On the origin and timing of rapid changes in atmospheric methane during the Last Glacial Period
We present high resolution records of atmospheric methane from the GISP2 (Greenland Ice Sheet Project 2) ice core for four rapid climate transitions that occurred during the past 50 ka: the end of the Younger Dryas at 11.8 ka, the beginning of the Bølling‐Allerød period at 14.8 ka, the beginning of...
Saved in:
Published in: | Global biogeochemical cycles Vol. 14; no. 2; pp. 559 - 572 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
Blackwell Publishing Ltd
01-06-2000
American Geophysical Union |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We present high resolution records of atmospheric methane from the GISP2 (Greenland Ice Sheet Project 2) ice core for four rapid climate transitions that occurred during the past 50 ka: the end of the Younger Dryas at 11.8 ka, the beginning of the Bølling‐Allerød period at 14.8 ka, the beginning of interstadial 8 at 38.2 ka, and the beginning of interstadial 12 at 45.5 ka. During these events, atmospheric methane concentrations increased by 200–300 ppb over time periods of 100–300 years, significantly more slowly than associated temperature and snow accumulation changes recorded in the ice core record. We suggest that the slower rise in methane concentration may reflect the timescale of terrestrial ecosystem response to rapid climate change. We find no evidence for rapid, massive methane emissions that might be associated with large‐scale decomposition of methane hydrates in sediments. With additional results from the Taylor Dome Ice Core (Antarctica) we also reconstruct changes in the interpolar methane gradient (an indicator of the geographical distribution of methane sources) associated with some of the rapid changes in atmospheric methane. The results indicate that the rise in methane at the beginning of the Bølling‐Allerød period and the later rise at the end of the Younger Dryas were driven by increases in both tropical and boreal methane sources. During the Younger Dryas (a 1.3 ka cold period during the last deglaciation) the relative contribution from boreal sources was reduced relative to the early and middle Holocene periods. |
---|---|
AbstractList | We present high resolution records of atmospheric methane from the GISP2 (Greenland Ice Sheet Project 2) ice core for four rapid climate transitions that occurred during the past 50 ka: the end of the Younger Dryas at 11.8 ka, the beginning of the Bølling‐Allerød period at 14.8 ka, the beginning of interstadial 8 at 38.2 ka, and the beginning of interstadial 12 at 45.5 ka. During these events, atmospheric methane concentrations increased by 200–300 ppb over time periods of 100–300 years, significantly more slowly than associated temperature and snow accumulation changes recorded in the ice core record. We suggest that the slower rise in methane concentration may reflect the timescale of terrestrial ecosystem response to rapid climate change. We find no evidence for rapid, massive methane emissions that might be associated with large‐scale decomposition of methane hydrates in sediments. With additional results from the Taylor Dome Ice Core (Antarctica) we also reconstruct changes in the interpolar methane gradient (an indicator of the geographical distribution of methane sources) associated with some of the rapid changes in atmospheric methane. The results indicate that the rise in methane at the beginning of the Bølling‐Allerød period and the later rise at the end of the Younger Dryas were driven by increases in both tropical and boreal methane sources. During the Younger Dryas (a 1.3 ka cold period during the last deglaciation) the relative contribution from boreal sources was reduced relative to the early and middle Holocene periods. We present high resolution records of atmospheric methane from the GISP2 (Greenland Ice Sheet Project 2) ice core for four rapid climate transitions that occurred during the past 50 ka: the end of the Younger Dryas at 11.8 ka, the beginning of the Boelling-Alleroed period at 14.8 ka, the beginning of interstadial 8 at 38.2 ka, and the beginning of interstadial 12 at 45.5 ka. During these events, atmospheric methane concentrations increased by 200-300 ppb over time periods of 100-300 years, significantly more slowly than associated temperature and snow accumulation changes recorded in the ice core record. We suggest that the slower rise in methane concentration may reflect the timescale of terrestrial ecosystem response to rapid climate change. We find no evidence for rapid, massive methane emissions that might be associated with large-scale decomposition of methane hydrates in sediments. With additional results from the Taylor Dome Ice Core (Antarctica) we also reconstruct changes in the interpolar methane gradient (an indicator of the geographical distribution of methane sources) associated with some of the rapid changes in atmospheric methane. The results indicate that the rise in methane at the beginning of the Boelling-Alleroed period and the later rise at the end of the Younger Dryas were driven by increases in both tropical and boreal methane sources. During the Younger Dryas (a 1.3 ka cold period during the last deglaciation) the relative contribution from boreal sources was reduced relative to the early and middle Holocene periods. We present high resolution records of atmospheric methane from the GISP2 (Greenland Ice Sheet Project 2) ice core for four rapid climate transitions that occurred during the past 50 ka: the end of the Younger Dryas at 11.8 ka, the beginning of the Bolling-Allerod period at 14.8 ka, the beginning of interstadial 8 at 38.2 ka, and the beginning of interstadial 12 at 45.5 ka. During these events, atmospheric methane concentrations increased by 200-300 ppb over time periods of 100-300 years, significantly more slowly than associated temperature and snow accumulation changes recorded in the ice core record. We suggest that the slower rise in methane concentration may reflect the timescale of terrestrial ecosystem response to rapid climate change. We find no evidence for rapid, massive methane emissions that might be associated with large-scale decomposition of methane hydrates in sediments. With additional results from the Taylor Dome Ice Core (Antarctica) we also reconstruct changes in the interpolar methane gradient (an indicator of the geographical distribution of methane sources) associated with some of the rapid changes in atmospheric methane. The results indicate that the rise in methane at the beginning of the Bolling-Allerod period and the later rise at the end of the Younger Dryas were driven by increases in both tropical and boreal methane sources. During the Younger Dryas (a 1.3 ka cold period during the last deglaciation) the relative contribution from boreal sources was reduced relative to the early and middle Holocene periods. |
