5194_gmd_10_1107_2017
crossref_primary_10_1029_2021GL095501
crossref_primary_10_1016_j_jaridenv_2008_05_008
crossref_primary_10_1029_2012GL051136
crossref_primary_10_5194_acp_15_9063_2015
crossref_primary_10_1029_2023JD039158
crossref_primary_10_1016_j_atmosres_2012_09_024
crossref_primary_10_1029_2019JF005104
crossref_primary_10_1016_j_aeolia_2011_07_001
crossref_primary_10_1016_j_scitotenv_2020_137896
crossref_primary_10_5194_acp_16_11991_2016
crossref_primary_10_5194_acp_8_7181_2008
crossref_primary_10_1029_2012GL051360
crossref_primary_10_1038_s41558_021_01216_1
crossref_primary_10_5194_gmd_17_1327_2024
crossref_primary_10_1016_j_atmosenv_2023_119831
crossref_primary_10_1029_2019JD032316
crossref_primary_10_1029_2023JD040386
crossref_primary_10_1029_2009JG001115
crossref_primary_10_1016_j_atmosres_2009_09_011
crossref_primary_10_1088_0034_4885_75_10_106901
crossref_primary_10_1088_1748_9326_acf50c
crossref_primary_10_1029_2004JF000281
crossref_primary_10_5194_acp_11_2225_2011
crossref_primary_10_1016_j_envpol_2017_12_025
crossref_primary_10_1029_2006JD007170
crossref_primary_10_3390_atmos9070240
crossref_primary_10_1016_j_palaeo_2020_109585
crossref_primary_10_1016_j_atmosenv_2017_12_014
crossref_primary_10_1029_2008JF001097
crossref_primary_10_1029_2003JD003868
crossref_primary_10_1029_2004JD005746
crossref_primary_10_1002_jgrd_50538
crossref_primary_10_1016_j_atmosenv_2020_117616
crossref_primary_10_1002_2014JD021688
crossref_primary_10_1029_2005JD007007
crossref_primary_10_1029_2003JD003639
crossref_primary_10_1002_2014JD021682
crossref_primary_10_1073_pnas_1014798108
crossref_primary_10_5194_acp_20_15983_2020
crossref_primary_10_5194_acp_12_11057_2012
crossref_primary_10_5194_acp_14_7233_2014
crossref_primary_10_3390_cli3030753
crossref_primary_10_3390_atmos11121282
crossref_primary_10_1371_journal_pone_0268714
crossref_primary_10_1029_2012JD017767
crossref_primary_10_1016_j_solener_2018_08_066
crossref_primary_10_1016_j_jqsrt_2009_02_035
crossref_primary_10_1002_2016MS000874
crossref_primary_10_1016_j_atmosenv_2023_119644
crossref_primary_10_1029_2020GL088020
crossref_primary_10_5194_acp_24_5671_2024
crossref_primary_10_1029_2019JD031414
crossref_primary_10_1175_2010JCLI3378_1
crossref_primary_10_1016_j_jqsrt_2014_05_024
crossref_primary_10_5194_gmd_12_131_2019
crossref_primary_10_5194_acp_22_10115_2022
crossref_primary_10_1016_j_agrformet_2023_109628
crossref_primary_10_1029_2002JD002821
crossref_primary_10_1029_2006JC004061
crossref_primary_10_1002_qj_3497
crossref_primary_10_5194_acp_14_9171_2014
crossref_primary_10_1007_s11869_012_0170_y
crossref_primary_10_1016_j_atmosenv_2015_10_014
crossref_primary_10_1016_j_atmosenv_2019_117163
crossref_primary_10_1029_2004JD005501
crossref_primary_10_1029_2023GB007967
crossref_primary_10_5194_acp_15_537_2015
crossref_primary_10_5194_acp_16_6977_2016
crossref_primary_10_1029_2018JD028363
crossref_primary_10_5194_gmd_11_4603_2018
crossref_primary_10_1029_2009JD012678
crossref_primary_10_5194_acp_19_2787_2019
crossref_primary_10_5194_acp_19_3137_2019
crossref_primary_10_1016_j_epsl_2021_117299
crossref_primary_10_1002_2016JD025020
crossref_primary_10_1016_j_gr_2015_10_002
crossref_primary_10_1038_s41467_020_18258_2
crossref_primary_10_1016_j_atmosenv_2015_10_048
crossref_primary_10_1016_j_aeolia_2022_100852
crossref_primary_10_1016_j_aeolia_2013_11_002
crossref_primary_10_1029_2004JD004861
crossref_primary_10_1016_j_aeolia_2022_100849
crossref_primary_10_1002_2013MS000279
crossref_primary_10_5194_acp_11_5431_2011
crossref_primary_10_5194_acp_10_1689_2010
crossref_primary_10_5194_gmd_13_977_2020
crossref_primary_10_1016_j_agee_2019_01_001
crossref_primary_10_1371_journal_pone_0232746
crossref_primary_10_5194_acp_14_5513_2014
crossref_primary_10_1016_j_atmosenv_2007_08_003
crossref_primary_10_1029_2021GL092443
crossref_primary_10_1029_2009JD012692
crossref_primary_10_1002_2016JD025483
crossref_primary_10_1029_2010RG000328
crossref_primary_10_1146_annurev_marine_010908_163727
crossref_primary_10_1016_j_atmosenv_2018_08_013
crossref_primary_10_1029_2021JD035383
crossref_primary_10_5194_acp_10_3297_2010
crossref_primary_10_1016_j_aeolia_2016_07_002
crossref_primary_10_1002_2013PA002550
crossref_primary_10_1080_16000889_2021_1909815
crossref_primary_10_1177_0309133309341604
crossref_primary_10_1002_2016MS000823
crossref_primary_10_5194_acp_21_6035_2021
crossref_primary_10_1021_acs_est_6b04666
crossref_primary_10_1029_2006JD008216
crossref_primary_10_1016_j_atmosenv_2020_118090
crossref_primary_10_5194_acp_9_3935_2009
crossref_primary_10_5194_acp_17_13391_2017
crossref_primary_10_1016_j_atmosenv_2011_04_061
crossref_primary_10_1016_j_atmosenv_2018_05_032
crossref_primary_10_1016_j_atmosenv_2021_118348
crossref_primary_10_1175_JCLI_D_12_00517_1
crossref_primary_10_1016_j_jaerosci_2009_01_005
crossref_primary_10_1029_2022GH000767
crossref_primary_10_1029_2019JD031081
crossref_primary_10_3390_biology11060842
crossref_primary_10_1029_2008JD011078
crossref_primary_10_1029_2011JD016794
crossref_primary_10_1016_j_chemgeo_2009_02_005
crossref_primary_10_5194_acp_11_873_2011
crossref_primary_10_5194_acp_21_4319_2021
crossref_primary_10_1039_C6RA09601H
