UV index climatology over the United States and Canada from ground-based and satellite estimates

Long‐term monthly mean UV index values for Canada and the United States were calculated using information from two sources: from noon erythemal UV estimated from Total Ozone Mapping Spectrometer (TOMS) total ozone and reflectivity data and from UV index values derived from observations of global sol...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research - Atmospheres Vol. 109; no. D22; pp. D22308 - n/a
Main Authors: Fioletov, V. E., Kimlin, M. G., Krotkov, N., McArthur, L. J. B., Kerr, J. B., Wardle, D. I., Herman, J. R., Meltzer, R., Mathews, T. W., Kaurola, J.
Format: Journal Article
Language:English
Published: American Geophysical Union 27-11-2004
Blackwell Publishing Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Long‐term monthly mean UV index values for Canada and the United States were calculated using information from two sources: from noon erythemal UV estimated from Total Ozone Mapping Spectrometer (TOMS) total ozone and reflectivity data and from UV index values derived from observations of global solar radiation, total ozone, dew point, and snow cover. The results are presented as monthly maps of mean noon UV index values. Mean UV index values in summer range from 1.5 in the Arctic to 11.5 over southern Texas. Both climatologies were validated against spectral UV irradiance measurements made by Brewer spectrophotometers. With snow on the ground the TOMS‐based data underestimate UV by up to 60% with respect to Brewer measurements and UV derived from global solar radiation and other parameters. In summer, TOMS UV index climatology values are from 10 to 30% higher than those derived from global solar radiation and other parameters. The difference is probably related to aerosol absorption and pollution effects in the lower troposphere that are not currently detected from space. For 21 of 28 midlatitude Brewer sites, long‐term mean summer UV measured values and UV derived from global solar radiation and other parameters agree to within +5 to −7%. The remaining seven sites are located in “clean” environments where TOMS estimates agree with Brewer measurements while UV derived from global solar radiation and other parameters is 10–13% lower. Brewer data also demonstrate that clean and “typical” sites can be as little as 70–120 km apart.
Bibliography:ark:/67375/WNG-KCPBBFMZ-C
ArticleID:2004JD004820
istex:B532BD05C5E188CEDBB3F817094F158781378E6D
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0148-0227
2156-2202
DOI:10.1029/2004JD004820