Author | Severinghaus, Jeff Steig, Eric J. Brook, Edward J. Sucher, Cara M. Harder, Susan |
Author_xml | – sequence: 1 givenname: Edward J. surname: Brook fullname: Brook, Edward J. – sequence: 2 givenname: Susan surname: Harder fullname: Harder, Susan – sequence: 3 givenname: Jeff surname: Severinghaus fullname: Severinghaus, Jeff – sequence: 4 givenname: Eric J. surname: Steig fullname: Steig, Eric J. – sequence: 5 givenname: Cara M. surname: Sucher fullname: Sucher, Cara M. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1400276$$DView record in Pascal Francis |
BookMark | eNp9kEtPGzEUha0KpIbHrj_Ai6pi0Sl-e7wkER0qBcIiEhIb647Hk7idR7Anavn3zCiosGJ1F-c7n67OCTrq-s4j9IWSH5Qwc0mNMcWcEEpz9gnNqBEiM4yJIzQjea4yxbj6jE5S-j0yQkozQ3bV4WHrcR_DJnQYugoPoQ3dBvc1jrALFXZb6DY-4Ske2j7ttj4Gh1s_jIHH1T5O-CRZQhpw0YAL0OD7keqrM3RcQ5P8-es9Reuf1-vFTbZcFb8WV8sMJGcs457VXHJXOuDUyNIRqZQjtdC-LEFoACeEV0AlVUaZ0uWVU3QMRK4lCH6Kvh20u9g_7X0abBuS800zftjvk2VUEqWoHsGLD0EqGeHaaKlG9PsBdbFPKfra7mJoIT5bSuy0t32_94h_fTVDctDUEToX0ltHEML0ZCUH7G9o_POHSlvMF9JM5uxQCWnw__5XIP6xSnMt7cNdYfX8tni4U4-W8hd0VJ1U |
CODEN | GBCYEP |
CitedBy_id | crossref_primary_10_1029_2000JD900335 crossref_primary_10_1016_j_epsl_2011_04_038 crossref_primary_10_1002_jqs_2568 crossref_primary_10_5194_bg_3_539_2006 crossref_primary_10_1016_j_quascirev_2009_06_021 crossref_primary_10_1029_2007PA001445 crossref_primary_10_1002_2016GB005570 crossref_primary_10_1016_j_jseaes_2005_06_007 crossref_primary_10_1111_bor_12116 crossref_primary_10_1016_j_epsl_2010_09_027 crossref_primary_10_1029_2010JG001441 crossref_primary_10_1002_2013JD020197 crossref_primary_10_1177_0959683616645942 crossref_primary_10_1016_j_quascirev_2009_10_013 crossref_primary_10_1016_j_quascirev_2014_05_006 crossref_primary_10_1016_j_epsl_2012_06_052 crossref_primary_10_1038_ngeo2147 crossref_primary_10_5194_cp_8_1177_2012 crossref_primary_10_1002_grl_50701 crossref_primary_10_1002_2015JD024235 crossref_primary_10_1177_0959683610387172 crossref_primary_10_1080_01490451_2015_1074321 crossref_primary_10_1016_S1040_6182_03_00111_3 crossref_primary_10_1126_science_aax0504 crossref_primary_10_3189_002214309788816704 crossref_primary_10_4116_jaqua_59_129 crossref_primary_10_1016_j_quascirev_2005_09_005 crossref_primary_10_1126_science_1168909 crossref_primary_10_1029_2005GB002680 crossref_primary_10_1017_qua_2023_75 crossref_primary_10_1016_j_crpv_2004_06_005 crossref_primary_10_5194_cp_11_449_2015 crossref_primary_10_1016_j_quascirev_2014_10_032 crossref_primary_10_5331_seppyo_75_5_343 crossref_primary_10_1016_j_chemgeo_2011_03_003 crossref_primary_10_1016_j_quascirev_2019_03_025 crossref_primary_10_1126_science_1238920 crossref_primary_10_1016_j_quascirev_2005_02_002 crossref_primary_10_1177_0959683610386982 crossref_primary_10_1126_science_1090553 crossref_primary_10_1088_1755_1315_226_1_012023 crossref_primary_10_1098_rsta_2001_0958 crossref_primary_10_1080_10256010108033302 crossref_primary_10_1016_j_epsl_2016_03_035 crossref_primary_10_1126_science_1187651 crossref_primary_10_1038_ngeo1922 crossref_primary_10_1146_annurev_earth_35_081006_131524 crossref_primary_10_3189_172756402781816861 crossref_primary_10_1029_2010GL043584 crossref_primary_10_1098_rsta_2007_2036 crossref_primary_10_3189_002214308784886135 crossref_primary_10_1029_2018GL077881 crossref_primary_10_1016_j_chemgeo_2017_09_021 crossref_primary_10_1016_j_quaint_2008_02_009 crossref_primary_10_1126_science_1262005 crossref_primary_10_1029_2009GB003545 crossref_primary_10_1016_S0033_5894_02_00017_0 crossref_primary_10_1029_2009GB003661 crossref_primary_10_1038_s41561_023_01332_x crossref_primary_10_1016_j_palaeo_2010_05_007 crossref_primary_10_1098_rsta_2007_2044 crossref_primary_10_1098_rsta_2007_2048 crossref_primary_10_5194_cp_7_591_2011 crossref_primary_10_5194_cp_10_903_2014 crossref_primary_10_1038_s43017_020_00106_y crossref_primary_10_2138_am_2019_7068 crossref_primary_10_1016_j_earscirev_2011_04_006 crossref_primary_10_5194_cp_15_1537_2019 crossref_primary_10_1029_2011JG001810 crossref_primary_10_3390_su15129346 crossref_primary_10_1016_j_gca_2009_11_022 crossref_primary_10_1038_ngeo1140 crossref_primary_10_1016_j_yqres_2006_08_006 crossref_primary_10_5194_bg_4_521_2007 crossref_primary_10_1029_2007GB002951 crossref_primary_10_1016_j_quaint_2016_02_052 crossref_primary_10_1073_pnas_1101146108 crossref_primary_10_5194_wcd_1_389_2020 crossref_primary_10_1016_j_ecolecon_2005_05_001 crossref_primary_10_1016_j_epsl_2004_05_007 crossref_primary_10_1016_S0277_3791_01_00139_1 crossref_primary_10_1029_2004GL021004 crossref_primary_10_1017_S0033822200043368 crossref_primary_10_3189_002214307783258530 crossref_primary_10_1007_s00382_005_0058_8 crossref_primary_10_1191_0959683603hl667ft crossref_primary_10_1016_j_epsl_2007_05_004 crossref_primary_10_1007_s00382_011_1147_5 crossref_primary_10_1016_j_gloplacha_2006_11_035 crossref_primary_10_1126_science_1121535 crossref_primary_10_1016_j_orggeochem_2006_10_006 crossref_primary_10_1111_gcb_13400 crossref_primary_10_5194_cp_10_137_2014 crossref_primary_10_1007_s11629_010_1092_5 crossref_primary_10_1029_2003GL017838 crossref_primary_10_1111_j_1365_2486_2007_01339_x crossref_primary_10_1002_jqs_2670 crossref_primary_10_1029_2006GC001341 crossref_primary_10_1126_science_1085293 crossref_primary_10_1126_science_1169473 crossref_primary_10_1029_2010RG000326 crossref_primary_10_1029_2005JG000010 crossref_primary_10_1016_j_quascirev_2008_02_004 crossref_primary_10_1002_2014GB005007 crossref_primary_10_1029_2003JD004417 crossref_primary_10_1029_2003JD004415 crossref_primary_10_1016_j_quascirev_2013_10_022 crossref_primary_10_1038_nature09739 crossref_primary_10_1016_j_gloplacha_2004_02_005 crossref_primary_10_1016_j_quascirev_2008_06_013 crossref_primary_10_1098_rsta_2010_0341 crossref_primary_10_1016_j_epsl_2013_02_034 crossref_primary_10_1016_j_crte_2004_02_004 crossref_primary_10_1029_2000GL012627 crossref_primary_10_1126_science_1172001 crossref_primary_10_1016_j_quascirev_2009_12_010 crossref_primary_10_1038_nature13799 crossref_primary_10_5194_cp_7_1001_2011 crossref_primary_10_1073_pnas_1116619109 crossref_primary_10_1016_j_quascirev_2021_106864 crossref_primary_10_1126_science_1126562 crossref_primary_10_1016_S0012_8252_00_00032_5 crossref_primary_10_1016_j_quascirev_2011_02_005 crossref_primary_10_5194_cp_11_669_2015 