crossref_primary_10_5194_acp_18_11345_2018
crossref_primary_10_1016_j_scitotenv_2020_143272
crossref_primary_10_5194_acp_14_5735_2014
crossref_primary_10_1007_s11869_012_0174_7
crossref_primary_10_5194_acp_14_7485_2014
crossref_primary_10_1080_07055900_2017_1356263
crossref_primary_10_1029_2002JD002845
crossref_primary_10_1021_acs_est_0c03754
crossref_primary_10_1029_2005JD006797
crossref_primary_10_5194_acp_24_2287_2024
crossref_primary_10_1029_2004JD005359
crossref_primary_10_3402_tellusb_v66_23191
crossref_primary_10_1029_2003JD003483
crossref_primary_10_1029_2023JD039543
crossref_primary_10_1080_02726351_2012_669029
crossref_primary_10_1016_j_gloplacha_2010_07_009
crossref_primary_10_5194_gmd_14_7189_2021
crossref_primary_10_1007_s10035_019_0934_2
crossref_primary_10_1016_j_jastp_2020_105415
crossref_primary_10_1016_j_jmarsys_2012_11_004
crossref_primary_10_5194_acp_20_7801_2020
crossref_primary_10_5194_gmd_11_3945_2018
crossref_primary_10_1002_2017MS000937
crossref_primary_10_1002_2013JD020046
crossref_primary_10_1002_2017MS000936
crossref_primary_10_1002_2016GB005408
crossref_primary_10_1016_j_atmosenv_2018_06_047
crossref_primary_10_1021_acs_est_2c03967
crossref_primary_10_5194_gmd_5_581_2012
crossref_primary_10_5194_acp_14_3751_2014
crossref_primary_10_1002_met_141
crossref_primary_10_5194_acp_20_829_2020
crossref_primary_10_5194_acp_18_14175_2018
crossref_primary_10_5194_acp_19_14585_2019
crossref_primary_10_1029_2019GB006448
crossref_primary_10_1029_2008JD010195
crossref_primary_10_1002_2014JD023051
crossref_primary_10_1016_j_catena_2019_104337
crossref_primary_10_1029_2018GH000145
crossref_primary_10_1073_pnas_2014761117
crossref_primary_10_1525_elementa_2021_00043
crossref_primary_10_5194_acp_15_3497_2015
crossref_primary_10_1016_j_aeolia_2017_01_001
crossref_primary_10_1002_jpln_200800218
crossref_primary_10_5194_esd_3_121_2012
crossref_primary_10_1029_2008JD011041
crossref_primary_10_1175_JAMC_D_16_0351_1
crossref_primary_10_1038_s41467_017_02620_y
crossref_primary_10_1002_qj_2326
crossref_primary_10_1016_j_atmosenv_2006_11_030
crossref_primary_10_1016_j_atmosenv_2018_07_033
crossref_primary_10_1029_2005JD006579
crossref_primary_10_1016_j_quascirev_2011_09_025
crossref_primary_10_1029_2006JD007129
crossref_primary_10_1007_s11802_015_2472_9
crossref_primary_10_1029_2004GB002402
crossref_primary_10_5194_gmd_6_883_2013
crossref_primary_10_1016_j_atmosenv_2018_06_016
crossref_primary_10_5194_acp_18_3677_2018
crossref_primary_10_1007_s12145_023_00978_w
crossref_primary_10_1029_2009JD012063
crossref_primary_10_3390_rs15071719
crossref_primary_10_1002_grl_50968
crossref_primary_10_1016_j_dsr2_2008_12_006
crossref_primary_10_1016_j_atmosenv_2018_07_043
crossref_primary_10_1029_2020PA003957
crossref_primary_10_1007_s00382_011_1139_5
crossref_primary_10_1002_2014MS000360
Cites_doi 10.1029/2000JD000053
10.1029/JC086iC04p03236
10.1016/S0967-0645(97)88508-6
10.1016/0004-6981(76)90258-4
10.1029/91GB01778
10.1029/97JD02087
10.1016/S1352-2310(99)00236-8
10.1007/BF00155203
10.1029/95JD00690
10.1016/S0034-4257(98)00031-5
10.1029/98JD00207
10.1080/07055900.1995.9649539
10.1029/97JD02298
10.1111/j.1365-3091.1982.tb01713.x
10.1029/1999JD900777
10.1029/93JD00396
10.1029/2000JD900106
10.1029/2002JD002485
10.1029/JD093iD10p12645
10.1034/j.1600-0889.1992.t01-1-00005.x
10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2
10.1029/97JD00960
10.1029/2000JD0000032
10.4141/cjss89-008
10.1029/2002JD003039
10.1029/2000JD900668
10.1029/93JD02456
10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2
10.1016/S0065-2687(08)60142-9
10.1038/320735a0
10.1029/2000JD900795
10.1029/JD095iD09p13927
10.1038/381681a0
10.1029/96JD04009
10.1029/PA005i001p00001
10.1029/95JD02051
10.1175/1520-0477(1998)079<0815:DDASVA>2.0.CO;2
10.1029/1999JD900484
10.1029/2000GL011599
10.1029/96JD02964
10.1007/BF00709229
10.1029/JD090iD01p02391
10.1029/2000JD900498
10.1029/2000GB001360
10.1029/98JD00900
10.1007/s00585-999-0149-7
10.1029/2002JD002097
10.1029/96JD01818
10.1029/2001JD900171
10.1029/96JD03680
10.1029/94JD01928
10.1029/1999JD900169
10.1029/96JD02132
10.1007/978-94-009-9905-3
10.1029/2000RG000095
10.1029/2002GL015248
10.3402/tellusb.v44i4.15464
10.1017/CBO9780511573071
10.1007/978-94-017-3354-0_13
10.1029/1999JD900084
10.1016/0960-1686(93)90021-P
10.1029/2000JD900508
10.1029/93JD03478
10.1175/1520-0442(1998)011<1179:THATCO>2.0.CO;2
10.1029/JD092iD03p03017
10.1175/1520-0450(1997)036<0868:TDASCO>2.0.CO;2
10.1029/92JD00894
10.1029/97JD02779
10.1016/0004-6981(78)90163-4
10.1029/2000JD900339
10.1016/0004-6981(89)90153-4
10.1029/92GB01822
10.1029/2000JD900507
10.1029/2002JD002821
10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2
10.1029/1999JD900072
10.1029/97JD00403
10.1097/00010694-199510000-00009
10.1071/SR9960309
10.1029/JB084iB09p04643
10.1017/S0022112064001173
10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
10.1038/380419a0
10.1038/380416a0
ContentType Journal Article
Copyright 2008 American Geophysical Union
Copyright 2003 by the American Geophysical Union.
Copyright_xml – notice: 2008 American Geophysical Union
– notice: Copyright 2003 by the American Geophysical Union.
DBID BSCLL
AAYXX
CITATION
7TG
7TN
7TV
C1K
F1W
H96
KL.