crossref_primary_10_5194_cp_7_1075_2011 crossref_primary_10_1002_gbc_20025 crossref_primary_10_1007_s00382_004_0499_5 crossref_primary_10_1029_2007GL029799 crossref_primary_10_7202_008301ar crossref_primary_10_3724_SP_J_1140_2010_01087 crossref_primary_10_1126_science_1142924 crossref_primary_10_1029_2017PA003297 crossref_primary_10_1029_2007GL029551 crossref_primary_10_1016_j_epsl_2008_10_027 crossref_primary_10_1016_j_gsf_2022_101526 crossref_primary_10_1029_2005PA001142 crossref_primary_10_1177_09596836231169993 crossref_primary_10_1016_S0277_3791_03_00135_5 crossref_primary_10_1073_pnas_1013270108 crossref_primary_10_1002_2014JD021618 crossref_primary_10_1029_2003PA000914 crossref_primary_10_5194_cp_5_441_2009 crossref_primary_10_1016_j_gloplacha_2006_03_014 crossref_primary_10_1016_j_palaeo_2008_10_018 crossref_primary_10_1029_2003GB002122 crossref_primary_10_5194_acp_14_3589_2014 crossref_primary_10_1029_2001GL013929 crossref_primary_10_1016_j_pecs_2016_05_001 crossref_primary_10_1016_j_quascirev_2007_01_009 crossref_primary_10_1029_2006GB002889 crossref_primary_10_1130_G24246A_1 crossref_primary_10_1029_2009GL040948 crossref_primary_10_1029_2001GL013366 crossref_primary_10_1006_qres_2001_2276 crossref_primary_10_1007_s00382_010_0829_8 crossref_primary_10_5194_cp_11_1527_2015 crossref_primary_10_1002_2013JD020961 crossref_primary_10_1016_j_gca_2019_11_020 crossref_primary_10_1038_s41467_021_22241_w crossref_primary_10_1038_s41598_018_36519_5 crossref_primary_10_1016_j_quascirev_2008_03_007 crossref_primary_10_3178_jjshwr_23_75 crossref_primary_10_1016_j_earscirev_2016_12_001 crossref_primary_10_1038_s43247_023_00930_2 crossref_primary_10_1029_2004GL020338 crossref_primary_10_5194_cp_13_1227_2017 crossref_primary_10_1038_nature06825 crossref_primary_10_5194_acp_15_7977_2015 crossref_primary_10_5194_bg_10_753_2013 crossref_primary_10_1073_pnas_0510095103 crossref_primary_10_1007_s00367_005_0012_0 crossref_primary_10_1016_j_quascirev_2004_05_002 crossref_primary_10_1016_j_quascirev_2009_05_023 crossref_primary_10_1177_0959683614538074 crossref_primary_10_1016_S0277_3791_02_00082_3 crossref_primary_10_1016_j_epsl_2006_01_002 crossref_primary_10_1029_2005GC001228 crossref_primary_10_5194_bg_10_1963_2013 crossref_primary_10_1007_s00382_015_2502_8 crossref_primary_10_1038_ncomms5078 crossref_primary_10_1146_annurev_energy_32_041706_124700 crossref_primary_10_1130_G20672_1 crossref_primary_10_1016_j_jseaes_2022_105203 crossref_primary_10_1016_j_quascirev_2015_01_004 crossref_primary_10_1175_JCLI_D_11_00667_1 crossref_primary_10_5194_bg_9_3961_2012 crossref_primary_10_1029_2012JD017804 crossref_primary_10_1016_j_palaeo_2005_11_042 crossref_primary_10_1029_2003PA000968 crossref_primary_10_1007_s11090_014_9574_9 crossref_primary_10_1002_2015PA002847 crossref_primary_10_5194_cp_13_943_2017 crossref_primary_10_3402_tellusb_v53i5_16628 crossref_primary_10_1073_pnas_0911387107 crossref_primary_10_1126_science_1072376 crossref_primary_10_1038_443405a crossref_primary_10_1016_j_quascirev_2004_02_015 crossref_primary_10_1038_s43017_023_00436_7 crossref_primary_10_1177_0959683614540728 crossref_primary_10_1029_2004GL021083 crossref_primary_10_1038_ncomms13653 crossref_primary_10_1029_2004GC000699 crossref_primary_10_1130_G23916A_1 crossref_primary_10_1177_0959683607076435 crossref_primary_10_1073_pnas_1613883114 crossref_primary_10_5194_cp_17_1409_2021 crossref_primary_10_1002_wcc_130 crossref_primary_10_5194_bg_15_7155_2018 crossref_primary_10_1038_ngeo2767 crossref_primary_10_5194_cp_5_361_2009 crossref_primary_10_1029_2008GB003330 crossref_primary_10_1177_03091333231169431 crossref_primary_10_1126_science_1131722 crossref_primary_10_1111_j_1469_8137_2011_03849_x crossref_primary_10_1029_2005GB002590 crossref_primary_10_5194_hess_10_903_2006 crossref_primary_10_1016_j_epsl_2010_03_003 crossref_primary_10_1016_j_epsl_2008_01_032 crossref_primary_10_5194_cp_17_1119_2021 crossref_primary_10_1126_science_290_5500_2285 |
Cites_doi | 10.1029/GM112p0165 10.1038/345127a0 10.1038/353122b0 10.1029/97JD01309 10.1029/1999GL010873 10.1029/92JD02383 10.1006/qres.1998.1973 10.1007/BF00037363 10.1006/qres.1998.1967 10.1002/jqs.3390090215 10.1111/1468-0459.00122 10.1006/qres.1998.1966 10.1038/366443a0 10.1016/0031-0182(91)90009-G 10.1006/qres.1995.1079 10.1007/BF00037359 10.1016/0169-5347(94)90309-3 10.1038/332812a0 10.1126/science.273.5278.1087 10.3402/tellusb.v44i4.15456 10.1038/366336a0 10.1029/JD089iD07p11599 10.2172/527444 10.1038/372663a0 10.3402/tellusb.v43i2.15249 10.1038/374046a0 10.1029/96JD02547 10.1029/93GL00776 10.1038/362527a0 10.1126/science.256.5060.1157 10.1111/j.1469-8137.2007.02357.x 10.1126/science.286.5441.930 10.1038/356757a0 10.1038/23432 10.1038/359311a0 10.1016/0004-6981(87)90379-9 10.1016/0012-821X(92)90002-D 10.1038/333655a0 10.1017/S0022143000015239 10.1038/364407a0 10.1126/science.282.5386.92 10.1029/96GB03043 10.1029/97JD01017 10.1126/science.261.5118.198 10.1038/366552a0 10.1029/97JC00633 10.1038/305126a0 10.1038/380051a0 10.1029/93GL02414 10.1126/science.265.5169.195 10.1029/96JD03382 10.1126/science.269.5221.187 10.1038/364794a0 10.3189/S0022143000015835 10.1126/science.286.5440.756 10.3402/tellusb.v45i3.15726 10.1038/34346 10.1029/91JD01247 |
ContentType | Journal Article |
Copyright | Copyright 2000 by the American Geophysical Union. 2000 INIST-CNRS |
Copyright_xml | – notice: Copyright 2000 by the American Geophysical Union. – notice: 2000 INIST-CNRS |
DBID | BSCLL IQODW AAYXX CITATION 7SN 7ST 7TG 7TV 7U6 7UA C1K F1W H96 KL. L.G |
DOI | 10.1029/1999GB001182 |
DatabaseName | Istex Pascal-Francis CrossRef Ecology Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts Pollution Abstracts Sustainability Science Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Ecology Abstracts Pollution Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) Biology |
EISSN | 1944-9224 |
EndPage | 572 |
ExternalDocumentID | 10_1029_1999GB001182 1400276 GBC592 ark_67375_WNG_7BMGWN6Z_1 |
Genre | article |
GeographicLocations | Arctic region Greenland Greenland ice sheet PS, Antarctica Antarctica Antarctica, Victoria Land, Taylor Dome PSE, Antarctica, Victoria Land, Taylor Dome PN, Greenland, Greenland Ice Sheet |