L.G
DOI 10.1029/2002JD002775
DatabaseName Istex
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Pollution Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Pollution Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
EndPage n/a
ExternalDocumentID 10_1029_2002JD002775
JGRD10106
ark_67375_WNG_ZMK33NPQ_V
2002JD002775
Genre article
GeographicLocations I, Pacific
Australia
Asia
Africa
GeographicLocations_xml – name: Asia
– name: Africa
– name: I, Pacific
– name: Australia
GroupedDBID 1OC
24P
7XC
A
ALMA_UNASSIGNED_HOLDINGS
BENPR
BRXPI
DRFUL
DRSTM
DU5
G-S
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
MSFUL
MSSTM
MXFUL
OA
P-X
WIN
WYJ
12K
AAXRX
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
BSCLL
DCZOG
MEWTI
MXSTM
WHG
WXSBR
XSW
~OA
~~A
AAYXX
CITATION
7TG
7TN
7TV
C1K
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-a5406-1aca2bd8145f8027842827b21e8c7722838bd743f24bea685646683c52c39b143
ISSN 0148-0227
IngestDate Fri Aug 16 22:09:45 EDT 2024
Thu Nov 21 21:06:29 EST 2024
Sat Aug 24 00:45:57 EDT 2024
Wed Oct 30 09:54:54 EDT 2024
Tue Jan 05 21:14:39 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue D14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a5406-1aca2bd8145f8027842827b21e8c7722838bd743f24bea685646683c52c39b143
Notes istex:40C9AFF6656322A2270F7EA61A5E8FA8EF420592
ark:/67375/WNG-ZMK33NPQ-V
ArticleID:2002JD002775
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2002JD002775
PQID 16153681
PQPubID 23462
PageCount 19
ParticipantIDs wiley_primary_10_1029_2002JD002775_JGRD10106
agu_primary_2002JD002775
istex_primary_ark_67375_WNG_ZMK33NPQ_V
crossref_primary_10_1029_2002JD002775
proquest_miscellaneous_16153681
PublicationCentury 2000
PublicationDate 27 July 2003
PublicationDateYYYYMMDD 2003-07-27
PublicationDate_xml – month: 07
  year: 2003
  text: 27 July 2003
  day: 27
PublicationDecade 2000
PublicationTitle Journal of Geophysical Research - Atmospheres
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2003
Publisher American Geophysical Union
Blackwell Publishing Ltd
Publisher_xml – name: American Geophysical Union
– name: Blackwell Publishing Ltd
References Bagnold, R. A., The Physics of Blown Sand and Desert Dunes, Methuen, New York, 1941.
Mahowald, N., K. Kohfeld, M. Hansson, Y. Balkanski, S. P. Harrison, I. C. Printice, M. Schulz, and H. Rodhe, Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments, J. Geophys. Res., 104, 15,895-15,916, 1999.
Dentener, F. J., G. R. Carmichael, Y. Zhang, J. Lelieveld, and P. J. Crutzen, Role of mineral aerosol as a reactive surface in the global troposphere, J. Geophys. Res., 101, 22,869-22,889, 1996.
Patterson, E. M., Optical properties of the crustal aerosol: Relation to chemical and physical characteristics, J. Geophys. Res., 86, 3236-3246, 1981.
Sokolik, I. N., A. V. Andronova, and T. C. Johnson, Complex refractive index of atmospheric dust aerosols, Atmos. Environ., Part A, 27, 2495-2502, 1993.
Woodward, S., Modeling the atmospheric lifecycle and radiative impact of mineral dust in the Hadley Centre climate model, J. Geophys. Res., 106, 18,155-18,166, 2001.
D'Almeida, G. A., On the variability of desert aerosol radiative characteristics, J. Geophys. Res., 92, 3017-3026, 1987.
Bonan, G. B., S. Levis, L. Kergoat, and K. W. Oleson, Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models, Global Biogeochem. Cycles, 16(2), 1021, doi:10.1029/2000GB001360, 2002.
Holtslag, A. A. M., and B. A. Boville, Local versus non-local boundary layer diffusion in a global climate model, J. Clim., 6, 1825-1842, 1993.
Alfaro, S.,C., A. Gaudichet, L. Gomes, and M. Maillé, Modeling the size distribution of a soil aerosol produced by sandblasting, J. Geophys. Res., 102, 11,239-11,249, 1997.
Rasch, P. J., N. M. Mahowald, and B. E. Eaton, Representations of transport, convection, and the hydrologic cycle in chemical transport models: Implications for the modeling of short-lived and soluble species, J. Geophys. Res., 102, 28,127-28,138, 1997.
Zender, C. S., D. J. Newman, and O. Torres, Spatial heterogeneity in aeolian erodibility: Uniform, topographic, geomorphic, and hydrologic hypotheses, J. Geophys., 108, doi:10.1029/2002JD003039, in press, 2003.
Raupach, M. R., Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index, Boundary Layer Meteorol., 71, 211-216, 1994.
Balkanski, Y. J., D. J. Jacob, G. M. Gardner, W. C. Graustein, and K. K. Turekian, Transport and residence times of tropospheric aerosols inferred from a global three-dimensional simulation of 210Pb, J. Geophys. Res., 98, 20,573-20,586, 1993.
Pruppacher, H. R., and J. D. Klett, Microphysics of Clouds and Precipitation, D. Reidel, Norwell, Mass., 1978.
Prospero, J. M., and R. T. Nees, Impact of the North African drought and El Niño on mineral dust in the Barbados trade winds, Nature, 320, 735-738, 1986.
Jenson, S. K., and J. O. Domingue, Extracting topographic structure from digital elevation data for geographic information system analysis, Photogramm. Eng. Remote Sens., 54, 1593-1600, 1988.
Gillette, D. A., B. Marticorena, and G. Bergametti, Change in the aerodynamic roughness height by saltating grains: Experimental assessment, test of theory, and operational parameterization, J. Geophys. Res., 103, 6203-6209, 1998.
Ginoux, P., M. Chin, I. Tegen, J. Prospero, B. Holben, O. Dubovik, and S.-J. Lin, Sources and distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res., 106, 20,255-20,273, 2001.
Grini, A., C. S. Zender, and P. Colarco, Saltation sandblasting behavior during mineral dust aerosol production, Geophys. Res. Lett., 29(18), 1868, doi:10.1029/2002GL015248, 2002.
Tegen, I., A. A. Lacis, and I. Fung, The influence on climate forcing of mineral aerosols from disturbed soils, Nature, 380, 419-422, 1996.
Collins, W. D., P. J. Rasch, B. E. Eaton, D. W. Fillmore, J. T. Kiehl, C. T. Beck, and C. S. Zender, Simulation of aerosol distributions and radiative forcing for INDOEX: Regional climate impacts, J. Geophys. Res., 107(D19), 8028, doi:10.1029/2000JD0000032, 2002.
Kalnay, E., The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77, 437-471, 1996.
Hack, J. J., Parameterization of moist convection in the National Center for Atmospheric Research community climate model (CCM2), J. Geophys. Res., 99, 5551-5568, 1994.
Mahowald, N. M., C. S. Zender, C. Luo, D. Savoie, O. Torres, and J. del Corral, Understanding the 30-year Barbados desert dust record, J. Geophys. Res., 107(D21), 4561, doi:10.1029/2002JD002097, 2002.
Seinfeld, J. H., and S. N. Pandis, Atmospheric Chemistry and Physics, John Wiley, New York, 1997.
Hänel, G., The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air, Adv. Geophys., 19, 73-188, 1976.
Slinn, W. G. N., L. Hasse, B. B. Hicks, A. W. Hogan, D. Lal, P. S. Liss, K. O. Munnich, G. A. Sehmel, and O. Vittori, Some aspects of the transfer of atmospheric trace constituents past the air-sea interface, Atmos. Environ., 12, 2055-2087, 1978.
Genthon, C., Simulations of desert dust and sea-salt aerosols in Antarctica with a general circulation model of the atmosphere, Tellus, Ser. B, 44, 371-389, 1992.
Maring, H., D. L. Savoie, M. A. Izaguirre, C. McCormick, R. Arimoto, J. M. Prospero, and C. Pilinis, Aerosol physical and optical properties and their relationship to aerosol composition in the free troposphere at Izaña, Tenerife, Canary Islands, during July 1995, J. Geophys. Res., 105, 14,677-14,700, 2000.
Swap, R., M. Garstang, S. Greco, R. Talbot, and P. Kållberg, Saharan dust in the Amazon Basin, Tellus, Ser. B, 44, 133-149, 1992.
White, B. R., Soil transport by winds on Mars, J. Geophys. Res., 84, 4643-4651, 1979.
Martin, J. H., Glacial-interglacial CO2 change: The iron hypothesis, Paleoceanography, 5, 1-13, 1990.
Husar, R. B., J. M. Prospero, and L. L. Stowe, Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product, J. Geophys. Res., 102, 16,889-16,909, 1997.
Prospero, J. M., Long-term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality, J. Geophys. Res., 104, 15,917-15,928, 1999.
Reid, J. S., et al., Comparison of size and morphological measurements of coarse mode dust particles from Africa, J. Geophys. Res, doi:10.1029/2002JD002485, in press, 2003.
Sokolik, I. N., D. M. Winker, G. Bergametti, D. A. Gillette, G. Carmichael, Y. J. Kaufman, L. Gomes, L. Schuetz, and J. E. Penner, Introduction to special section: Outstanding problems in quantifying the radiative impacts of mineral dust, J. Geophys. Res., 106, 18,015-18,027, 2001.
Shao, Y., and L. M. Leslie, Wind erosion prediction over the Australian continent, J. Geophys. Res., 102, 30,091-30,105, 1997.
Webb, R. S., C. E. Rosenzweig, and E. R. Levine, Specifying land surface characteristics in general circulation models: soil profile data set and derived water-holding capacities, Global Biogeochem. Cycles, 7, 97-108, 1993.
Chin, M., et al., Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements, J. Atmos. Sci., 59, 461-483, 2002.
Holben, B. N., et al., AERONET: A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1-16, 1998.
Gillette, D. A., E. Hardebeck, and J. Parker, Large-scale variability of wind erosion mass flux rates at Owens Lake: 2. Role of roughness change, particle limitation, change of threshold friction velocity, and the Owen effect, J. Geophys. Res., 102, 25,989-25,998, 1997.
Greeley, R., and J. D. Iversen, Wind as a Geological Process, Cambridge Planet. Sci., Ser., vol. 4, Cambridge Univ. Press, New York, 1985.
Prospero, J. M., P. Ginoux, O. Torres, and S. Nicholson, Environmental characterization of global sources of atmospheric soil dust derived from the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product, Rev. Geophys., 40(1), 1002, doi:10.1029/2000RG000095, 2002.
Collins, W. D., P. J. Rasch, B. E. Eaton, B. Khattatov, J.-F. Lamarque, and C. S. Zender, Forecasting aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX, J. Geophys. Res., 106, 7313-7336, 2001.
Shinn, E. A., G. Smith, J. Prospero, P. Betzer, M. Hayes, V. Garrison, and R. Barber, African dust and the demise of Caribbean coral reefs, Geophys. Res. Lett., 27, 3029-3032, 2000.
Zhang, Y., C. Seigneur, J. H. Seinfeld, M. Jacobson, S. L. Clegg, and F. S. Binkowski, A comparative review of inorganic aerosol thermodynamic equilibrium modules: Similarities, differences, and their likely causes, Atmos. Environ., 34, 117-137, 2000.
Duce, R., et al., The atmospheric input of trace species to the world ocean, Global Biogeochem. Cycles, 5, 193-259, 1991.
Li, X., H. Maring, D. Savoie, K. Voss, and J. M. Prospero, Dominance of mineral dust in aerosol light-scattering in the North Atlantic trade winds, Nature, 380, 416-419, 1996.
Torres, O., P. K. Bhartia, J. R. Herman, Z. Ahmad, and J. Gleason, Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis, J. Geophys. Res., 103, 17,099-17,110, 1998.
Guieu, C., R. Chester, M. Nimmo, J. M. Martin, S. Guerzoni, E. Nicolas, J. Mateu, and S. Keyse, Atmospheric input of dissolved and particulate metals to the northwestern Mediterranean, Deep Sea Res., Part II, 44, 655-674, 1997.
McKenna-Neuman, C., and W. G. Nickling, A theoretical and wind tunnel investigation of the effect of capillarity water on the entrainment of sediment by wind, Can. J. Soil Sci., 69, 79-96, 1989.
Perlwitz, J., I. Tegen, and R. L. Miller, Interactive soil dust aerosol model in the GISS GCM: 1. Sensitivity of the soil dust cycle to radiative properties of soil dust aerosols, J. Geophys. Res., 106, 18,167-18,192, 2001.
Sokolik, I.
2002; 16
1990; 95
1993; 7
2002; 59
1993; 27
1997; 44
1995; 33
1996; 381
1996; 380
1992; 97
1996; 101
1981; 86
2001; 106
1978
1996; 34
1993; 6
1996; 77
1997; 102
1980; 37
1982; 29
2001
2002; 40
1999; 17
1987
2002; 107
1941
1985; 90
1984
1982
1992; 44
1994; 71
1995; 160
1998; 11
1989; 23
2000; 27
1978; 12
1985; 4
1987; 92
1988; 54
1997
1996
1964; 20
2003
1991
1996; 57
1996; 16
1999; 104
1988; 93
1989; 69
1998; 66
1991; 5
1999
1976; 10
2003; 108
2002; 29
2000; 34
2000; 105
1986; 320
1993; 98
1997; 36
1964
1994; 99
1998; 103
1995; 100
1999; 72
1992; 60
1990; 5
1979; 84
1976; 19
1998; 79
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
Jenson S. K. (e_1_2_7_41_1) 1988; 54
e_1_2_7_49_1
e_1_2_7_90_1
Gillette D. A. (e_1_2_7_23_1) 1999; 72
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_33_1
e_1_2_7_56_1
Hillel D. (e_1_2_7_36_1) 1982
e_1_2_7_37_1
e_1_2_7_79_1
Cogley J. G. (e_1_2_7_13_1) 1991
e_1_2_7_8_1
Pye K. (e_1_2_7_66_1) 1987
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
Bagnold R. A. (e_1_2_7_6_1) 1941
Seinfeld J. H. (e_1_2_7_75_1) 1997
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
Genthon C. (e_1_2_7_21_1) 1992; 44
e_1_2_7_20_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
Shettle E. P. (e_1_2_7_81_1) 1984
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
Belly P. Y. (e_1_2_7_9_1) 1964
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_35_1
e_1_2_7_39_1
Andreae M. O. (e_1_2_7_4_1) 1996
e_1_2_7_80_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_91_1
Prospero J. M. (e_1_2_7_61_1) 1996
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
Penner J. E. (e_1_2_7_58_1) 2001
e_1_2_7_38_1
Kergoat L. (e_1_2_7_43_1) 1999
References_xml – volume: 106
  start-page: 7337
  year: 2001
  end-page: 7355
  article-title: Understanding the Indian Ocean Experiment INDOEX aerosol distributions with an aerosol assimilation
  publication-title: J. Geophys. Res.
– volume: 6
  start-page: 1825
  year: 1993
  end-page: 1842
  article-title: Local versus non‐local boundary layer diffusion in a global climate model
  publication-title: J. Clim.
– volume: 105
  start-page: 1367
  year: 2000
  end-page: 1386
  article-title: A description of the global sulfur cycle and its controlling processes in the National Center for Atmospheric Research Community Climate Model, version 3
  publication-title: J. Geophys. Res.