GeographicLocations_xml | – name: PS, Antarctica – name: PN, Greenland, Greenland Ice Sheet – name: Antarctica, Victoria Land, Taylor Dome – name: PSE, Antarctica, Victoria Land, Taylor Dome – name: Antarctica |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 31~ 33P 3V. 50Y 5GY 7X2 7XC 8-1 88I 8CJ 8FE 8FH 8G5 8R4 8R5 A00 AAESR AAHBH AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ABJNI ABPPZ ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOD ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AHBTC AI. AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BBNVY BDRZF BENPR BFHJK BHPHI BKSAR BMXJE BPHCQ BRXPI BSCLL CCPQU CS3 D1J D1K DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS ECGQY EJD F5P FEDTE G-S GNUQQ GODZA GUQSH HCIFZ HGLYW HVGLF HZ~ K6- LATKE LEEKS LITHE LK5 LK8 LOXES LUTES LYRES M0K M2O M2P M7P M7R MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2W PATMY PCBAR PQQKQ PROAC PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ UQL VH1 WBKPD WIN WXSBR WYJ Y6R ZZTAW ~02 ~KM ~OA ~~A 08R AAJUZ AAPBV ABCVL ABHUG ADAWD ADDAD AEUQT AFVGU AGJLS IQODW AAMNL AAYXX CITATION 7SN 7ST 7TG 7TV 7U6 7UA C1K F1W H96 KL. L.G |
ID | FETCH-LOGICAL-a5322-3e2f353cbca3195bc0566c0f47ebba47aac44e6a1516969bc8dc61a474875a43 |
IEDL.DBID | 33P |
ISSN | 0886-6236 |
IngestDate | Sat Oct 26 00:18:24 EDT 2024 Sat Oct 26 00:36:50 EDT 2024 Thu Nov 21 23:32:11 EST 2024 Sun Oct 29 17:09:58 EDT 2023 Sat Aug 24 00:44:58 EDT 2024 Wed Oct 30 09:49:49 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | stable isotopes Allerod Weichselian O-18/O-16 Quaternary accumulation paleotemperature concentration ice paleoclimate Wurm upper Pleistocene snow methane polar regions Cenozoic Phanerozoic glacial periods Younger Dryas Pleistocene high resolution |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a5322-3e2f353cbca3195bc0566c0f47ebba47aac44e6a1516969bc8dc61a474875a43 |
Notes | ArticleID:1999GB001182 ark:/67375/WNG-7BMGWN6Z-1 istex:658E8CC5E8081256C8C0775373A124B7E90BFA47 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/1999GB001182 |
PQID | 1520379756 |
PQPubID | 23462 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_21506617 proquest_miscellaneous_1520379756 crossref_primary_10_1029_1999GB001182 pascalfrancis_primary_1400276 wiley_primary_10_1029_1999GB001182_GBC592 istex_primary_ark_67375_WNG_7BMGWN6Z_1 |
PublicationCentury | 2000 |
PublicationDate | June 2000 |
PublicationDateYYYYMMDD | 2000-06-01 |
PublicationDate_xml | – month: 06 year: 2000 text: June 2000 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC |
PublicationTitle | Global biogeochemical cycles |
PublicationTitleAlternate | Global Biogeochem. Cycles |
PublicationYear | 2000 |
Publisher | Blackwell Publishing Ltd American Geophysical Union |
Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union |
References | Nisbet, E. G., Sources of atmospheric methane in early postglacial time, J. Geophys. Res., 9712, 859-12867, 1992. Webb, T., Is vegetation in equilibrium with climate? How to interpret late Quaternary pollen data, Vegetatio, 67, 75-91, 1986. Petit, J. R., et al., Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429-436, 1999. Brook, E. J., J. P. Severinghaus, M. Swanson, P. Grootes, Late glacial methane variations in Greenland and Antarctic ice cores, EOS, Trans. AGU, 7717, Spring Meeting Supplement, S156, 1996b. Campbell, I. D., J. H. McAndrews, Forest disequilibrium caused by rapid Little Ice Age cooling, Nature, 366, 336-338, 1993. Nakazawa, T., T. Machida, M. Tanaka, Y. Fujii, S. Aoki, O. Watanabe, Differences of the atmospheric CH4 concentration between the Arctic and the Antarctic regions in pre-industrial/pre-agricultural era, Geophys. Res. Lett., 20, 943-946, 1993. Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L. P. Steele, P. J. Fraser, Three-dimensional model synthesis of the global methane cycle, J. Geophys. Res., 96, 13033-13065, 1991. Prinn, R. G., R. F. Weiss, B. R. Miller, J. Huang, F. N. Alyea, D. M. Cunnold, P. J. Fraser, D. E. Hartley, P. G. Symonds, Atmospheric trends and lifetime of CH3CCl3 and global OH concentrations, Science, 269, 187-192, 1995. Thompson, A., The oxidizing capacity of the Earth's atmosphere: Probable past and future changes, Science, 256, 1157-1165, 1992. Severinghaus, J. P., T. Sowers, E. J. Brook, R. B. Alley, M. L. Bender, Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice, Nature, 391, 141-146, 1998. Grootes, P. M., E. J. Steig, Taylor Dome ice core study 1993/1994: An ice core to bedrock, Antarct. J. U. S., 29, 79-81, 1994. Grigg, L. D., C. Whitlock, Late-glacial vegetation and climate change in western Oregon, Quat. Res., 49, 287-298, 1998. Chappellaz, J., T. Blunier, S. Kints, B. Stauffer, D. Raynaud, Variations of the Greenland/Antarctic concentration difference in atmospheric methane during the last 11,000 years, J. Geophys. Res., 102, 15987-15997, 1997. Hein, R., P. J. Crutzen, M. Heinmann, An inverse modeling approach to investigate the global atmospheric methane cycle, Global Biogeochem. Cycles, 11, 43-76, 1997. Johnsen, S. J., H. B. Clausen, W. Dansgaard, K. Fuhrer, N. Gundestrup, C. U. Hammer, P. Iverson, J. Jouzel, B. Stauffer, J. P. Steffensen, Irregular glacial interstadials recorded in new Greenland ice core, Nature, 359, 311-313, 1993. Schlesinger, W. H., Biogeochemistry: an analysis of global change, 588, Academic, San Diego, Calif., 1996. Ritchie, J. C., L. C. Cwynar, R. W. Spear, Evidence from north-west Canada for an early Holocene Milankovitch thermal maximum, Nature, 305, 326-328, 1983. Schwander, J., T. Sowers, J.-M. Barnola, T. Blunier, A. Fuchs, B. Malaize, Age scale of the air in the summit ice: implication for glacial-interglacial temperature change, J. Geophys. Res., 102, 19483-19493, 1997. Barnola, J. M., P. Pimienta, D. Raynaud, Y. S. Korotkevich, CO2-climate relationship as deduced from the Vostok ice core: A re-examination based on new measurements and on a re-evaluation of the air dating, Tellus, Ser. B, 43B, 83-90, 1991. Fuchs, A., J. Schwander, B. Stauffer, A new ice mill allows precise concentration determination of methane and most probably also other trace gases in the bubble air of very small ice samples, J. Glaciol., 39, 199-203, 1993. Thorpe, R. B., K. S. Law, S. Bekki, J. A. Pyle, E. G. Nisbet, Is methane-driven deglaciation consistent with the ice core record?, J. Geophys. Res., 101, 28627-28635, 1996. Prentice, I. C., Vegetation responses to past climatic variation, Vegetatio, 67, 131-141, 1986. Kennett, J. P., L. L. Hendy, R. J. Behl, Late Quaternary foraminiferal carbon isotope record in Santa Barbara Basin: implications for rapid climate change, EOS, Trans. AGU, 7746, Fall Meeting Supplement, F294, 1996. Etheridge, D. M., G. I. Pearman, P. J. Fraser, Changes in tropospheric methane between 1841 and 1978 from a high accumulation rate Antarctic ice core, Tellus, Ser. B, 44B, 282-294, 1992. Petit-Maire, N., M. Fontugne, C. Rouland, Atmospheric methane ratio and environmental changes in the Sahara and Sahel during the last 130 kyrs, Palaeogeogr., Palaeoclimatol., and Palaeocol., 86, 197-204, 1991. Schwander, J., J.