– year: 2003
  article-title: Comparison of size and morphological measurements of coarse mode dust particles from Africa
  publication-title: J. Geophys. Res
– volume: 34
  start-page: 309
  year: 1996
  end-page: 342
  article-title: A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region
  publication-title: Aust. J. Soil Res.
– volume: 106
  start-page: 7313
  year: 2001
  end-page: 7336
  article-title: Forecasting aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX
  publication-title: J. Geophys. Res.
– start-page: 74
  year: 1984
  end-page: 77
– volume: 106
  start-page: 18,167
  year: 2001
  end-page: 18,192
  article-title: Interactive soil dust aerosol model in the GISS GCM: 1. Sensitivity of the soil dust cycle to radiative properties of soil dust aerosols
  publication-title: J. Geophys. Res.
– volume: 93
  start-page: 12,645
  year: 1988
  end-page: 12,662
  article-title: Threshold friction velocities for dust production for agricultural soils
  publication-title: J. Geophys. Res.
– volume: 11
  start-page: 1151
  year: 1998
  end-page: 1178
  article-title: The hydrologic and thermodynamic characteristics of the NCAR CCM3
  publication-title: J. Clim.
– volume: 102
  start-page: 28,127
  year: 1997
  end-page: 28,138
  article-title: Representations of transport, convection, and the hydrologic cycle in chemical transport models: Implications for the modeling of short‐lived and soluble species
  publication-title: J. Geophys. Res.
– volume: 27
  start-page: 2495
  year: 1993
  end-page: 2502
  article-title: Complex refractive index of atmospheric dust aerosols
  publication-title: Atmos. Environ., Part A
– start-page: 291
  year: 2001
  end-page: 336
– volume: 90
  start-page: 2391
  year: 1985
  end-page: 2408
  article-title: Atmospheric trace elements at Enewetak Atoll: 2. Transport to the ocean by wet and dry deposition
  publication-title: J. Geophys. Res.
– volume: 102
  start-page: 11,239
  year: 1997
  end-page: 11,249
  article-title: Modeling the size distribution of a soil aerosol produced by sandblasting
  publication-title: J. Geophys. Res.
– volume: 59
  start-page: 461
  year: 2002
  end-page: 483
  article-title: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements
  publication-title: J. Atmos. Sci.
– volume: 29
  start-page: 111
  year: 1982
  end-page: 119
  article-title: Saltation threshold on Earth, Mars, and Venus
  publication-title: Sedimentology
– volume: 102
  start-page: 16,911
  year: 1997
  end-page: 16,922
  article-title: Global distribution of UV‐absorbing aerosols from Nimbus 7/TOMS data
  publication-title: J. Geophys. Res.
– volume: 54
  start-page: 1593
  year: 1988
  end-page: 1600
  article-title: Extracting topographic structure from digital elevation data for geographic information system analysis
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 103
  start-page: 17,099
  year: 1998
  end-page: 17,110
  article-title: Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis
  publication-title: J. Geophys. Res.
– volume: 102
  start-page: 16,889
  year: 1997
  end-page: 16,909
  article-title: Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product
  publication-title: J. Geophys. Res.
– volume: 380
  start-page: 419
  year: 1996
  end-page: 422
  article-title: The influence on climate forcing of mineral aerosols from disturbed soils
  publication-title: Nature
– volume: 108
  year: 2003
  article-title: Interannual variability in atmospheric mineral aerosols from a 22‐year model simulation and observational data
  publication-title: J. Geophys. Res.
– year: 1964
– volume: 105
  start-page: 14,677
  year: 2000
  end-page: 14,700
  article-title: Aerosol physical and optical properties and their relationship to aerosol composition in the free troposphere at Izaña, Tenerife, Canary Islands, during July 1995
  publication-title: J. Geophys. Res.
– volume: 106
  start-page: 20,239
  year: 2001
  end-page: 20,254
  article-title: A model for mineral dust emission
  publication-title: J. Geophys. Res.
– volume: 102
  start-page: 4387
  year: 1997
  end-page: 4404
  article-title: Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources
  publication-title: J. Geophys. Res.
– year: 1987
– volume: 5
  start-page: 1
  year: 1990
  end-page: 13
  article-title: Glacial‐interglacial CO change: The iron hypothesis
  publication-title: Paleoceanography
– volume: 40
  issue: 1
  year: 2002
  article-title: Environmental characterization of global sources of atmospheric soil dust derived from the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product
  publication-title: Rev. Geophys.
– volume: 102
  start-page: 25,989
  year: 1997
  end-page: 25,998
  article-title: Large‐scale variability of wind erosion mass flux rates at Owens Lake: 2. Role of roughness change, particle limitation, change of threshold friction velocity, and the Owen effect
  publication-title: J. Geophys. Res.
– volume: 4
  year: 1985
– volume: 66
  start-page: 1
  year: 1998
  end-page: 16
  article-title: AERONET: A federated instrument network and data archive for aerosol characterization
  publication-title: Remote Sens. Environ.
– volume: 98
  start-page: 20,573
  year: 1993
  end-page: 20,586
  article-title: Transport and residence times of tropospheric aerosols inferred from a global three‐dimensional simulation of Pb
  publication-title: J. Geophys. Res.
– volume: 17
  start-page: 149
  year: 1999
  end-page: 157
  article-title: Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi‐arid areas
  publication-title: Ann. Geophys.
– volume: 102
  start-page: 16,923
  year: 1997
  end-page: 16,934
  article-title: Development, validation, and potential enhancements to the second‐generation operational aerosol product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration
  publication-title: J. Geophys. Res.
– volume: 380
  start-page: 416
  year: 1996
  end-page: 419
  article-title: Dominance of mineral dust in aerosol light‐scattering in the North Atlantic trade winds
  publication-title: Nature
– volume: 101
  start-page: 22,869
  year: 1996
  end-page: 22,889
  article-title: Role of mineral aerosol as a reactive surface in the global troposphere
  publication-title: J. Geophys. Res.
– volume: 103
  start-page: 6203
  year: 1998
  end-page: 6209
  article-title: Change in the aerodynamic roughness height by saltating grains: Experimental assessment, test of theory, and operational parameterization
  publication-title: J. Geophys. Res.
– volume: 104
  start-page: 24,273
  year: 1999
  end-page: 24,279
  article-title: Threshold friction velocities for large pebble gravel beds
  publication-title: J. Geophys. Res.
– volume: 98
  start-page: 12,719
  year: 1993
  end-page: 12,726
  article-title: Effect of saltation bombardment on the entrainment of dust by wind
  publication-title: J. Geophys. Res.
– start-page: 133
  year: 1996
  end-page: 151
– volume: 381
  start-page: 681
  year: 1996
  end-page: 683
  article-title: Direct radiative forcing by anthropogenic airborne mineral aerosols
  publication-title: Nature
– volume: 7
  start-page: 97
  year: 1993
  end-page: 108
  article-title: Specifying land surface characteristics in general circulation models: soil profile data set and derived water‐holding capacities
  publication-title: Global Biogeochem. Cycles
– volume: 19
  start-page: 73
  year: 1976
  end-page: 188
  article-title: The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air
  publication-title: Adv. Geophys.
– volume: 16
  issue: 2
  year: 2002
  article-title: Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models
  publication-title: Global Biogeochem. Cycles
– volume: 106
  start-page: 18,075
  year: 2001
  end-page: 18,084
  article-title: Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas
  publication-title: J. Geophys. Res.