-M. Barnola, C. Andrié, M. Leunberger, A. Ludin, D. Raynaud, B. Stauffer, The age of the air in the firn and the ice at Summit, Greenland, J. Geophys. Res., 98, 2831-2838, 1993. Raynaud, D., J. Chappellaz, J. M. Barnola, Y. S. Korotkevich, C. Lorius, Climatic and methane cycle implications of glacial-interglacial methane change in the Vostok ice core, Nature, 333, 655-657, 1988. Brook, E., T. Sowers, J. Orchardo, Rapid variations in atmospheric methane concentration during the past 110,000 years, Science, 273, 1087-1091, 1996a. Bender, M., T. Sowers, M. L. Dickson, J. Orchardo, P. Grootes, P. Mayewski, D. Meese, Climate connections between Greenland and Antarctica during the last 100,000 years, Nature, 372, 663-666, 1994. Stauffer, B., E. Lochbronner, H. Oeschger, J. Schwander, Methane concentration in the glacial atmosphere was only half that of the preindustrial Holocene, Nature, 332, 812-814, 1988. Alley, R., et al., Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event, Nature, 362, 527-529, 1993. Chappellaz, J. A., I. Y. Fung, A. M. Thompson, The atmospheric methane increase since the last glacial maximum, 1, Source estimates, Tellus, Ser. B, 45B, 228-241, 1993b. Rasmussen, R. A., M. A. K. Khalil, Atmospheric methane in the recent and ancient atmospheres: concentrations, trends, and interhemispheric gradient, J. Geophys. Res., 89, 11599-11605, 1984. Sachs, J. P., S. J. Lehman, Subtropical North Atlantic temperatures 60,000 to 30,000 years ago, Science, 286, 756-759, 1999. Whiting, G. J., J. P. Chanton, Primary production control of methane emission from wetlands, Nature, 364, 794-795, 1993. Trudinger, C. M., I. G. Enting, D. M, Etheridge, R.J. Francey, V.A. Levchenko, and L.P. Steele, Modeling air movement and bubble trapping in firn, J. Geophys. Res., 102, 6747-6763, 1997. Lowe, J., B. Ammann, H. H. Briks, S. Bjorck, G. R. Coope, L. C. Cwynar, J. L. deBeaulieu, R. J. Mort, D. M. Peteet, M. J. C. Walker, Climatic changes in areas adjacent to the North Atlantic during the last glacial-interglacial transition (14-9 ka); A contribution to IGCP-253, J. of Quat. Sci., 9, 185-198, 1994. Lehman, S., L. Keigwin, Sudden changes on North Atlantic circulation during the last deglaciation, Nature, 356, 757-762, 1992. Dällenbach, A., T. Blunier, J. Flückiger, B. Stauffer, J. Chappellaz, D. Raynaud, Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Last Glacial and transition to the Holocene, Geophys. Res. Lett., 2000. Peltier, R., Ice age paleotopography, Science, 265, 195-201, 1994. Khalil, M. A. K., R. A. Rassmussen, Atmospheric methane trends over the last 10,000 years, Atmos. Environ., 21, 2445-2452, 1987. Blunier, T., J. Chappellaz, J. Schwander, B. Stauffer, D. Raynaud, Variations in atmospheric methane concentration during the Holocene epoch, Nature, 374, 46-49, 1995. Allen, J. R. M., et al., Rapid environmental changes in southern Europe during the last glacial period, Nature, 400, 740-743, 1999. Crowley, T., Ice-age methane variations, Nature, 353, 122-123, 1991. Gasse, F., E. V. Van Campo, A 40,000-yr pollen and diatom record from Late Tritrivakely, Madagascar, in the southern Tropics, Quat. Res., 49, 299-311, 1998. Steig, E. J., D. L. Morse, E. D. Waddington, M. Stuiver, P. M. Grootes, P. A. Mayewski, Wisconsinian and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica, Geogr. Ann., 2000. Blunier, T., J. A. Chappellaz, J. Schwander, J. M. Barnola, T. Desperts, B. Stauffer, D. Raynaud, Atmospheric methane record from a Greenland ice core over the last 1,000 years, Geophys. Res. Lett., 20, 2219-2222, 1993. Chappellaz, J., J. M. Barnola, D. Raynaud, Y. S. Korotkevich, C. Lorius, Atmospheric methane record over the last climatic cycle revealed by the Vostok ice core, Nature, 345, 127-131, 1990. Steig, E. J., E. J. Brook, J. W. C. White, C. Sucher, S. J. Lehman, M. L. Bender, D. L. Morse, E. D. Waddington, Synchronous climate changes in Antarctica and the North Atlantic during the last glacial-interglacial transition, Science, 282, 92-95, 1998. Stuiver, M., P. M. Grootes, T. F. Braziunas, The GISP2 δ18O climate record of the past 16,500 years and the role of the sun, ocean and volcanoes, Quat. Res., 44, 341-354, 1995. Grootes, P. M., M. Stuiver, J. W. C. White, S. Johnsen, J. Jouzel, Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores, Nature, 366, 552-554, 1993. Hughen, K. A., J. T. Overpeck, L. C. Peterson, S. Trumbore, Rapid climate changes in the tropical Atlantic region during the last deglaciation, Nature, 380, 51-54, 1996. Martinerie, P., D. Raynaud, D. M. Etheridge, J.-M. Barnola, D. Mazaudeir, Physical and climatic parameters which influence the air content of polar ice, Earth Planet. Sci. Lett., 112, 1-13, 1992. Sowers, T., et al., An interlaboratory comparison of techniques for extracting and analyzing trapped gases in ice cores, J. Geophys. Res., 102, 26527-26538, 1997. Herron, M. M., C. C. Langway, Firn densification: An empirical model, J. Glaciol., 25, 373-385, 1980. Grimm, E. C., G. L. Jacobsen, W. A. Watts, B. C. S. Hansen, K. A. Maasch, A 50,000 year record of climatic oscillations from Florida and its temporal correlation with the Heinrich events, Science, 261, 198-200, 1993. Chappellaz, J., T. Blunier, D. Raynaud, J. M. Barnola, J. Schwander, B. Stauffer, Synchronous changes in atmospheric methane and Greenland climate between 40 and 8 kyr BP, Nature, 366, 443-445, 1993a. Bubier, J., T. R. Moore, An ecological perspective on methane emissions from northern wetlands, Trends Ecol. and Evo 1998; 49 1990; 345 1991; 353 1994; 372 1991; 96 1993; 20 1999; 286 1996; 380 1999; 400 1991; 43B 1994; 29 1995; 374 1992; 97 1993; 366 1996; 101 1992; 44B 1993; 362 1996; 77 1993; 364 1997; 102 1994; 265 1993; 39 1997; 11 2000 1992; 112 1991; 86 1992; 356 1993; 45B 1988; 333 1988; 332 1998; 50 1998; 282 1983; 305 1980; 25 1984; 89 1997 1996 1993; 261 1994 1994; 9 1998; 391 1993; 359 1987; 21 1986; 67 1993; 98 1992; 256 1995; 44 1995; 269 1999; 399 1996; 273 1999; 112 e_1_2_1_60_1 e_1_2_1_41_1 e_1_2_1_66_1 e_1_2_1_24_1 e_1_2_1_45_1 e_1_2_1_62_1 e_1_2_1_22_1 e_1_2_1_43_1 e_1_2_1_64_1 e_1_2_1_28_1 e_1_2_1_49_1 e_1_2_1_47_1 Schlesinger W. H. (e_1_2_1_50_1) 1996 e_1_2_1_31_1 e_1_2_1_54_1 e_1_2_1_8_1 e_1_2_1_56_1 e_1_2_1_6_1 e_1_2_1_12_1 e_1_2_1_35_1 Grootes P. M. (e_1_2_1_26_1) 1994; 29 e_1_2_1_52_1 e_1_2_1_2_1 e_1_2_1_39_1 e_1_2_1_14_1 e_1_2_1_37_1 e_1_2_1_58_1 Nisbet E. G. (e_1_2_1_40_1) 1992; 97 e_1_2_1_18_1 Barnola J. M. (e_1_2_1_4_1) 1991; 43 Chappellaz J. A. (e_1_2_1_16_1) 1993; 45 e_1_2_1_42_1 e_1_2_1_65_1 e_1_2_1_23_1 e_1_2_1_46_1 e_1_2_1_61_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_63_1 e_1_2_1_27_1 e_1_2_1_25_1 e_1_2_1_48_1 e_1_2_1_29_1 e_1_2_1_7_1 e_1_2_1_30_1 e_1_2_1_55_1 e_1_2_1_5_1 Brook E. J. (e_1_2_1_10_1) 1996; 77 Etheridge D. M. (e_1_2_1_20_1) 1992; 44 e_1_2_1_57_1 e_1_2_1_3_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_51_1 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_53_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_15_1 e_1_2_1_36_1 Kennett J. P. (e_1_2_1_33_1) 1996; 77 e_1_2_1_59_1 e_1_2_1_9_1 e_1_2_1_19_1 |