– volume: 44
  start-page: 133
  year: 1992
  end-page: 149
  article-title: Saharan dust in the Amazon Basin
  publication-title: Tellus, Ser. B
– volume: 99
  start-page: 5551
  year: 1994
  end-page: 5568
  article-title: Parameterization of moist convection in the National Center for Atmospheric Research community climate model (CCM2)
  publication-title: J. Geophys. Res.
– volume: 60
  start-page: 375
  year: 1992
  end-page: 395
  article-title: Drag and drag partition on rough surfaces
  publication-title: Boundary Layer Meteorol.
– volume: 106
  start-page: 20,255
  year: 2001
  end-page: 20,273
  article-title: Sources and distributions of dust aerosols simulated with the GOCART model
  publication-title: J. Geophys. Res.
– year: 1978
– volume: 71
  start-page: 211
  year: 1994
  end-page: 216
  article-title: Simplified expressions for vegetation roughness length and zero‐plane displacement as functions of canopy height and area index
  publication-title: Boundary Layer Meteorol.
– volume: 57
  start-page: 19
  year: 1996
  end-page: 52
– volume: 160
  start-page: 304
  year: 1995
  end-page: 309
  article-title: Threshold wind velocities of wet soils as affected by wind blown sand
  publication-title: Soil Sci.
– volume: 36
  start-page: 868
  year: 1997
  end-page: 882
  article-title: The diurnal and seasonal cycles of wind‐borne dust over Africa North of the equator
  publication-title: J. Appl. Meteorol.
– volume: 92
  start-page: 3017
  year: 1987
  end-page: 3026
  article-title: On the variability of desert aerosol radiative characteristics
  publication-title: J. Geophys. Res.
– volume: 12
  start-page: 2055
  year: 1978
  end-page: 2087
  article-title: Some aspects of the transfer of atmospheric trace constituents past the air‐sea interface
  publication-title: Atmos. Environ.
– start-page: 73
  year: 1999
  end-page: 89
– volume: 99
  start-page: 22,897
  year: 1994
  end-page: 22,914
  article-title: Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness
  publication-title: J. Geophys. Res.
– volume: 100
  start-page: 18,707
  year: 1995
  end-page: 18,726
  article-title: Contribution to the atmospheric mineral aerosol load from land surface modification
  publication-title: J. Geophys. Res.
– year: 1982
– volume: 33
  start-page: 407
  year: 1995
  end-page: 446
  article-title: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model
  publication-title: Atmos. Ocean
– volume: 20
  start-page: 225
  year: 1964
  end-page: 242
  article-title: Saltation of uniform grains in air
  publication-title: J. Fluid Mech.
– volume: 44
  start-page: 371
  year: 1992
  end-page: 389
  article-title: Simulations of desert dust and sea‐salt aerosols in Antarctica with a general circulation model of the atmosphere
  publication-title: Tellus, Ser. B
– volume: 29
  issue: 18
  year: 2002
  article-title: Saltation sandblasting behavior during mineral dust aerosol production
  publication-title: Geophys. Res. Lett.
– volume: 77
  start-page: 437
  year: 1996
  end-page: 471
  article-title: The NCEP/NCAR 40‐year reanalysis project
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 44
  start-page: 655
  year: 1997
  end-page: 674
  article-title: Atmospheric input of dissolved and particulate metals to the northwestern Mediterranean
  publication-title: Deep Sea Res., Part II
– year: 1997
– volume: 103
  start-page: 10,579
  year: 1998
  end-page: 10,592
  article-title: Role of aerosol size distribution and source location in a three‐dimensional simulation of a Saharan dust episode tested against satellite‐derived optical thickness
  publication-title: J. Geophys. Res.
– volume: 10
  start-page: 44
  year: 1976
  end-page: 50
  article-title: Statistical aspects of the washout of polydisperse aerosols
  publication-title: Atmos. Environ.
– volume: 106
  start-page: 18,015
  year: 2001
  end-page: 18,027
  article-title: Introduction to special section: Outstanding problems in quantifying the radiative impacts of mineral dust
  publication-title: J. Geophys. Res.
– volume: 97
  start-page: 11,575
  year: 1992
  end-page: 11,589
  article-title: Sources of nitrate and ozone in the marine boundary layer of the tropical North Atlantic
  publication-title: J. Geophys. Res.
– volume: 69
  start-page: 79
  year: 1989
  end-page: 96
  article-title: A theoretical and wind tunnel investigation of the effect of capillarity water on the entrainment of sediment by wind
  publication-title: Can. J. Soil Sci.
– volume: 86
  start-page: 3236
  year: 1981
  end-page: 3246
  article-title: Optical properties of the crustal aerosol: Relation to chemical and physical characteristics
  publication-title: J. Geophys. Res.
– volume: 84
  start-page: 4643
  year: 1979
  end-page: 4651
  article-title: Soil transport by winds on Mars
  publication-title: J. Geophys. Res.
– volume: 100
  start-page: 16,415
  year: 1995
  end-page: 16,430
  article-title: Modeling the atmospheric dust cycle: 1. Design of a soil‐derived dust emission scheme
  publication-title: J. Geophys. Res.
– year: 1941
– volume: 5
  start-page: 193
  year: 1991
  end-page: 259
  article-title: The atmospheric input of trace species to the world ocean
  publication-title: Global Biogeochem. Cycles
– year: 1996
– volume: 79
  start-page: 815
  year: 1998
  end-page: 829
  article-title: Desertification, drought, and surface vegetation: An example from the West African Sahel
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 104
  start-page: 15,917
  year: 1999
  end-page: 15,928
  article-title: Long‐term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality
  publication-title: J. Geophys. Res.
– volume: 16
  start-page: 347
  year: 1996
  end-page: 398
– volume: 104
  start-page: 16,827
  year: 1999
  end-page: 16,842
  article-title: A new model for dust emission by saltation bombardment
  publication-title: J. Geophys. Res.
– volume: 34
  start-page: 117
  year: 2000
  end-page: 137
  article-title: A comparative review of inorganic aerosol thermodynamic equilibrium modules: Similarities, differences, and their likely causes
  publication-title: Atmos. Environ.
– volume: 104
  start-page: 15,895
  year: 1999
  end-page: 15,916
  article-title: Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments
  publication-title: J. Geophys. Res.
– volume: 107
  issue: D19
  year: 2002
  article-title: Simulation of aerosol distributions and radiative forcing for INDOEX: Regional climate impacts
  publication-title: J. Geophys. Res.
– volume: 108
  year: 2003
  article-title: Spatial heterogeneity in aeolian erodibility: Uniform, topographic, geomorphic, and hydrologic hypotheses
  publication-title: J. Geophys.
– volume: 72
  start-page: 67
  year: 1999
  end-page: 77
  article-title: A qualitative geophysical explanation for “hot spot” dust emitting source regions
  publication-title: Beitr. Phys. Atmos.
– volume: 107
  issue: D21
  year: 2002
  article-title: Understanding the 30‐year Barbados desert dust record
  publication-title: J. Geophys. Res.
– volume: 320
  start-page: 735
  year: 1986
  end-page: 738
  article-title: Impact of the North African drought and El Niño on mineral dust in the Barbados trade winds
  publication-title: Nature
– volume: 27
  start-page: 3029
  year: 2000
  end-page: 3032
  article-title: African dust and the demise of Caribbean coral reefs
  publication-title: Geophys. Res. Lett.