References_xml | – volume: 50 start-page: 12 year: 1998 end-page: 20 article-title: Antiphasing between rainfall in Africa's rift valley and North America's Great Basin publication-title: Quat. Res. – volume: 399 start-page: 429 year: 1999 end-page: 436 article-title: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica publication-title: Nature – volume: 49 start-page: 299 year: 1998 end-page: 311 article-title: A 40,000‐yr pollen and diatom record from Late Tritrivakely, Madagascar, in the southern Tropics publication-title: Quat. Res. – volume: 273 start-page: 1087 year: 1996 end-page: 1091 article-title: Rapid variations in atmospheric methane concentration during the past 110,000 years publication-title: Science – volume: 112 start-page: 165 year: 1999 end-page: 176 – year: 2000 article-title: Changes in the atmospheric CH gradient between Greenland and Antarctica during the Last Glacial and transition to the Holocene publication-title: Geophys. Res. Lett. – volume: 112 start-page: 1 year: 1992 end-page: 13 article-title: Physical and climatic parameters which influence the air content of polar ice publication-title: Earth Planet. Sci. Lett. – volume: 374 start-page: 46 year: 1995 end-page: 49 article-title: Variations in atmospheric methane concentration during the Holocene epoch publication-title: Nature – volume: 21 start-page: 2445 year: 1987 end-page: 2452 article-title: Atmospheric methane trends over the last 10,000 years publication-title: Atmos. Environ. – volume: 20 start-page: 943 year: 1993 end-page: 946 article-title: Differences of the atmospheric CH concentration between the Arctic and the Antarctic regions in pre‐industrial/pre‐agricultural era publication-title: Geophys. Res. Lett. – volume: 89 start-page: 11599 year: 1984 end-page: 11605 article-title: Atmospheric methane in the recent and ancient atmospheres: concentrations, trends, and interhemispheric gradient publication-title: J. Geophys. Res. – volume: 333 start-page: 655 year: 1988 end-page: 657 article-title: Climatic and methane cycle implications of glacial‐interglacial methane change in the Vostok ice core publication-title: Nature – volume: 286 start-page: 756 year: 1999 end-page: 759 article-title: Subtropical North Atlantic temperatures 60,000 to 30,000 years ago publication-title: Science – volume: 286 start-page: 930 year: 1999 end-page: 934 article-title: Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice publication-title: Science – volume: 261 start-page: 198 year: 1993 end-page: 200 article-title: A 50,000 year record of climatic oscillations from Florida and its temporal correlation with the Heinrich events publication-title: Science – volume: 11 start-page: 43 year: 1997 end-page: 76 article-title: An inverse modeling approach to investigate the global atmospheric methane cycle publication-title: Global Biogeochem. Cycles – volume: 101 start-page: 28627 year: 1996 end-page: 28635 article-title: Is methane‐driven deglaciation consistent with the ice core record? publication-title: J. Geophys. Res. – volume: 400 start-page: 740 year: 1999 end-page: 743 article-title: Rapid environmental changes in southern Europe during the last glacial period publication-title: Nature – year: 1994 – volume: 282 start-page: 92 year: 1998 end-page: 95 article-title: Synchronous climate changes in Antarctica and the North Atlantic during the last glacial‐interglacial transition publication-title: Science – volume: 96 start-page: 13033 year: 1991 end-page: 13065 article-title: Three‐dimensional model synthesis of the global methane cycle publication-title: J. Geophys. Res. – volume: 25 start-page: 373 year: 1980 end-page: 385 article-title: Firn densification: An empirical model publication-title: J. Glaciol. – volume: 39 start-page: 199 year: 1993 end-page: 203 article-title: A new ice mill allows precise concentration determination of methane and most probably also other trace gases in the bubble air of very small ice samples publication-title: J. Glaciol. – volume: 67 start-page: 75 year: 1986 end-page: 91 article-title: Is vegetation in equilibrium with climate? How to interpret late Quaternary pollen data publication-title: Vegetatio – volume: 98 start-page: 2831 year: 1993 end-page: 2838 article-title: The age of the air in the firn and the ice at Summit, Greenland publication-title: J. Geophys. Res. – volume: 49 start-page: 287 year: 1998 end-page: 298 article-title: Late‐glacial vegetation and climate change in western Oregon publication-title: Quat. Res. – year: 1997 – volume: 102 start-page: 6747 year: 1997 end-page: 6763 article-title: Etheridge, R.J. Francey, V.A. Levchenko, and L.P. Steele, Modeling air movement and bubble trapping in firn publication-title: J. Geophys. Res. – volume: 29 start-page: 79 year: 1994 end-page: 81 article-title: Taylor Dome ice core study 1993/1994: An ice core to bedrock publication-title: Antarct. J. U. S. – volume: 67 start-page: 131 year: 1986 end-page: 141 article-title: Vegetation responses to past climatic variation publication-title: Vegetatio – year: 2000 article-title: Wisconsinian and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica publication-title: Geogr. Ann. – volume: 43B start-page: 83 year: 1991 end-page: 90 article-title: CO ‐climate relationship as deduced from the Vostok ice core: A re‐examination based on new measurements and on a re‐evaluation of the air dating publication-title: Tellus, Ser. B – volume: 356 start-page: 757 year: 1992 end-page: 762 article-title: Sudden changes on North Atlantic circulation during the last deglaciation publication-title: Nature – volume: 20 start-page: 2219 year: 1993 end-page: 2222 article-title: Atmospheric methane record from a Greenland ice core over the last 1,000 years publication-title: Geophys. Res. Lett. – volume: 102 start-page: 19483 year: 1997 end-page: 19493 article-title: Age scale of the air in the summit ice: implication for glacial‐interglacial temperature change publication-title: J. Geophys. Res. – volume: 265 start-page: 195 year: 1994 end-page: 201 article-title: Ice age paleotopography publication-title: Science – volume: 97 start-page: 859 issue: 12 year: 1992 end-page: 12867 article-title: Sources of atmospheric methane in early postglacial time publication-title: J. Geophys. Res. – volume: 9 start-page: 460 year: 1994 end-page: 465 article-title: An ecological perspective on methane emissions from northern wetlands publication-title: Trends Ecol. and Evol. – volume: 353 start-page: 122 year: 1991 end-page: 123 article-title: Ice‐age methane variations publication-title: Nature – volume: 86 start-page: 197 year: 1991 end-page: 204 article-title: Atmospheric methane ratio and environmental changes in the Sahara and Sahel during the last 130 kyrs publication-title: Palaeogeogr., Palaeoclimatol., and Palaeocol. – volume: 102 start-page: 15987 year: 1997 end-page: 15997 article-title: Variations of the Greenland/Antarctic concentration difference in atmospheric methane during the last 11,000 years publication-title: J. Geophys. Res. – volume: 364 start-page: 794 year: 1993 end-page: 795 article-title: Primary production control of methane emission from wetlands publication-title: Nature – volume: 345 start-page: 127 year: 1990 end-page: 131 article-title: Atmospheric methane record over the last climatic cycle revealed by the Vostok ice core publication-title: Nature – year: 1996 – volume: 362 start-page: 527 year: 1993 end-page: 529 article-title: Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event publication-title: Nature – volume: 269 start-page: 187 year: 1995 end-page: 192 article-title: Atmospheric trends and lifetime of CH CCl and global OH concentrations publication-title: Science – volume: 366 start-page: 336 year: 1993 end-page: 338 article-title: Forest disequilibrium caused by rapid Little Ice Age cooling publication-title: Nature – volume: 359 start-page: 311 year: 1993 end-page: 313 article-title: Irregular glacial interstadials recorded in new Greenland ice core publication-title: Nature – volume: 77 start-page: F294 issue: 46 year: 1996 article-title: Late Quaternary foraminiferal carbon isotope record in Santa Barbara Basin: implications for rapid climate change publication-title: EOS, Trans. AGU – volume: 305 start-page: 326 year: 1983 end-page: 328 article-title: Evidence from north‐west Canada for an early Holocene Milankovitch thermal maximum publication-title: Nature – volume: 77 start-page: S156 issue: 17 year: 1996 article-title: Late glacial methane variations in Greenland and Antarctic ice cores publication-title: EOS, Trans. AGU – volume: 9 start-page: 185 year: 1994 end-page: 198 article-title: Climatic changes in areas adjacent to the North Atlantic during the last glacial‐interglacial transition (14–9 ka); A contribution to IGCP‐253 publication-title: J. of Quat. Sci. – volume: 332 start-page: 812 year: 1988 end-page: 814 article-title: Methane concentration in the glacial atmosphere was only half that of the preindustrial Holocene publication-title: Nature – volume: 45B start-page: 228 year: 1993 end-page: 241 article-title: The atmospheric methane increase since the last glacial maximum, 1, Source estimates publication-title: Tellus, Ser. B – volume: 380 start-page: 51 year: 1996 end-page: 54 article-title: Rapid climate changes in the tropical Atlantic region during the last deglaciation publication-title: Nature – volume: 256 start-page: 1157 year: 1992 end-page: 1165 article-title: The oxidizing capacity of the Earth's atmosphere: Probable past and future changes publication-title: Science – volume: 364 start-page: 407 year: 1993 end-page: 412 article-title: Extending the Vostok ice‐core record of paleoclimate to the penultimate glacial period publication-title: Nature – volume: 366 start-page: 552 year: 1993 end-page: 554 article-title: Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores publication-title: Nature – volume: 372 start-page: 663 year: 1994 end-page: 666 article-title: Climate connections between Greenland and Antarctica during the last 100,000 years publication-title: Nature – volume: 44B start-page: 282 year: 1992 end-page: 294 article-title: Changes in tropospheric methane between 1841 and 1978 from a high accumulation rate Antarctic ice core publication-title: Tellus, Ser. B – volume: 366 start-page: 443 year: 1993 end-page: 445 article-title: Synchronous changes in atmospheric methane and Greenland climate between 40 and 8 kyr BP publication-title: Nature – volume: 44 start-page: 341 year: 1995 end-page: 354 article-title: The GISP2 δ O climate record of the past 16,500 years and the role of the sun, ocean and volcanoes publication-title: Quat. Res. – volume: 102 start-page: 26527 year: 1997 end-page: 26538 article-title: An interlaboratory comparison of techniques for extracting and analyzing trapped gases in ice cores publication-title: J. Geophys. Res. – volume: 391 start-page: 141 year: 1998 end-page: 146 article-title: Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice publication-title: Nature – ident: e_1_2_1_11_1 doi: 10.1029/GM112p0165 – ident: e_1_2_1_14_1 doi: 10.1038/345127a0 – ident: e_1_2_1_18_1 doi: 10.1038/353122b0 – ident: e_1_2_1_52_1 doi: 10.1029/97JD01309 – ident: e_1_2_1_19_1 doi: 10.1029/1999GL010873 – ident: e_1_2_1_51_1 doi: 10.1029/92JD02383 – volume: 29 start-page: 79 year: 1994 ident: e_1_2_1_26_1 article-title: Taylor Dome ice core study 1993/1994: An ice core to bedrock publication-title: Antarct. J. U. S. contributor: fullname: Grootes P. M. – ident: e_1_2_1_8_1 doi: 10.1006/qres.1998.1973 – ident: e_1_2_1_44_1 doi: 10.1007/BF00037363 – ident: e_1_2_1_23_1 doi: 10.1006/qres.1998.1967 – ident: e_1_2_1_36_1 doi: 10.1002/jqs.3390090215 – ident: e_1_2_1_59_1 doi: 10.1111/1468-0459.00122 – ident: e_1_2_1_24_1 doi: 10.1006/qres.1998.1966 – ident: e_1_2_1_15_1 doi: 10.1038/366443a0 – ident: e_1_2_1_43_1 doi: 10.1016/0031-0182(91)90009-G – ident: e_1_2_1_60_1 doi: 10.1006/qres.1995.1079 – ident: e_1_2_1_65_1 doi: 10.1007/BF00037359 – ident: e_1_2_1_12_1 doi: 10.1016/0169-5347(94)90309-3 – ident: e_1_2_1_56_1 doi: 10.1038/332812a0 – ident: e_1_2_1_9_1 doi: 10.1126/science.273.5278.1087 – volume: 44 start-page: 282 year: 1992 ident: e_1_2_1_20_1 article-title: Changes in tropospheric methane between 1841 and 1978 from a high accumulation rate Antarctic ice core publication-title: Tellus, Ser. B doi: 10.3402/tellusb.v44i4.15456 contributor: fullname: Etheridge D. M. – ident: e_1_2_1_13_1 doi: 10.1038/366336a0 – ident: e_1_2_1_46_1 doi: 10.1029/JD089iD07p11599 – ident: e_1_2_1_57_1 doi: 10.2172/527444 – ident: e_1_2_1_5_1 doi: 10.1038/372663a0 – volume: 43 start-page: 83 year: 1991 ident: e_1_2_1_4_1 article-title: CO2‐climate relationship as deduced from the Vostok ice core: A re‐examination based on new measurements and on a re‐evaluation of the air dating publication-title: Tellus, Ser. B doi: 10.3402/tellusb.v43i2.15249 contributor: fullname: Barnola J. M. – ident: e_1_2_1_7_1 doi: 10.1038/374046a0 – ident: e_1_2_1_61_1 – ident: e_1_2_1_63_1 doi: 10.1029/96JD02547 – ident: e_1_2_1_39_1 doi: 10.1029/93GL00776 – ident: e_1_2_1_3_1 doi: 10.1038/362527a0 – ident: e_1_2_1_62_1 doi: 10.1126/science.256.5060.1157 – ident: e_1_2_1_42_1 doi: 10.1111/j.1469-8137.2007.02357.x – ident: e_1_2_1_53_1 doi: 10.1126/science.286.5441.930 – ident: e_1_2_1_35_1 doi: 10.1038/356757a0 – ident: e_1_2_1_2_1 doi: 10.1038/23432 – ident: e_1_2_1_31_1 doi: 10.1038/359311a0 – volume-title: Biogeochemistry: an analysis of global change year: 1996 ident: e_1_2_1_50_1 contributor: fullname: Schlesinger W. H. – ident: e_1_2_1_34_1 doi: 10.1016/0004-6981(87)90379-9 – ident: e_1_2_1_38_1 – ident: e_1_2_1_37_1 doi: 10.1016/0012-821X(92)90002-D – ident: e_1_2_1_47_1 doi: 10.1038/333655a0 – ident: e_1_2_1_29_1 doi: 10.1017/S0022143000015239 – ident: e_1_2_1_32_1 doi: 10.1038/364407a0 – ident: e_1_2_1_58_1 doi: 10.1126/science.282.5386.92 – ident: e_1_2_1_28_1 doi: 10.1029/96GB03043 – ident: e_1_2_1_17_1 doi: 10.1029/97JD01017 – volume: 97 start-page: 859 issue: 12 year: 1992 ident: e_1_2_1_40_1 article-title: Sources of atmospheric methane in early postglacial time publication-title: J. Geophys. Res. contributor: fullname: Nisbet E. G. – ident: e_1_2_1_25_1 doi: 10.1126/science.261.5118.198 – volume: 77 start-page: F294 issue: 46 year: 1996 ident: e_1_2_1_33_1 article-title: Late Quaternary foraminiferal carbon isotope record in Santa Barbara Basin: implications for rapid climate change publication-title: EOS, Trans. AGU contributor: fullname: Kennett J. P. – volume: 77 start-page: S156 issue: 17 year: 1996 ident: e_1_2_1_10_1 article-title: Late glacial methane variations in Greenland and Antarctic ice cores publication-title: EOS, Trans. AGU contributor: fullname: Brook E. J. – ident: e_1_2_1_27_1 doi: 10.1038/366552a0 – ident: e_1_2_1_55_1 doi: 10.1029/97JC00633 – ident: e_1_2_1_48_1 doi: 10.1038/305126a0 – ident: e_1_2_1_30_1 doi: 10.1038/380051a0 – ident: e_1_2_1_6_1 doi: 10.1029/93GL02414 – ident: e_1_2_1_41_1 doi: 10.1126/science.265.5169.195 – ident: e_1_2_1_64_1 doi: 10.1029/96JD03382 – ident: e_1_2_1_45_1 doi: 10.1126/science.269.5221.187 – ident: e_1_2_1_66_1 doi: 10.1038/364794a0 – ident: e_1_2_1_21_1 doi: 10.3189/S0022143000015835 – ident: e_1_2_1_49_1 doi: 10.1126/science.286.5440.756 – volume: 45 start-page: 228 year: 1993 ident: e_1_2_1_16_1 article-title: The atmospheric methane increase since the last glacial maximum, 1, Source estimates publication-title: Tellus, Ser. B doi: 10.3402/tellusb.v45i3.15726 contributor: fullname: Chappellaz J. A. – ident: e_1_2_1_54_1 doi: 10.1038/34346 – ident: e_1_2_1_22_1 doi: 10.1029/91JD01247 |
SSID | ssj0014559 |
Score | 2.169553 |
Snippet | We present high resolution records of atmospheric methane from the GISP2 (Greenland Ice Sheet Project 2) ice core for four rapid climate transitions that... |
SourceID | proquest crossref pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 559 |
SubjectTerms | Earth sciences Earth, ocean, space Exact sciences and technology Isotope geochemistry Isotope geochemistry. Geochronology Marine and continental quaternary Surficial geology |
Title | On the origin and timing of rapid changes in atmospheric methane during the Last Glacial Period |
URI | https://api.istex.fr/ark:/67375/WNG-7BMGWN6Z-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F1999GB001182 https://search.proquest.com/docview/1520379756 https://search.proquest.com/docview/21506617 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_0RNAH9VbFqqcRVLyHcrtt0rQvgnve9R50PfDgxJcwTVo51PbY7oL-984k3XX3QUF86kMmoWQyma_MbwCej2tyAlSdx9Jx6IZrgPMib2LrdCJJwTkruTj55KOefcrfHjFMzutVLUzAh1gH3Fgy_H3NAo5VP4ANMEYm18-XU49hxlcwOQq-giM9XScRpPK90kiOspi0fDa8e6fpB5uTtzTSNd7cH_xCEnvapCZ0t9gyPzeNWK-Fjm__7__fgVuD_SnehAOzC1fqdgTXQ0fKnyO4uYFPOILdQfJ78WqAp96_C-ZDK8hqFKGllsDWiQW3BvsiukbM8fLCiVBN3AseXnzveoYuuLCCu1VjW4tQGukXeYf9QpTfkAP34pSoOncPzo6Pzg5P4qFNQ4yKXdm0TppUpbaySPKsKks2VWbHjdR1VaHUiFbKOsMJp-SyorK5s9mEBthXQpneh522a-sHIDAZo8RcuQl9ydWqEKVyysmc7D6dNxG8WHHKXAYwDuOT6ElhNrczgpeejWsinH_lB2xamfNZafT0fXk-yz6bSQR7W3z-vapkfz2L4NmK74bEjnMptE3dsjdk9oxTXWhFNE__QJMweiNZiBHs-4Pw13825fRQFcnDf6B9BDcCMADHhB7DzmK-rPfgau-WT7wg_AKPPQPx |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BJgR7AFaGCDBmJEDsIVqb2HHyhOjYUkRXJlFpiBfrYidogiVT00rw33OXpKV9AAnxlAefreTOF9-H73cAL_o5OQEqj33pOHTDNcBxEhe-dTqQdMA5K7k4efRJTz7H704YJufNshamxYdYBdxYM5r_NSs4B6Q7tAEGyeQC-nTYgJjRP3hbRrQXuYYjPF-lEaRquqWRJkU-nfNRd_Od5h-tz944k7aZvT_4jiTWxKai7W-xYYCum7HNOXR677-_4D7c7UxQ8bbdM7twIy97cKttSvmzBztrEIU92O2UvxavO4TqwwdgPpaCDEfRdtUSWDox5-5gX0VViBleXzrRFhTXgofnV1XN6AWXVnDDaixz0VZHNouMsZ6L9Dty7F6cE1Xl9mB6ejI9HvldpwYfFXuzYR4UoQptZpFUWmWWzKrI9gup8yxDqRGtlHmEA87KRUlmY2ejAQ2wu4QyfAhbZVXmj0Bg0EeJsXIDepK3lSFK5ZSTMZl-Oi48eLkUlblu8ThMk0cPErPOTg9eNXJcEeHsG99h08pcTFKjh2fpxST6YgYe7G8I-veqkl32yIPnS8Eb0jxOpxCbqkVtyPLphzrRimgO_kATMIAjGYkeHDY74a_vbNLhsUqCx_9AewC3R9OzsRm_n3x4AndanAAOET2Frflske_DzdotnjVa8QsGMwgZ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED7BJhB7AFaGCDBmJEDsIVqb2HHygkS3NUOMUolJQ7xYFztBEyypmlaCf89dkpb2ASTEUx58thLbl_vO5_sO4EU_JydA5bEvHR_dcA5wnMSFb50OJBk4ZyUnJ5990uPP8ckp0-S8WebCtPwQqwM31ozmf80KPnVFRzbAHJmcP58OGw4z-gVvS0LizJ0fhpNVFEGqplgaKVLkk5mPuovv1P9ovfeGSdrm2f3BVySxplkq2vIWG_hzHcU2Zmh0738_4D7c7QCoeNvumF24kZc9uNWWpPzZg501gsIe7HaqX4vXHT_14QMwH0tBsFG0NbUElk7MuTbYV1EVYobTKyfadOJacPP8uqqZu-DKCi5XjWUu2tzIZpBzrOci_Y58ci8mJFW5PbgYnV4cn_ldnQYfFfuyYR4UoQptZpEUWmWWQFVk-4XUeZah1IhWyjzCAcfkoiSzsbPRgBrYWUIZPoStsirzRyAw6KPEWLkBPcnXyhClcsrJmICfjgsPXi5XykxbNg7TRNGDxKxPpwevmmVcCeHsG99g08pcjlOjhx_Sy3H0xQw82N9Y59-jSnbYIw-eL9fdkN5xMIWmqVrUhnBPP9SJViRz8AeZgOkbCSJ6cNhshL--s0mHxyoJHv-D7AHcnpyMzPm78fsncKclCeDzoaewNZ8t8n24WbvFs0YnfgG6iwa_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+origin+and+timing+of+rapid+changes+in+atmospheric+methane+during+the+Last+Glacial+Period&rft.jtitle=Global+biogeochemical+cycles&rft.au=Brook%2C+Edward+J.&rft.au=Harder%2C+Susan&rft.au=Severinghaus%2C+Jeff&rft.au=Steig%2C+Eric+J.&rft.date=2000-06-01&rft.issn=0886-6236&rft.eissn=1944-9224&rft.volume=14&rft.issue=2&rft.spage=559&rft.epage=572&rft_id=info:doi/10.1029%2F1999GB001182&rft.externalDBID=10.1029%252F1999GB001182&rft.externalDocID=GBC592 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-6236&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-6236&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-6236&client=summon |