– volume: 37
  start-page: 2712
  year: 1980
  end-page: 2733
  article-title: A model for the spectral albedo of snow, I: Pure snow
  publication-title: J. Atmos. Sci.
– volume: 106
  start-page: 18,155
  year: 2001
  end-page: 18,166
  article-title: Modeling the atmospheric lifecycle and radiative impact of mineral dust in the Hadley Centre climate model
  publication-title: J. Geophys. Res.
– year: 1991
– volume: 102
  start-page: 30,091
  year: 1997
  end-page: 30,105
  article-title: Wind erosion prediction over the Australian continent
  publication-title: J. Geophys. Res.
– volume: 95
  start-page: 13,927
  year: 1990
  end-page: 13,935
  article-title: Submicron desert dusts: A sandblasting process
  publication-title: J. Geophys. Res.
– year: 1999
– volume: 23
  start-page: 1293
  year: 1989
  end-page: 1304
  article-title: Parameterization of surface resistances to gaseous dry deposition in region‐scale numerical models
  publication-title: Atmos. Environ.
– ident: e_1_2_7_26_1
  doi: 10.1029/2000JD000053
– ident: e_1_2_7_57_1
  doi: 10.1029/JC086iC04p03236
– ident: e_1_2_7_31_1
  doi: 10.1016/S0967-0645(97)88508-6
– ident: e_1_2_7_17_1
  doi: 10.1016/0004-6981(76)90258-4
– ident: e_1_2_7_19_1
  doi: 10.1029/91GB01778
– ident: e_1_2_7_67_1
  doi: 10.1029/97JD02087
– ident: e_1_2_7_100_1
  doi: 10.1016/S1352-2310(99)00236-8
– ident: e_1_2_7_70_1
  doi: 10.1007/BF00155203
– ident: e_1_2_7_50_1
  doi: 10.1029/95JD00690
– ident: e_1_2_7_37_1
  doi: 10.1016/S0034-4257(98)00031-5
– ident: e_1_2_7_25_1
  doi: 10.1029/98JD00207
– ident: e_1_2_7_99_1
  doi: 10.1080/07055900.1995.9649539
– ident: e_1_2_7_78_1
  doi: 10.1029/97JD02298
– ident: e_1_2_7_10_1
– ident: e_1_2_7_40_1
  doi: 10.1111/j.1365-3091.1982.tb01713.x
– ident: e_1_2_7_68_1
  doi: 10.1029/1999JD900777
– ident: e_1_2_7_79_1
  doi: 10.1029/93JD00396
– ident: e_1_2_7_49_1
  doi: 10.1029/2000JD900106
– ident: e_1_2_7_72_1
  doi: 10.1029/2002JD002485
– ident: e_1_2_7_22_1
  doi: 10.1029/JD093iD10p12645
– ident: e_1_2_7_88_1
  doi: 10.1034/j.1600-0889.1992.t01-1-00005.x
– ident: e_1_2_7_27_1
– volume-title: Introduction to Soil Physics
  year: 1982
  ident: e_1_2_7_36_1
  contributor:
    fullname: Hillel D.
– ident: e_1_2_7_38_1
  doi: 10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2
– ident: e_1_2_7_24_1
  doi: 10.1029/97JD00960
– ident: e_1_2_7_15_1
  doi: 10.1029/2000JD0000032
– ident: e_1_2_7_54_1
  doi: 10.4141/cjss89-008
– ident: e_1_2_7_98_1
  doi: 10.1029/2002JD003039
– ident: e_1_2_7_59_1
  doi: 10.1029/2000JD900668
– ident: e_1_2_7_7_1
  doi: 10.1029/93JD02456
– ident: e_1_2_7_12_1
  doi: 10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2
– ident: e_1_2_7_34_1
  doi: 10.1016/S0065-2687(08)60142-9
– ident: e_1_2_7_63_1
  doi: 10.1038/320735a0
– volume-title: Atmospheric Chemistry and Physics
  year: 1997
  ident: e_1_2_7_75_1
  contributor:
    fullname: Seinfeld J. H.
– ident: e_1_2_7_97_1
  doi: 10.1029/2000JD900795
– ident: e_1_2_7_28_1
  doi: 10.1029/JD095iD09p13927
– ident: e_1_2_7_84_1
  doi: 10.1038/381681a0
– ident: e_1_2_7_39_1
  doi: 10.1029/96JD04009
– ident: e_1_2_7_52_1
  doi: 10.1029/PA005i001p00001
– ident: e_1_2_7_90_1
  doi: 10.1029/95JD02051
– ident: e_1_2_7_55_1
  doi: 10.1175/1520-0477(1998)079<0815:DDASVA>2.0.CO;2
– ident: e_1_2_7_8_1
  doi: 10.1029/1999JD900484
– ident: e_1_2_7_82_1
  doi: 10.1029/2000GL011599
– ident: e_1_2_7_51_1
  doi: 10.1029/96JD02964
– ident: e_1_2_7_71_1
  doi: 10.1007/BF00709229
– ident: e_1_2_7_5_1
  doi: 10.1029/JD090iD01p02391
– ident: e_1_2_7_86_1
  doi: 10.1029/2000JD900498
– ident: e_1_2_7_11_1
  doi: 10.1029/2000GB001360
– ident: e_1_2_7_92_1
  doi: 10.1029/98JD00900
– ident: e_1_2_7_20_1
  doi: 10.1007/s00585-999-0149-7
– ident: e_1_2_7_47_1
  doi: 10.1029/2002JD002097
– ident: e_1_2_7_18_1
  doi: 10.1029/96JD01818
– ident: e_1_2_7_77_1
  doi: 10.1029/2001JD900171
– ident: e_1_2_7_35_1
  doi: 10.1029/96JD03680
– start-page: 19
  volume-title: Particle Flux in the Ocean
  year: 1996
  ident: e_1_2_7_61_1
  contributor:
    fullname: Prospero J. M.
– ident: e_1_2_7_89_1
  doi: 10.1029/94JD01928
– ident: e_1_2_7_45_1
  doi: 10.1029/1999JD900169
– volume-title: Sand movement by wind
  year: 1964
  ident: e_1_2_7_9_1
  contributor:
    fullname: Belly P. Y.
– volume-title: Global hydrographic data release 2.0
  year: 1991
  ident: e_1_2_7_13_1
  contributor:
    fullname: Cogley J. G.
– ident: e_1_2_7_87_1
  doi: 10.1029/96JD02132
– ident: e_1_2_7_65_1
  doi: 10.1007/978-94-009-9905-3
– ident: e_1_2_7_64_1
  doi: 10.1029/2000RG000095
– start-page: 291
  volume-title: Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2001
  ident: e_1_2_7_58_1
  contributor:
    fullname: Penner J. E.
– ident: e_1_2_7_30_1
  doi: 10.1029/2002GL015248
– volume: 72
  start-page: 67
  year: 1999
  ident: e_1_2_7_23_1
  article-title: A qualitative geophysical explanation for “hot spot” dust emitting source regions
  publication-title: Beitr. Phys. Atmos.
  contributor:
    fullname: Gillette D. A.
– volume: 44
  start-page: 371
  year: 1992
  ident: e_1_2_7_21_1
  article-title: Simulations of desert dust and sea‐salt aerosols in Antarctica with a general circulation model of the atmosphere
  publication-title: Tellus, Ser. B
  doi: 10.3402/tellusb.v44i4.15464
  contributor:
    fullname: Genthon C.
– ident: e_1_2_7_29_1
  doi: 10.1017/CBO9780511573071
– ident: e_1_2_7_60_1
  doi: 10.1007/978-94-017-3354-0_13
– ident: e_1_2_7_46_1
  doi: 10.1029/1999JD900084
– ident: e_1_2_7_85_1
  doi: 10.1016/0960-1686(93)90021-P
– start-page: 347
  volume-title: Future Climates of the World: A Modelling Perspective, World Surv. Climatol.
  year: 1996
  ident: e_1_2_7_4_1
  contributor:
    fullname: Andreae M. O.
– volume-title: The Physics of Blown Sand and Desert Dunes
  year: 1941
  ident: e_1_2_7_6_1
  contributor:
    fullname: Bagnold R. A.
– ident: e_1_2_7_69_1
  doi: 10.1029/2000JD900508
– ident: e_1_2_7_32_1
  doi: 10.1029/93JD03478
– ident: e_1_2_7_33_1
  doi: 10.1175/1520-0442(1998)011<1179:THATCO>2.0.CO;2
– ident: e_1_2_7_16_1
  doi: 10.1029/JD092iD03p03017
– ident: e_1_2_7_53_1
  doi: 10.1175/1520-0450(1997)036<0868:TDASCO>2.0.CO;2
– ident: e_1_2_7_73_1
  doi: 10.1029/92JD00894
– ident: e_1_2_7_74_1
  doi: 10.1029/97JD02779
– ident: e_1_2_7_83_1
  doi: 10.1016/0004-6981(78)90163-4
– ident: e_1_2_7_2_1
  doi: 10.1029/2000JD900339
– ident: e_1_2_7_94_1
  doi: 10.1016/0004-6981(89)90153-4
– ident: e_1_2_7_93_1
  doi: 10.1029/92GB01822
– ident: e_1_2_7_14_1
  doi: 10.1029/2000JD900507
– volume: 54
  start-page: 1593
  year: 1988
  ident: e_1_2_7_41_1
  article-title: Extracting topographic structure from digital elevation data for geographic information system analysis
  publication-title: Photogramm. Eng. Remote Sens.
  contributor:
    fullname: Jenson S. K.
– ident: e_1_2_7_48_1
  doi: 10.1029/2002JD002821
– ident: e_1_2_7_96_1
  doi: 10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2
– ident: e_1_2_7_62_1
  doi: 10.1029/1999JD900072
– ident: e_1_2_7_3_1
  doi: 10.1029/97JD00403
– ident: e_1_2_7_76_1
  doi: 10.1097/00010694-199510000-00009
– ident: e_1_2_7_80_1
  doi: 10.1071/SR9960309
– ident: e_1_2_7_95_1
  doi: 10.1029/JB084iB09p04643
– ident: e_1_2_7_56_1
  doi: 10.1017/S0022112064001173
– start-page: 73
  volume-title: Advances in Environmental and Ecological Modelling
  year: 1999
  ident: e_1_2_7_43_1
  contributor:
    fullname: Kergoat L.
– ident: e_1_2_7_42_1
  doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
– volume-title: Aeolian Dust and Dust Deposits
  year: 1987
  ident: e_1_2_7_66_1
  contributor:
    fullname: Pye K.
– start-page: 74
  volume-title: IRS '84: Current Problems in Atmospheric Radiation
  year: 1984
  ident: e_1_2_7_81_1
  contributor:
    fullname: Shettle E. P.
– ident: e_1_2_7_91_1
  doi: 10.1038/380419a0
– ident: e_1_2_7_44_1
  doi: 10.1038/380416a0
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
Score 2.421572
Snippet We describe a model for predicting the size‐resolved distribution of atmospheric dust for climate and chemistry‐related studies. The dust distribution from...
We describe a model for predicting the size-resolved distribution of atmospheric dust for climate and chemistry-related studies. The dust distribution from...
SourceID proquest
crossref
wiley
istex
agu
SourceType Aggregation Database
Publisher
StartPage 4416
SubjectTerms aerosol climatology
aerosol scavenging
Aerosols
Aerosols and particles
Atmospheric Composition and Structure
Biological and Chemical
Constituent sources and sinks
ecosystem fertilization
Erosion and weathering
mineral deposition
mineral dust aerosol
Oceanography
Planetology
saltation sandblasting
Solid Surface Planets
Title Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology
URI https://api.istex.fr/ark:/67375/WNG-ZMK33NPQ-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2002JD002775
https://search.proquest.com/docview/16153681
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rb9MwELe6VUgICUEBtTz9ASZQCSRO6rp8q5bQaqhl7AVMSFGeCKElU9MI9t9zZ-fhMmliH_gS-VwnUfrz-R4-3xHyPAzCVMRRbIAsiw3HCU1jIibcEGkq7HDC0sDEw8nzw_Hyi3A9x-t06oJdbd9_RRr6AGs8OXsNtJuHQge0AXO4Aupw_SfcFz9kHumhWxbroZfJEhBNILmb1EFaqFm63tRFr4CshoOuATBCm0UEh1sgRIoh1vbAE5Sg27Y--Mv67CzJz2vQ63g-6XZcn-UFJi9ooxVPZf06bbd_ePim9dYrl-y8xGj9Sq5Kb_WvylnbhuHX3gob3aDq8L_mwMS0hUr-yD7QOrjBmLm5KptCm36uOmlaiehGgF1a_02G6VMx8GTPRYtbVWXZTLPdjBtdNVKK-L3ZgWuh1bxFugxWMlhIu1Pv-OtB48aT6XjaqCLLkeeEFQFLqdggmE7YOuHoxEgneE04IApUdc3qH6yOccCnvNU_A9Ws7-WGmtXFFeP3hg2lW2JSlTq6Q25Xc4ZO1eS9SzpJ1iP9aYG7MvnZBd2hsq1mU9EjN1TB1AtozZKqNViAtZevJAU37LbTs0dufYySIKtyscNN--pB98i3ijkoMgfVmIPCbKctc9CXyBqvqGSMd1RjCzlQsgVFtqAaW9wnx--9o925UZUXMQIwU7hhBVHAwlgAZqmQG_BMsHHIrEREYHOC3i3CGBTslDlhEnABQHMu7GjEInsSgp3xgGxneZb0CU0Ej4Tg8XjM0d80Cp1xwlOOQQvMjE02IH3AxD9XCWR8Ha4BeVED1fwuA0PY5K9xOxLFZlCw-olBmeOR_3k5808XH2x7uf_JPxmQZzXMPogK3P8LsiQvC18ad1xYA_Jaon_l-_xm7j-83vBH5GbL-I_J9npVJk_IVhGXTyvm-QPl2NNP
link.rule.ids 315,782,786,27933,27934
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mineral+Dust+Entrainment+and+Deposition+%28DEAD%29+model%3A+Description+and+1990s+dust+climatology&rft.jtitle=Journal+of+Geophysical+Research%3A+Atmospheres&rft.au=Zender%2C+Charles+S.&rft.au=Bian%2C+Huisheng&rft.au=Newman%2C+David&rft.date=2003-07-27&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=108&rft.issue=D14&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2002JD002775&rft.externalDBID=10.1029%252F2002JD002775&rft.externalDocID=JGRD10106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon