On the origin and timing of rapid changes in atmospheric methane during the Last Glacial Period

We present high resolution records of atmospheric methane from the GISP2 (Greenland Ice Sheet Project 2) ice core for four rapid climate transitions that occurred during the past 50 ka: the end of the Younger Dryas at 11.8 ka, the beginning of the Bølling‐Allerød period at 14.8 ka, the beginning of...

Full description

Saved in:
Bibliographic Details
Published in:Global biogeochemical cycles Vol. 14; no. 2; pp. 559 - 572
Main Authors: Brook, Edward J., Harder, Susan, Severinghaus, Jeff, Steig, Eric J., Sucher, Cara M.
Format: Journal Article
Language:English
Published: Washington, DC Blackwell Publishing Ltd 01-06-2000
American Geophysical Union
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present high resolution records of atmospheric methane from the GISP2 (Greenland Ice Sheet Project 2) ice core for four rapid climate transitions that occurred during the past 50 ka: the end of the Younger Dryas at 11.8 ka, the beginning of the Bølling‐Allerød period at 14.8 ka, the beginning of interstadial 8 at 38.2 ka, and the beginning of interstadial 12 at 45.5 ka. During these events, atmospheric methane concentrations increased by 200–300 ppb over time periods of 100–300 years, significantly more slowly than associated temperature and snow accumulation changes recorded in the ice core record. We suggest that the slower rise in methane concentration may reflect the timescale of terrestrial ecosystem response to rapid climate change. We find no evidence for rapid, massive methane emissions that might be associated with large‐scale decomposition of methane hydrates in sediments. With additional results from the Taylor Dome Ice Core (Antarctica) we also reconstruct changes in the interpolar methane gradient (an indicator of the geographical distribution of methane sources) associated with some of the rapid changes in atmospheric methane. The results indicate that the rise in methane at the beginning of the Bølling‐Allerød period and the later rise at the end of the Younger Dryas were driven by increases in both tropical and boreal methane sources. During the Younger Dryas (a 1.3 ka cold period during the last deglaciation) the relative contribution from boreal sources was reduced relative to the early and middle Holocene periods.
AbstractList We present high resolution records of atmospheric methane from the GISP2 (Greenland Ice Sheet Project 2) ice core for four rapid climate transitions that occurred during the past 50 ka: the end of the Younger Dryas at 11.8 ka, the beginning of the Bølling‐Allerød period at 14.8 ka, the beginning of interstadial 8 at 38.2 ka, and the beginning of interstadial 12 at 45.5 ka. During these events, atmospheric methane concentrations increased by 200–300 ppb over time periods of 100–300 years, significantly more slowly than associated temperature and snow accumulation changes recorded in the ice core record. We suggest that the slower rise in methane concentration may reflect the timescale of terrestrial ecosystem response to rapid climate change. We find no evidence for rapid, massive methane emissions that might be associated with large‐scale decomposition of methane hydrates in sediments. With additional results from the Taylor Dome Ice Core (Antarctica) we also reconstruct changes in the interpolar methane gradient (an indicator of the geographical distribution of methane sources) associated with some of the rapid changes in atmospheric methane. The results indicate that the rise in methane at the beginning of the Bølling‐Allerød period and the later rise at the end of the Younger Dryas were driven by increases in both tropical and boreal methane sources. During the Younger Dryas (a 1.3 ka cold period during the last deglaciation) the relative contribution from boreal sources was reduced relative to the early and middle Holocene periods.
We present high resolution records of atmospheric methane from the GISP2 (Greenland Ice Sheet Project 2) ice core for four rapid climate transitions that occurred during the past 50 ka: the end of the Younger Dryas at 11.8 ka, the beginning of the Boelling-Alleroed period at 14.8 ka, the beginning of interstadial 8 at 38.2 ka, and the beginning of interstadial 12 at 45.5 ka. During these events, atmospheric methane concentrations increased by 200-300 ppb over time periods of 100-300 years, significantly more slowly than associated temperature and snow accumulation changes recorded in the ice core record. We suggest that the slower rise in methane concentration may reflect the timescale of terrestrial ecosystem response to rapid climate change. We find no evidence for rapid, massive methane emissions that might be associated with large-scale decomposition of methane hydrates in sediments. With additional results from the Taylor Dome Ice Core (Antarctica) we also reconstruct changes in the interpolar methane gradient (an indicator of the geographical distribution of methane sources) associated with some of the rapid changes in atmospheric methane. The results indicate that the rise in methane at the beginning of the Boelling-Alleroed period and the later rise at the end of the Younger Dryas were driven by increases in both tropical and boreal methane sources. During the Younger Dryas (a 1.3 ka cold period during the last deglaciation) the relative contribution from boreal sources was reduced relative to the early and middle Holocene periods.
We present high resolution records of atmospheric methane from the GISP2 (Greenland Ice Sheet Project 2) ice core for four rapid climate transitions that occurred during the past 50 ka: the end of the Younger Dryas at 11.8 ka, the beginning of the Bolling-Allerod period at 14.8 ka, the beginning of interstadial 8 at 38.2 ka, and the beginning of interstadial 12 at 45.5 ka. During these events, atmospheric methane concentrations increased by 200-300 ppb over time periods of 100-300 years, significantly more slowly than associated temperature and snow accumulation changes recorded in the ice core record. We suggest that the slower rise in methane concentration may reflect the timescale of terrestrial ecosystem response to rapid climate change. We find no evidence for rapid, massive methane emissions that might be associated with large-scale decomposition of methane hydrates in sediments. With additional results from the Taylor Dome Ice Core (Antarctica) we also reconstruct changes in the interpolar methane gradient (an indicator of the geographical distribution of methane sources) associated with some of the rapid changes in atmospheric methane. The results indicate that the rise in methane at the beginning of the Bolling-Allerod period and the later rise at the end of the Younger Dryas were driven by increases in both tropical and boreal methane sources. During the Younger Dryas (a 1.3 ka cold period during the last deglaciation) the relative contribution from boreal sources was reduced relative to the early and middle Holocene periods.
Author Severinghaus, Jeff
Steig, Eric J.
Brook, Edward J.
Sucher, Cara M.
Harder, Susan
Author_xml – sequence: 1
  givenname: Edward J.
  surname: Brook
  fullname: Brook, Edward J.
– sequence: 2
  givenname: Susan
  surname: Harder
  fullname: Harder, Susan
– sequence: 3
  givenname: Jeff
  surname: Severinghaus
  fullname: Severinghaus, Jeff
– sequence: 4
  givenname: Eric J.
  surname: Steig
  fullname: Steig, Eric J.
– sequence: 5
  givenname: Cara M.
  surname: Sucher
  fullname: Sucher, Cara M.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1400276$$DView record in Pascal Francis
BookMark eNp9kEtPGzEUha0KpIbHrj_Ai6pi0Sl-e7wkER0qBcIiEhIb647Hk7idR7Anavn3zCiosGJ1F-c7n67OCTrq-s4j9IWSH5Qwc0mNMcWcEEpz9gnNqBEiM4yJIzQjea4yxbj6jE5S-j0yQkozQ3bV4WHrcR_DJnQYugoPoQ3dBvc1jrALFXZb6DY-4Ske2j7ttj4Gh1s_jIHH1T5O-CRZQhpw0YAL0OD7keqrM3RcQ5P8-es9Reuf1-vFTbZcFb8WV8sMJGcs457VXHJXOuDUyNIRqZQjtdC-LEFoACeEV0AlVUaZ0uWVU3QMRK4lCH6Kvh20u9g_7X0abBuS800zftjvk2VUEqWoHsGLD0EqGeHaaKlG9PsBdbFPKfra7mJoIT5bSuy0t32_94h_fTVDctDUEToX0ltHEML0ZCUH7G9o_POHSlvMF9JM5uxQCWnw__5XIP6xSnMt7cNdYfX8tni4U4-W8hd0VJ1U
CODEN GBCYEP
CitedBy_id crossref_primary_10_1029_2000JD900335
crossref_primary_10_1016_j_epsl_2011_04_038
crossref_primary_10_1002_jqs_2568
crossref_primary_10_5194_bg_3_539_2006
crossref_primary_10_1016_j_quascirev_2009_06_021
crossref_primary_10_1029_2007PA001445
crossref_primary_10_1002_2016GB005570
crossref_primary_10_1016_j_jseaes_2005_06_007
crossref_primary_10_1111_bor_12116
crossref_primary_10_1016_j_epsl_2010_09_027
crossref_primary_10_1029_2010JG001441
crossref_primary_10_1002_2013JD020197
crossref_primary_10_1177_0959683616645942
crossref_primary_10_1016_j_quascirev_2009_10_013
crossref_primary_10_1016_j_quascirev_2014_05_006
crossref_primary_10_1016_j_epsl_2012_06_052
crossref_primary_10_1038_ngeo2147
crossref_primary_10_5194_cp_8_1177_2012
crossref_primary_10_1002_grl_50701
crossref_primary_10_1002_2015JD024235
crossref_primary_10_1177_0959683610387172
crossref_primary_10_1080_01490451_2015_1074321
crossref_primary_10_1016_S1040_6182_03_00111_3
crossref_primary_10_1126_science_aax0504
crossref_primary_10_3189_002214309788816704
crossref_primary_10_4116_jaqua_59_129
crossref_primary_10_1016_j_quascirev_2005_09_005
crossref_primary_10_1126_science_1168909
crossref_primary_10_1029_2005GB002680
crossref_primary_10_1017_qua_2023_75
crossref_primary_10_1016_j_crpv_2004_06_005
crossref_primary_10_5194_cp_11_449_2015
crossref_primary_10_1016_j_quascirev_2014_10_032
crossref_primary_10_5331_seppyo_75_5_343
crossref_primary_10_1016_j_chemgeo_2011_03_003
crossref_primary_10_1016_j_quascirev_2019_03_025
crossref_primary_10_1126_science_1238920
crossref_primary_10_1016_j_quascirev_2005_02_002
crossref_primary_10_1177_0959683610386982
crossref_primary_10_1126_science_1090553
crossref_primary_10_1088_1755_1315_226_1_012023
crossref_primary_10_1098_rsta_2001_0958
crossref_primary_10_1080_10256010108033302
crossref_primary_10_1016_j_epsl_2016_03_035
crossref_primary_10_1126_science_1187651
crossref_primary_10_1038_ngeo1922
crossref_primary_10_1146_annurev_earth_35_081006_131524
crossref_primary_10_3189_172756402781816861
crossref_primary_10_1029_2010GL043584
crossref_primary_10_1098_rsta_2007_2036
crossref_primary_10_3189_002214308784886135
crossref_primary_10_1029_2018GL077881
crossref_primary_10_1016_j_chemgeo_2017_09_021
crossref_primary_10_1016_j_quaint_2008_02_009
crossref_primary_10_1126_science_1262005
crossref_primary_10_1029_2009GB003545
crossref_primary_10_1016_S0033_5894_02_00017_0
crossref_primary_10_1029_2009GB003661
crossref_primary_10_1038_s41561_023_01332_x
crossref_primary_10_1016_j_palaeo_2010_05_007
crossref_primary_10_1098_rsta_2007_2044
crossref_primary_10_1098_rsta_2007_2048
crossref_primary_10_5194_cp_7_591_2011
crossref_primary_10_5194_cp_10_903_2014
crossref_primary_10_1038_s43017_020_00106_y
crossref_primary_10_2138_am_2019_7068
crossref_primary_10_1016_j_earscirev_2011_04_006
crossref_primary_10_5194_cp_15_1537_2019
crossref_primary_10_1029_2011JG001810
crossref_primary_10_3390_su15129346
crossref_primary_10_1016_j_gca_2009_11_022
crossref_primary_10_1038_ngeo1140
crossref_primary_10_1016_j_yqres_2006_08_006
crossref_primary_10_5194_bg_4_521_2007
crossref_primary_10_1029_2007GB002951
crossref_primary_10_1016_j_quaint_2016_02_052
crossref_primary_10_1073_pnas_1101146108
crossref_primary_10_5194_wcd_1_389_2020
crossref_primary_10_1016_j_ecolecon_2005_05_001
crossref_primary_10_1016_j_epsl_2004_05_007
crossref_primary_10_1016_S0277_3791_01_00139_1
crossref_primary_10_1029_2004GL021004
crossref_primary_10_1017_S0033822200043368
crossref_primary_10_3189_002214307783258530
crossref_primary_10_1007_s00382_005_0058_8
crossref_primary_10_1191_0959683603hl667ft
crossref_primary_10_1016_j_epsl_2007_05_004
crossref_primary_10_1007_s00382_011_1147_5
crossref_primary_10_1016_j_gloplacha_2006_11_035
crossref_primary_10_1126_science_1121535
crossref_primary_10_1016_j_orggeochem_2006_10_006
crossref_primary_10_1111_gcb_13400
crossref_primary_10_5194_cp_10_137_2014
crossref_primary_10_1007_s11629_010_1092_5
crossref_primary_10_1029_2003GL017838
crossref_primary_10_1111_j_1365_2486_2007_01339_x
crossref_primary_10_1002_jqs_2670
crossref_primary_10_1029_2006GC001341
crossref_primary_10_1126_science_1085293
crossref_primary_10_1126_science_1169473
crossref_primary_10_1029_2010RG000326
crossref_primary_10_1029_2005JG000010
crossref_primary_10_1016_j_quascirev_2008_02_004
crossref_primary_10_1002_2014GB005007
crossref_primary_10_1029_2003JD004417
crossref_primary_10_1029_2003JD004415
crossref_primary_10_1016_j_quascirev_2013_10_022
crossref_primary_10_1038_nature09739
crossref_primary_10_1016_j_gloplacha_2004_02_005
crossref_primary_10_1016_j_quascirev_2008_06_013
crossref_primary_10_1098_rsta_2010_0341
crossref_primary_10_1016_j_epsl_2013_02_034
crossref_primary_10_1016_j_crte_2004_02_004
crossref_primary_10_1029_2000GL012627
crossref_primary_10_1126_science_1172001
crossref_primary_10_1016_j_quascirev_2009_12_010
crossref_primary_10_1038_nature13799
crossref_primary_10_5194_cp_7_1001_2011
crossref_primary_10_1073_pnas_1116619109
crossref_primary_10_1016_j_quascirev_2021_106864
crossref_primary_10_1126_science_1126562
crossref_primary_10_1016_S0012_8252_00_00032_5
crossref_primary_10_1016_j_quascirev_2011_02_005
crossref_primary_10_5194_cp_11_669_2015
crossref_primary_10_5194_cp_7_1075_2011
crossref_primary_10_1002_gbc_20025
crossref_primary_10_1007_s00382_004_0499_5
crossref_primary_10_1029_2007GL029799
crossref_primary_10_7202_008301ar
crossref_primary_10_3724_SP_J_1140_2010_01087
crossref_primary_10_1126_science_1142924
crossref_primary_10_1029_2017PA003297
crossref_primary_10_1029_2007GL029551
crossref_primary_10_1016_j_epsl_2008_10_027
crossref_primary_10_1016_j_gsf_2022_101526
crossref_primary_10_1029_2005PA001142
crossref_primary_10_1177_09596836231169993
crossref_primary_10_1016_S0277_3791_03_00135_5
crossref_primary_10_1073_pnas_1013270108
crossref_primary_10_1002_2014JD021618
crossref_primary_10_1029_2003PA000914
crossref_primary_10_5194_cp_5_441_2009
crossref_primary_10_1016_j_gloplacha_2006_03_014
crossref_primary_10_1016_j_palaeo_2008_10_018
crossref_primary_10_1029_2003GB002122
crossref_primary_10_5194_acp_14_3589_2014
crossref_primary_10_1029_2001GL013929
crossref_primary_10_1016_j_pecs_2016_05_001
crossref_primary_10_1016_j_quascirev_2007_01_009
crossref_primary_10_1029_2006GB002889
crossref_primary_10_1130_G24246A_1
crossref_primary_10_1029_2009GL040948
crossref_primary_10_1029_2001GL013366
crossref_primary_10_1006_qres_2001_2276
crossref_primary_10_1007_s00382_010_0829_8
crossref_primary_10_5194_cp_11_1527_2015
crossref_primary_10_1002_2013JD020961
crossref_primary_10_1016_j_gca_2019_11_020
crossref_primary_10_1038_s41467_021_22241_w
crossref_primary_10_1038_s41598_018_36519_5
crossref_primary_10_1016_j_quascirev_2008_03_007
crossref_primary_10_3178_jjshwr_23_75
crossref_primary_10_1016_j_earscirev_2016_12_001
crossref_primary_10_1038_s43247_023_00930_2
crossref_primary_10_1029_2004GL020338
crossref_primary_10_5194_cp_13_1227_2017
crossref_primary_10_1038_nature06825
crossref_primary_10_5194_acp_15_7977_2015
crossref_primary_10_5194_bg_10_753_2013
crossref_primary_10_1073_pnas_0510095103
crossref_primary_10_1007_s00367_005_0012_0
crossref_primary_10_1016_j_quascirev_2004_05_002
crossref_primary_10_1016_j_quascirev_2009_05_023
crossref_primary_10_1177_0959683614538074
crossref_primary_10_1016_S0277_3791_02_00082_3
crossref_primary_10_1016_j_epsl_2006_01_002
crossref_primary_10_1029_2005GC001228
crossref_primary_10_5194_bg_10_1963_2013
crossref_primary_10_1007_s00382_015_2502_8
crossref_primary_10_1038_ncomms5078
crossref_primary_10_1146_annurev_energy_32_041706_124700
crossref_primary_10_1130_G20672_1
crossref_primary_10_1016_j_jseaes_2022_105203
crossref_primary_10_1016_j_quascirev_2015_01_004
crossref_primary_10_1175_JCLI_D_11_00667_1
crossref_primary_10_5194_bg_9_3961_2012
crossref_primary_10_1029_2012JD017804
crossref_primary_10_1016_j_palaeo_2005_11_042
crossref_primary_10_1029_2003PA000968
crossref_primary_10_1007_s11090_014_9574_9
crossref_primary_10_1002_2015PA002847
crossref_primary_10_5194_cp_13_943_2017
crossref_primary_10_3402_tellusb_v53i5_16628
crossref_primary_10_1073_pnas_0911387107
crossref_primary_10_1126_science_1072376
crossref_primary_10_1038_443405a
crossref_primary_10_1016_j_quascirev_2004_02_015
crossref_primary_10_1038_s43017_023_00436_7
crossref_primary_10_1177_0959683614540728
crossref_primary_10_1029_2004GL021083
crossref_primary_10_1038_ncomms13653
crossref_primary_10_1029_2004GC000699
crossref_primary_10_1130_G23916A_1
crossref_primary_10_1177_0959683607076435
crossref_primary_10_1073_pnas_1613883114
crossref_primary_10_5194_cp_17_1409_2021
crossref_primary_10_1002_wcc_130
crossref_primary_10_5194_bg_15_7155_2018
crossref_primary_10_1038_ngeo2767
crossref_primary_10_5194_cp_5_361_2009
crossref_primary_10_1029_2008GB003330
crossref_primary_10_1177_03091333231169431
crossref_primary_10_1126_science_1131722
crossref_primary_10_1111_j_1469_8137_2011_03849_x
crossref_primary_10_1029_2005GB002590
crossref_primary_10_5194_hess_10_903_2006
crossref_primary_10_1016_j_epsl_2010_03_003
crossref_primary_10_1016_j_epsl_2008_01_032
crossref_primary_10_5194_cp_17_1119_2021
crossref_primary_10_1126_science_290_5500_2285
Cites_doi 10.1029/GM112p0165
10.1038/345127a0
10.1038/353122b0
10.1029/97JD01309
10.1029/1999GL010873
10.1029/92JD02383
10.1006/qres.1998.1973
10.1007/BF00037363
10.1006/qres.1998.1967
10.1002/jqs.3390090215
10.1111/1468-0459.00122
10.1006/qres.1998.1966
10.1038/366443a0
10.1016/0031-0182(91)90009-G
10.1006/qres.1995.1079
10.1007/BF00037359
10.1016/0169-5347(94)90309-3
10.1038/332812a0
10.1126/science.273.5278.1087
10.3402/tellusb.v44i4.15456
10.1038/366336a0
10.1029/JD089iD07p11599
10.2172/527444
10.1038/372663a0
10.3402/tellusb.v43i2.15249
10.1038/374046a0
10.1029/96JD02547
10.1029/93GL00776
10.1038/362527a0
10.1126/science.256.5060.1157
10.1111/j.1469-8137.2007.02357.x
10.1126/science.286.5441.930
10.1038/356757a0
10.1038/23432
10.1038/359311a0
10.1016/0004-6981(87)90379-9
10.1016/0012-821X(92)90002-D
10.1038/333655a0
10.1017/S0022143000015239
10.1038/364407a0
10.1126/science.282.5386.92
10.1029/96GB03043
10.1029/97JD01017
10.1126/science.261.5118.198
10.1038/366552a0
10.1029/97JC00633
10.1038/305126a0
10.1038/380051a0
10.1029/93GL02414
10.1126/science.265.5169.195
10.1029/96JD03382
10.1126/science.269.5221.187
10.1038/364794a0
10.3189/S0022143000015835
10.1126/science.286.5440.756
10.3402/tellusb.v45i3.15726
10.1038/34346
10.1029/91JD01247
ContentType Journal Article
Copyright Copyright 2000 by the American Geophysical Union.
2000 INIST-CNRS
Copyright_xml – notice: Copyright 2000 by the American Geophysical Union.
– notice: 2000 INIST-CNRS
DBID BSCLL
IQODW
AAYXX
CITATION
7SN
7ST
7TG
7TV
7U6
7UA
C1K
F1W
H96
KL.
L.G
DOI 10.1029/1999GB001182
DatabaseName Istex
Pascal-Francis
CrossRef
Ecology Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Pollution Abstracts
Sustainability Science Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Ecology Abstracts
Pollution Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Meteorological & Geoastrophysical Abstracts - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Biology
EISSN 1944-9224
EndPage 572
ExternalDocumentID 10_1029_1999GB001182
1400276
GBC592
ark_67375_WNG_7BMGWN6Z_1
Genre article
GeographicLocations Arctic region
Greenland
Greenland ice sheet
PS, Antarctica
Antarctica
Antarctica, Victoria Land, Taylor Dome
PSE, Antarctica, Victoria Land, Taylor Dome
PN, Greenland, Greenland Ice Sheet
GeographicLocations_xml – name: PS, Antarctica
– name: PN, Greenland, Greenland Ice Sheet
– name: Antarctica, Victoria Land, Taylor Dome
– name: PSE, Antarctica, Victoria Land, Taylor Dome
– name: Antarctica
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
31~
33P
3V.
50Y
5GY
7X2
7XC
8-1
88I
8CJ
8FE
8FH
8G5
8R4
8R5
A00
AAESR
AAHBH
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABPPZ
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOD
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BBNVY
BDRZF
BENPR
BFHJK
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
BSCLL
CCPQU
CS3
D1J
D1K
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
ECGQY
EJD
F5P
FEDTE
G-S
GNUQQ
GODZA
GUQSH
HCIFZ
HGLYW
HVGLF
HZ~
K6-
LATKE
LEEKS
LITHE
LK5
LK8
LOXES
LUTES
LYRES
M0K
M2O
M2P
M7P
M7R
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2W
PATMY
PCBAR
PQQKQ
PROAC
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
UQL
VH1
WBKPD
WIN
WXSBR
WYJ
Y6R
ZZTAW
~02
~KM
~OA
~~A
08R
AAJUZ
AAPBV
ABCVL
ABHUG
ADAWD
ADDAD
AEUQT
AFVGU
AGJLS
IQODW
AAMNL
AAYXX
CITATION
7SN
7ST
7TG
7TV
7U6
7UA
C1K
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-a5322-3e2f353cbca3195bc0566c0f47ebba47aac44e6a1516969bc8dc61a474875a43
IEDL.DBID 33P
ISSN 0886-6236
IngestDate Sat Oct 26 00:18:24 EDT 2024
Sat Oct 26 00:36:50 EDT 2024
Thu Nov 21 23:32:11 EST 2024
Sun Oct 29 17:09:58 EDT 2023
Sat Aug 24 00:44:58 EDT 2024
Wed Oct 30 09:49:49 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords stable isotopes
Allerod
Weichselian
O-18/O-16
Quaternary
accumulation
paleotemperature
concentration
ice
paleoclimate
Wurm
upper Pleistocene
snow
methane
polar regions
Cenozoic
Phanerozoic
glacial periods
Younger Dryas
Pleistocene
high resolution
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5322-3e2f353cbca3195bc0566c0f47ebba47aac44e6a1516969bc8dc61a474875a43
Notes ArticleID:1999GB001182
ark:/67375/WNG-7BMGWN6Z-1
istex:658E8CC5E8081256C8C0775373A124B7E90BFA47
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/1999GB001182
PQID 1520379756
PQPubID 23462
PageCount 14
ParticipantIDs proquest_miscellaneous_21506617
proquest_miscellaneous_1520379756
crossref_primary_10_1029_1999GB001182
pascalfrancis_primary_1400276
wiley_primary_10_1029_1999GB001182_GBC592
istex_primary_ark_67375_WNG_7BMGWN6Z_1
PublicationCentury 2000
PublicationDate June 2000
PublicationDateYYYYMMDD 2000-06-01
PublicationDate_xml – month: 06
  year: 2000
  text: June 2000
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
PublicationTitle Global biogeochemical cycles
PublicationTitleAlternate Global Biogeochem. Cycles
PublicationYear 2000
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Nisbet, E. G., Sources of atmospheric methane in early postglacial time, J. Geophys. Res., 9712, 859-12867, 1992.
Webb, T., Is vegetation in equilibrium with climate? How to interpret late Quaternary pollen data, Vegetatio, 67, 75-91, 1986.
Petit, J. R., et al., Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429-436, 1999.
Brook, E. J., J. P. Severinghaus, M. Swanson, P. Grootes, Late glacial methane variations in Greenland and Antarctic ice cores, EOS, Trans. AGU, 7717, Spring Meeting Supplement, S156, 1996b.
Campbell, I. D., J. H. McAndrews, Forest disequilibrium caused by rapid Little Ice Age cooling, Nature, 366, 336-338, 1993.
Nakazawa, T., T. Machida, M. Tanaka, Y. Fujii, S. Aoki, O. Watanabe, Differences of the atmospheric CH4 concentration between the Arctic and the Antarctic regions in pre-industrial/pre-agricultural era, Geophys. Res. Lett., 20, 943-946, 1993.
Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L. P. Steele, P. J. Fraser, Three-dimensional model synthesis of the global methane cycle, J. Geophys. Res., 96, 13033-13065, 1991.
Prinn, R. G., R. F. Weiss, B. R. Miller, J. Huang, F. N. Alyea, D. M. Cunnold, P. J. Fraser, D. E. Hartley, P. G. Symonds, Atmospheric trends and lifetime of CH3CCl3 and global OH concentrations, Science, 269, 187-192, 1995.
Thompson, A., The oxidizing capacity of the Earth's atmosphere: Probable past and future changes, Science, 256, 1157-1165, 1992.
Severinghaus, J. P., T. Sowers, E. J. Brook, R. B. Alley, M. L. Bender, Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice, Nature, 391, 141-146, 1998.
Grootes, P. M., E. J. Steig, Taylor Dome ice core study 1993/1994: An ice core to bedrock, Antarct. J. U. S., 29, 79-81, 1994.
Grigg, L. D., C. Whitlock, Late-glacial vegetation and climate change in western Oregon, Quat. Res., 49, 287-298, 1998.
Chappellaz, J., T. Blunier, S. Kints, B. Stauffer, D. Raynaud, Variations of the Greenland/Antarctic concentration difference in atmospheric methane during the last 11,000 years, J. Geophys. Res., 102, 15987-15997, 1997.
Hein, R., P. J. Crutzen, M. Heinmann, An inverse modeling approach to investigate the global atmospheric methane cycle, Global Biogeochem. Cycles, 11, 43-76, 1997.
Johnsen, S. J., H. B. Clausen, W. Dansgaard, K. Fuhrer, N. Gundestrup, C. U. Hammer, P. Iverson, J. Jouzel, B. Stauffer, J. P. Steffensen, Irregular glacial interstadials recorded in new Greenland ice core, Nature, 359, 311-313, 1993.
Schlesinger, W. H., Biogeochemistry: an analysis of global change, 588, Academic, San Diego, Calif., 1996.
Ritchie, J. C., L. C. Cwynar, R. W. Spear, Evidence from north-west Canada for an early Holocene Milankovitch thermal maximum, Nature, 305, 326-328, 1983.
Schwander, J., T. Sowers, J.-M. Barnola, T. Blunier, A. Fuchs, B. Malaize, Age scale of the air in the summit ice: implication for glacial-interglacial temperature change, J. Geophys. Res., 102, 19483-19493, 1997.
Barnola, J. M., P. Pimienta, D. Raynaud, Y. S. Korotkevich, CO2-climate relationship as deduced from the Vostok ice core: A re-examination based on new measurements and on a re-evaluation of the air dating, Tellus, Ser. B, 43B, 83-90, 1991.
Fuchs, A., J. Schwander, B. Stauffer, A new ice mill allows precise concentration determination of methane and most probably also other trace gases in the bubble air of very small ice samples, J. Glaciol., 39, 199-203, 1993.
Thorpe, R. B., K. S. Law, S. Bekki, J. A. Pyle, E. G. Nisbet, Is methane-driven deglaciation consistent with the ice core record?, J. Geophys. Res., 101, 28627-28635, 1996.
Prentice, I. C., Vegetation responses to past climatic variation, Vegetatio, 67, 131-141, 1986.
Kennett, J. P., L. L. Hendy, R. J. Behl, Late Quaternary foraminiferal carbon isotope record in Santa Barbara Basin: implications for rapid climate change, EOS, Trans. AGU, 7746, Fall Meeting Supplement, F294, 1996.
Etheridge, D. M., G. I. Pearman, P. J. Fraser, Changes in tropospheric methane between 1841 and 1978 from a high accumulation rate Antarctic ice core, Tellus, Ser. B, 44B, 282-294, 1992.
Petit-Maire, N., M. Fontugne, C. Rouland, Atmospheric methane ratio and environmental changes in the Sahara and Sahel during the last 130 kyrs, Palaeogeogr., Palaeoclimatol., and Palaeocol., 86, 197-204, 1991.
Schwander, J., J.-M. Barnola, C. Andrié, M. Leunberger, A. Ludin, D. Raynaud, B. Stauffer, The age of the air in the firn and the ice at Summit, Greenland, J. Geophys. Res., 98, 2831-2838, 1993.
Raynaud, D., J. Chappellaz, J. M. Barnola, Y. S. Korotkevich, C. Lorius, Climatic and methane cycle implications of glacial-interglacial methane change in the Vostok ice core, Nature, 333, 655-657, 1988.
Brook, E., T. Sowers, J. Orchardo, Rapid variations in atmospheric methane concentration during the past 110,000 years, Science, 273, 1087-1091, 1996a.
Bender, M., T. Sowers, M. L. Dickson, J. Orchardo, P. Grootes, P. Mayewski, D. Meese, Climate connections between Greenland and Antarctica during the last 100,000 years, Nature, 372, 663-666, 1994.
Stauffer, B., E. Lochbronner, H. Oeschger, J. Schwander, Methane concentration in the glacial atmosphere was only half that of the preindustrial Holocene, Nature, 332, 812-814, 1988.
Alley, R., et al., Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event, Nature, 362, 527-529, 1993.
Chappellaz, J. A., I. Y. Fung, A. M. Thompson, The atmospheric methane increase since the last glacial maximum, 1, Source estimates, Tellus, Ser. B, 45B, 228-241, 1993b.
Rasmussen, R. A., M. A. K. Khalil, Atmospheric methane in the recent and ancient atmospheres: concentrations, trends, and interhemispheric gradient, J. Geophys. Res., 89, 11599-11605, 1984.
Sachs, J. P., S. J. Lehman, Subtropical North Atlantic temperatures 60,000 to 30,000 years ago, Science, 286, 756-759, 1999.
Whiting, G. J., J. P. Chanton, Primary production control of methane emission from wetlands, Nature, 364, 794-795, 1993.
Trudinger, C. M., I. G. Enting, D. M, Etheridge, R.J. Francey, V.A. Levchenko, and L.P. Steele, Modeling air movement and bubble trapping in firn, J. Geophys. Res., 102, 6747-6763, 1997.
Lowe, J., B. Ammann, H. H. Briks, S. Bjorck, G. R. Coope, L. C. Cwynar, J. L. deBeaulieu, R. J. Mort, D. M. Peteet, M. J. C. Walker, Climatic changes in areas adjacent to the North Atlantic during the last glacial-interglacial transition (14-9 ka); A contribution to IGCP-253, J. of Quat. Sci., 9, 185-198, 1994.
Lehman, S., L. Keigwin, Sudden changes on North Atlantic circulation during the last deglaciation, Nature, 356, 757-762, 1992.
Dällenbach, A., T. Blunier, J. Flückiger, B. Stauffer, J. Chappellaz, D. Raynaud, Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Last Glacial and transition to the Holocene, Geophys. Res. Lett., 2000.
Peltier, R., Ice age paleotopography, Science, 265, 195-201, 1994.
Khalil, M. A. K., R. A. Rassmussen, Atmospheric methane trends over the last 10,000 years, Atmos. Environ., 21, 2445-2452, 1987.
Blunier, T., J. Chappellaz, J. Schwander, B. Stauffer, D. Raynaud, Variations in atmospheric methane concentration during the Holocene epoch, Nature, 374, 46-49, 1995.
Allen, J. R. M., et al., Rapid environmental changes in southern Europe during the last glacial period, Nature, 400, 740-743, 1999.
Crowley, T., Ice-age methane variations, Nature, 353, 122-123, 1991.
Gasse, F., E. V. Van Campo, A 40,000-yr pollen and diatom record from Late Tritrivakely, Madagascar, in the southern Tropics, Quat. Res., 49, 299-311, 1998.
Steig, E. J., D. L. Morse, E. D. Waddington, M. Stuiver, P. M. Grootes, P. A. Mayewski, Wisconsinian and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica, Geogr. Ann., 2000.
Blunier, T., J. A. Chappellaz, J. Schwander, J. M. Barnola, T. Desperts, B. Stauffer, D. Raynaud, Atmospheric methane record from a Greenland ice core over the last 1,000 years, Geophys. Res. Lett., 20, 2219-2222, 1993.
Chappellaz, J., J. M. Barnola, D. Raynaud, Y. S. Korotkevich, C. Lorius, Atmospheric methane record over the last climatic cycle revealed by the Vostok ice core, Nature, 345, 127-131, 1990.
Steig, E. J., E. J. Brook, J. W. C. White, C. Sucher, S. J. Lehman, M. L. Bender, D. L. Morse, E. D. Waddington, Synchronous climate changes in Antarctica and the North Atlantic during the last glacial-interglacial transition, Science, 282, 92-95, 1998.
Stuiver, M., P. M. Grootes, T. F. Braziunas, The GISP2 δ18O climate record of the past 16,500 years and the role of the sun, ocean and volcanoes, Quat. Res., 44, 341-354, 1995.
Grootes, P. M., M. Stuiver, J. W. C. White, S. Johnsen, J. Jouzel, Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores, Nature, 366, 552-554, 1993.
Hughen, K. A., J. T. Overpeck, L. C. Peterson, S. Trumbore, Rapid climate changes in the tropical Atlantic region during the last deglaciation, Nature, 380, 51-54, 1996.
Martinerie, P., D. Raynaud, D. M. Etheridge, J.-M. Barnola, D. Mazaudeir, Physical and climatic parameters which influence the air content of polar ice, Earth Planet. Sci. Lett., 112, 1-13, 1992.
Sowers, T., et al., An interlaboratory comparison of techniques for extracting and analyzing trapped gases in ice cores, J. Geophys. Res., 102, 26527-26538, 1997.
Herron, M. M., C. C. Langway, Firn densification: An empirical model, J. Glaciol., 25, 373-385, 1980.
Grimm, E. C., G. L. Jacobsen, W. A. Watts, B. C. S. Hansen, K. A. Maasch, A 50,000 year record of climatic oscillations from Florida and its temporal correlation with the Heinrich events, Science, 261, 198-200, 1993.
Chappellaz, J., T. Blunier, D. Raynaud, J. M. Barnola, J. Schwander, B. Stauffer, Synchronous changes in atmospheric methane and Greenland climate between 40 and 8 kyr BP, Nature, 366, 443-445, 1993a.
Bubier, J., T. R. Moore, An ecological perspective on methane emissions from northern wetlands, Trends Ecol. and Evo
1998; 49
1990; 345
1991; 353
1994; 372
1991; 96
1993; 20
1999; 286
1996; 380
1999; 400
1991; 43B
1994; 29
1995; 374
1992; 97
1993; 366
1996; 101
1992; 44B
1993; 362
1996; 77
1993; 364
1997; 102
1994; 265
1993; 39
1997; 11
2000
1992; 112
1991; 86
1992; 356
1993; 45B
1988; 333
1988; 332
1998; 50
1998; 282
1983; 305
1980; 25
1984; 89
1997
1996
1993; 261
1994
1994; 9
1998; 391
1993; 359
1987; 21
1986; 67
1993; 98
1992; 256
1995; 44
1995; 269
1999; 399
1996; 273
1999; 112
e_1_2_1_60_1
e_1_2_1_41_1
e_1_2_1_66_1
e_1_2_1_24_1
e_1_2_1_45_1
e_1_2_1_62_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_64_1
e_1_2_1_28_1
e_1_2_1_49_1
e_1_2_1_47_1
Schlesinger W. H. (e_1_2_1_50_1) 1996
e_1_2_1_31_1
e_1_2_1_54_1
e_1_2_1_8_1
e_1_2_1_56_1
e_1_2_1_6_1
e_1_2_1_12_1
e_1_2_1_35_1
Grootes P. M. (e_1_2_1_26_1) 1994; 29
e_1_2_1_52_1
e_1_2_1_2_1
e_1_2_1_39_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_58_1
Nisbet E. G. (e_1_2_1_40_1) 1992; 97
e_1_2_1_18_1
Barnola J. M. (e_1_2_1_4_1) 1991; 43
Chappellaz J. A. (e_1_2_1_16_1) 1993; 45
e_1_2_1_42_1
e_1_2_1_65_1
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_61_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_63_1
e_1_2_1_27_1
e_1_2_1_25_1
e_1_2_1_48_1
e_1_2_1_29_1
e_1_2_1_7_1
e_1_2_1_30_1
e_1_2_1_55_1
e_1_2_1_5_1
Brook E. J. (e_1_2_1_10_1) 1996; 77
Etheridge D. M. (e_1_2_1_20_1) 1992; 44
e_1_2_1_57_1
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_51_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_53_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_15_1
e_1_2_1_36_1
Kennett J. P. (e_1_2_1_33_1) 1996; 77
e_1_2_1_59_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – volume: 50
  start-page: 12
  year: 1998
  end-page: 20
  article-title: Antiphasing between rainfall in Africa's rift valley and North America's Great Basin
  publication-title: Quat. Res.
– volume: 399
  start-page: 429
  year: 1999
  end-page: 436
  article-title: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica
  publication-title: Nature
– volume: 49
  start-page: 299
  year: 1998
  end-page: 311
  article-title: A 40,000‐yr pollen and diatom record from Late Tritrivakely, Madagascar, in the southern Tropics
  publication-title: Quat. Res.
– volume: 273
  start-page: 1087
  year: 1996
  end-page: 1091
  article-title: Rapid variations in atmospheric methane concentration during the past 110,000 years
  publication-title: Science
– volume: 112
  start-page: 165
  year: 1999
  end-page: 176
– year: 2000
  article-title: Changes in the atmospheric CH gradient between Greenland and Antarctica during the Last Glacial and transition to the Holocene
  publication-title: Geophys. Res. Lett.
– volume: 112
  start-page: 1
  year: 1992
  end-page: 13
  article-title: Physical and climatic parameters which influence the air content of polar ice
  publication-title: Earth Planet. Sci. Lett.
– volume: 374
  start-page: 46
  year: 1995
  end-page: 49
  article-title: Variations in atmospheric methane concentration during the Holocene epoch
  publication-title: Nature
– volume: 21
  start-page: 2445
  year: 1987
  end-page: 2452
  article-title: Atmospheric methane trends over the last 10,000 years
  publication-title: Atmos. Environ.
– volume: 20
  start-page: 943
  year: 1993
  end-page: 946
  article-title: Differences of the atmospheric CH concentration between the Arctic and the Antarctic regions in pre‐industrial/pre‐agricultural era
  publication-title: Geophys. Res. Lett.
– volume: 89
  start-page: 11599
  year: 1984
  end-page: 11605
  article-title: Atmospheric methane in the recent and ancient atmospheres: concentrations, trends, and interhemispheric gradient
  publication-title: J. Geophys. Res.
– volume: 333
  start-page: 655
  year: 1988
  end-page: 657
  article-title: Climatic and methane cycle implications of glacial‐interglacial methane change in the Vostok ice core
  publication-title: Nature
– volume: 286
  start-page: 756
  year: 1999
  end-page: 759
  article-title: Subtropical North Atlantic temperatures 60,000 to 30,000 years ago
  publication-title: Science
– volume: 286
  start-page: 930
  year: 1999
  end-page: 934
  article-title: Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice
  publication-title: Science
– volume: 261
  start-page: 198
  year: 1993
  end-page: 200
  article-title: A 50,000 year record of climatic oscillations from Florida and its temporal correlation with the Heinrich events
  publication-title: Science
– volume: 11
  start-page: 43
  year: 1997
  end-page: 76
  article-title: An inverse modeling approach to investigate the global atmospheric methane cycle
  publication-title: Global Biogeochem. Cycles
– volume: 101
  start-page: 28627
  year: 1996
  end-page: 28635
  article-title: Is methane‐driven deglaciation consistent with the ice core record?
  publication-title: J. Geophys. Res.
– volume: 400
  start-page: 740
  year: 1999
  end-page: 743
  article-title: Rapid environmental changes in southern Europe during the last glacial period
  publication-title: Nature
– year: 1994
– volume: 282
  start-page: 92
  year: 1998
  end-page: 95
  article-title: Synchronous climate changes in Antarctica and the North Atlantic during the last glacial‐interglacial transition
  publication-title: Science
– volume: 96
  start-page: 13033
  year: 1991
  end-page: 13065
  article-title: Three‐dimensional model synthesis of the global methane cycle
  publication-title: J. Geophys. Res.
– volume: 25
  start-page: 373
  year: 1980
  end-page: 385
  article-title: Firn densification: An empirical model
  publication-title: J. Glaciol.
– volume: 39
  start-page: 199
  year: 1993
  end-page: 203
  article-title: A new ice mill allows precise concentration determination of methane and most probably also other trace gases in the bubble air of very small ice samples
  publication-title: J. Glaciol.
– volume: 67
  start-page: 75
  year: 1986
  end-page: 91
  article-title: Is vegetation in equilibrium with climate? How to interpret late Quaternary pollen data
  publication-title: Vegetatio
– volume: 98
  start-page: 2831
  year: 1993
  end-page: 2838
  article-title: The age of the air in the firn and the ice at Summit, Greenland
  publication-title: J. Geophys. Res.
– volume: 49
  start-page: 287
  year: 1998
  end-page: 298
  article-title: Late‐glacial vegetation and climate change in western Oregon
  publication-title: Quat. Res.
– year: 1997
– volume: 102
  start-page: 6747
  year: 1997
  end-page: 6763
  article-title: Etheridge, R.J. Francey, V.A. Levchenko, and L.P. Steele, Modeling air movement and bubble trapping in firn
  publication-title: J. Geophys. Res.
– volume: 29
  start-page: 79
  year: 1994
  end-page: 81
  article-title: Taylor Dome ice core study 1993/1994: An ice core to bedrock
  publication-title: Antarct. J. U. S.
– volume: 67
  start-page: 131
  year: 1986
  end-page: 141
  article-title: Vegetation responses to past climatic variation
  publication-title: Vegetatio
– year: 2000
  article-title: Wisconsinian and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica
  publication-title: Geogr. Ann.
– volume: 43B
  start-page: 83
  year: 1991
  end-page: 90
  article-title: CO ‐climate relationship as deduced from the Vostok ice core: A re‐examination based on new measurements and on a re‐evaluation of the air dating
  publication-title: Tellus, Ser. B
– volume: 356
  start-page: 757
  year: 1992
  end-page: 762
  article-title: Sudden changes on North Atlantic circulation during the last deglaciation
  publication-title: Nature
– volume: 20
  start-page: 2219
  year: 1993
  end-page: 2222
  article-title: Atmospheric methane record from a Greenland ice core over the last 1,000 years
  publication-title: Geophys. Res. Lett.
– volume: 102
  start-page: 19483
  year: 1997
  end-page: 19493
  article-title: Age scale of the air in the summit ice: implication for glacial‐interglacial temperature change
  publication-title: J. Geophys. Res.
– volume: 265
  start-page: 195
  year: 1994
  end-page: 201
  article-title: Ice age paleotopography
  publication-title: Science
– volume: 97
  start-page: 859
  issue: 12
  year: 1992
  end-page: 12867
  article-title: Sources of atmospheric methane in early postglacial time
  publication-title: J. Geophys. Res.
– volume: 9
  start-page: 460
  year: 1994
  end-page: 465
  article-title: An ecological perspective on methane emissions from northern wetlands
  publication-title: Trends Ecol. and Evol.
– volume: 353
  start-page: 122
  year: 1991
  end-page: 123
  article-title: Ice‐age methane variations
  publication-title: Nature
– volume: 86
  start-page: 197
  year: 1991
  end-page: 204
  article-title: Atmospheric methane ratio and environmental changes in the Sahara and Sahel during the last 130 kyrs
  publication-title: Palaeogeogr., Palaeoclimatol., and Palaeocol.
– volume: 102
  start-page: 15987
  year: 1997
  end-page: 15997
  article-title: Variations of the Greenland/Antarctic concentration difference in atmospheric methane during the last 11,000 years
  publication-title: J. Geophys. Res.
– volume: 364
  start-page: 794
  year: 1993
  end-page: 795
  article-title: Primary production control of methane emission from wetlands
  publication-title: Nature
– volume: 345
  start-page: 127
  year: 1990
  end-page: 131
  article-title: Atmospheric methane record over the last climatic cycle revealed by the Vostok ice core
  publication-title: Nature
– year: 1996
– volume: 362
  start-page: 527
  year: 1993
  end-page: 529
  article-title: Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event
  publication-title: Nature
– volume: 269
  start-page: 187
  year: 1995
  end-page: 192
  article-title: Atmospheric trends and lifetime of CH CCl and global OH concentrations
  publication-title: Science
– volume: 366
  start-page: 336
  year: 1993
  end-page: 338
  article-title: Forest disequilibrium caused by rapid Little Ice Age cooling
  publication-title: Nature
– volume: 359
  start-page: 311
  year: 1993
  end-page: 313
  article-title: Irregular glacial interstadials recorded in new Greenland ice core
  publication-title: Nature
– volume: 77
  start-page: F294
  issue: 46
  year: 1996
  article-title: Late Quaternary foraminiferal carbon isotope record in Santa Barbara Basin: implications for rapid climate change
  publication-title: EOS, Trans. AGU
– volume: 305
  start-page: 326
  year: 1983
  end-page: 328
  article-title: Evidence from north‐west Canada for an early Holocene Milankovitch thermal maximum
  publication-title: Nature
– volume: 77
  start-page: S156
  issue: 17
  year: 1996
  article-title: Late glacial methane variations in Greenland and Antarctic ice cores
  publication-title: EOS, Trans. AGU
– volume: 9
  start-page: 185
  year: 1994
  end-page: 198
  article-title: Climatic changes in areas adjacent to the North Atlantic during the last glacial‐interglacial transition (14–9 ka); A contribution to IGCP‐253
  publication-title: J. of Quat. Sci.
– volume: 332
  start-page: 812
  year: 1988
  end-page: 814
  article-title: Methane concentration in the glacial atmosphere was only half that of the preindustrial Holocene
  publication-title: Nature
– volume: 45B
  start-page: 228
  year: 1993
  end-page: 241
  article-title: The atmospheric methane increase since the last glacial maximum, 1, Source estimates
  publication-title: Tellus, Ser. B
– volume: 380
  start-page: 51
  year: 1996
  end-page: 54
  article-title: Rapid climate changes in the tropical Atlantic region during the last deglaciation
  publication-title: Nature
– volume: 256
  start-page: 1157
  year: 1992
  end-page: 1165
  article-title: The oxidizing capacity of the Earth's atmosphere: Probable past and future changes
  publication-title: Science
– volume: 364
  start-page: 407
  year: 1993
  end-page: 412
  article-title: Extending the Vostok ice‐core record of paleoclimate to the penultimate glacial period
  publication-title: Nature
– volume: 366
  start-page: 552
  year: 1993
  end-page: 554
  article-title: Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores
  publication-title: Nature
– volume: 372
  start-page: 663
  year: 1994
  end-page: 666
  article-title: Climate connections between Greenland and Antarctica during the last 100,000 years
  publication-title: Nature
– volume: 44B
  start-page: 282
  year: 1992
  end-page: 294
  article-title: Changes in tropospheric methane between 1841 and 1978 from a high accumulation rate Antarctic ice core
  publication-title: Tellus, Ser. B
– volume: 366
  start-page: 443
  year: 1993
  end-page: 445
  article-title: Synchronous changes in atmospheric methane and Greenland climate between 40 and 8 kyr BP
  publication-title: Nature
– volume: 44
  start-page: 341
  year: 1995
  end-page: 354
  article-title: The GISP2 δ O climate record of the past 16,500 years and the role of the sun, ocean and volcanoes
  publication-title: Quat. Res.
– volume: 102
  start-page: 26527
  year: 1997
  end-page: 26538
  article-title: An interlaboratory comparison of techniques for extracting and analyzing trapped gases in ice cores
  publication-title: J. Geophys. Res.
– volume: 391
  start-page: 141
  year: 1998
  end-page: 146
  article-title: Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice
  publication-title: Nature
– ident: e_1_2_1_11_1
  doi: 10.1029/GM112p0165
– ident: e_1_2_1_14_1
  doi: 10.1038/345127a0
– ident: e_1_2_1_18_1
  doi: 10.1038/353122b0
– ident: e_1_2_1_52_1
  doi: 10.1029/97JD01309
– ident: e_1_2_1_19_1
  doi: 10.1029/1999GL010873
– ident: e_1_2_1_51_1
  doi: 10.1029/92JD02383
– volume: 29
  start-page: 79
  year: 1994
  ident: e_1_2_1_26_1
  article-title: Taylor Dome ice core study 1993/1994: An ice core to bedrock
  publication-title: Antarct. J. U. S.
  contributor:
    fullname: Grootes P. M.
– ident: e_1_2_1_8_1
  doi: 10.1006/qres.1998.1973
– ident: e_1_2_1_44_1
  doi: 10.1007/BF00037363
– ident: e_1_2_1_23_1
  doi: 10.1006/qres.1998.1967
– ident: e_1_2_1_36_1
  doi: 10.1002/jqs.3390090215
– ident: e_1_2_1_59_1
  doi: 10.1111/1468-0459.00122
– ident: e_1_2_1_24_1
  doi: 10.1006/qres.1998.1966
– ident: e_1_2_1_15_1
  doi: 10.1038/366443a0
– ident: e_1_2_1_43_1
  doi: 10.1016/0031-0182(91)90009-G
– ident: e_1_2_1_60_1
  doi: 10.1006/qres.1995.1079
– ident: e_1_2_1_65_1
  doi: 10.1007/BF00037359
– ident: e_1_2_1_12_1
  doi: 10.1016/0169-5347(94)90309-3
– ident: e_1_2_1_56_1
  doi: 10.1038/332812a0
– ident: e_1_2_1_9_1
  doi: 10.1126/science.273.5278.1087
– volume: 44
  start-page: 282
  year: 1992
  ident: e_1_2_1_20_1
  article-title: Changes in tropospheric methane between 1841 and 1978 from a high accumulation rate Antarctic ice core
  publication-title: Tellus, Ser. B
  doi: 10.3402/tellusb.v44i4.15456
  contributor:
    fullname: Etheridge D. M.
– ident: e_1_2_1_13_1
  doi: 10.1038/366336a0
– ident: e_1_2_1_46_1
  doi: 10.1029/JD089iD07p11599
– ident: e_1_2_1_57_1
  doi: 10.2172/527444
– ident: e_1_2_1_5_1
  doi: 10.1038/372663a0
– volume: 43
  start-page: 83
  year: 1991
  ident: e_1_2_1_4_1
  article-title: CO2‐climate relationship as deduced from the Vostok ice core: A re‐examination based on new measurements and on a re‐evaluation of the air dating
  publication-title: Tellus, Ser. B
  doi: 10.3402/tellusb.v43i2.15249
  contributor:
    fullname: Barnola J. M.
– ident: e_1_2_1_7_1
  doi: 10.1038/374046a0
– ident: e_1_2_1_61_1
– ident: e_1_2_1_63_1
  doi: 10.1029/96JD02547
– ident: e_1_2_1_39_1
  doi: 10.1029/93GL00776
– ident: e_1_2_1_3_1
  doi: 10.1038/362527a0
– ident: e_1_2_1_62_1
  doi: 10.1126/science.256.5060.1157
– ident: e_1_2_1_42_1
  doi: 10.1111/j.1469-8137.2007.02357.x
– ident: e_1_2_1_53_1
  doi: 10.1126/science.286.5441.930
– ident: e_1_2_1_35_1
  doi: 10.1038/356757a0
– ident: e_1_2_1_2_1
  doi: 10.1038/23432
– ident: e_1_2_1_31_1
  doi: 10.1038/359311a0
– volume-title: Biogeochemistry: an analysis of global change
  year: 1996
  ident: e_1_2_1_50_1
  contributor:
    fullname: Schlesinger W. H.
– ident: e_1_2_1_34_1
  doi: 10.1016/0004-6981(87)90379-9
– ident: e_1_2_1_38_1
– ident: e_1_2_1_37_1
  doi: 10.1016/0012-821X(92)90002-D
– ident: e_1_2_1_47_1
  doi: 10.1038/333655a0
– ident: e_1_2_1_29_1
  doi: 10.1017/S0022143000015239
– ident: e_1_2_1_32_1
  doi: 10.1038/364407a0
– ident: e_1_2_1_58_1
  doi: 10.1126/science.282.5386.92
– ident: e_1_2_1_28_1
  doi: 10.1029/96GB03043
– ident: e_1_2_1_17_1
  doi: 10.1029/97JD01017
– volume: 97
  start-page: 859
  issue: 12
  year: 1992
  ident: e_1_2_1_40_1
  article-title: Sources of atmospheric methane in early postglacial time
  publication-title: J. Geophys. Res.
  contributor:
    fullname: Nisbet E. G.
– ident: e_1_2_1_25_1
  doi: 10.1126/science.261.5118.198
– volume: 77
  start-page: F294
  issue: 46
  year: 1996
  ident: e_1_2_1_33_1
  article-title: Late Quaternary foraminiferal carbon isotope record in Santa Barbara Basin: implications for rapid climate change
  publication-title: EOS, Trans. AGU
  contributor:
    fullname: Kennett J. P.
– volume: 77
  start-page: S156
  issue: 17
  year: 1996
  ident: e_1_2_1_10_1
  article-title: Late glacial methane variations in Greenland and Antarctic ice cores
  publication-title: EOS, Trans. AGU
  contributor:
    fullname: Brook E. J.
– ident: e_1_2_1_27_1
  doi: 10.1038/366552a0
– ident: e_1_2_1_55_1
  doi: 10.1029/97JC00633
– ident: e_1_2_1_48_1
  doi: 10.1038/305126a0
– ident: e_1_2_1_30_1
  doi: 10.1038/380051a0
– ident: e_1_2_1_6_1
  doi: 10.1029/93GL02414
– ident: e_1_2_1_41_1
  doi: 10.1126/science.265.5169.195
– ident: e_1_2_1_64_1
  doi: 10.1029/96JD03382
– ident: e_1_2_1_45_1
  doi: 10.1126/science.269.5221.187
– ident: e_1_2_1_66_1
  doi: 10.1038/364794a0
– ident: e_1_2_1_21_1
  doi: 10.3189/S0022143000015835
– ident: e_1_2_1_49_1
  doi: 10.1126/science.286.5440.756
– volume: 45
  start-page: 228
  year: 1993
  ident: e_1_2_1_16_1
  article-title: The atmospheric methane increase since the last glacial maximum, 1, Source estimates
  publication-title: Tellus, Ser. B
  doi: 10.3402/tellusb.v45i3.15726
  contributor:
    fullname: Chappellaz J. A.
– ident: e_1_2_1_54_1
  doi: 10.1038/34346
– ident: e_1_2_1_22_1
  doi: 10.1029/91JD01247
SSID ssj0014559
Score 2.169553
Snippet We present high resolution records of atmospheric methane from the GISP2 (Greenland Ice Sheet Project 2) ice core for four rapid climate transitions that...
SourceID proquest
crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 559
SubjectTerms Earth sciences
Earth, ocean, space
Exact sciences and technology
Isotope geochemistry
Isotope geochemistry. Geochronology
Marine and continental quaternary
Surficial geology
Title On the origin and timing of rapid changes in atmospheric methane during the Last Glacial Period
URI https://api.istex.fr/ark:/67375/WNG-7BMGWN6Z-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F1999GB001182
https://search.proquest.com/docview/1520379756
https://search.proquest.com/docview/21506617
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_0RNAH9VbFqqcRVLyHcrtt0rQvgnve9R50PfDgxJcwTVo51PbY7oL-984k3XX3QUF86kMmoWQyma_MbwCej2tyAlSdx9Jx6IZrgPMib2LrdCJJwTkruTj55KOefcrfHjFMzutVLUzAh1gH3Fgy_H3NAo5VP4ANMEYm18-XU49hxlcwOQq-giM9XScRpPK90kiOspi0fDa8e6fpB5uTtzTSNd7cH_xCEnvapCZ0t9gyPzeNWK-Fjm__7__fgVuD_SnehAOzC1fqdgTXQ0fKnyO4uYFPOILdQfJ78WqAp96_C-ZDK8hqFKGllsDWiQW3BvsiukbM8fLCiVBN3AseXnzveoYuuLCCu1VjW4tQGukXeYf9QpTfkAP34pSoOncPzo6Pzg5P4qFNQ4yKXdm0TppUpbaySPKsKks2VWbHjdR1VaHUiFbKOsMJp-SyorK5s9mEBthXQpneh522a-sHIDAZo8RcuQl9ydWqEKVyysmc7D6dNxG8WHHKXAYwDuOT6ElhNrczgpeejWsinH_lB2xamfNZafT0fXk-yz6bSQR7W3z-vapkfz2L4NmK74bEjnMptE3dsjdk9oxTXWhFNE__QJMweiNZiBHs-4Pw13825fRQFcnDf6B9BDcCMADHhB7DzmK-rPfgau-WT7wg_AKPPQPx
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BJgR7AFaGCDBmJEDsIVqb2HHyhOjYUkRXJlFpiBfrYidogiVT00rw33OXpKV9AAnxlAefreTOF9-H73cAL_o5OQEqj33pOHTDNcBxEhe-dTqQdMA5K7k4efRJTz7H704YJufNshamxYdYBdxYM5r_NSs4B6Q7tAEGyeQC-nTYgJjRP3hbRrQXuYYjPF-lEaRquqWRJkU-nfNRd_Od5h-tz944k7aZvT_4jiTWxKai7W-xYYCum7HNOXR677-_4D7c7UxQ8bbdM7twIy97cKttSvmzBztrEIU92O2UvxavO4TqwwdgPpaCDEfRdtUSWDox5-5gX0VViBleXzrRFhTXgofnV1XN6AWXVnDDaixz0VZHNouMsZ6L9Dty7F6cE1Xl9mB6ejI9HvldpwYfFXuzYR4UoQptZpFUWmWWzKrI9gup8yxDqRGtlHmEA87KRUlmY2ejAQ2wu4QyfAhbZVXmj0Bg0EeJsXIDepK3lSFK5ZSTMZl-Oi48eLkUlblu8ThMk0cPErPOTg9eNXJcEeHsG99h08pcTFKjh2fpxST6YgYe7G8I-veqkl32yIPnS8Eb0jxOpxCbqkVtyPLphzrRimgO_kATMIAjGYkeHDY74a_vbNLhsUqCx_9AewC3R9OzsRm_n3x4AndanAAOET2Frflske_DzdotnjVa8QsGMwgZ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED7BJhB7AFaGCDBmJEDsIVqb2HHygkS3NUOMUolJQ7xYFztBEyypmlaCf89dkpb2ASTEUx58thLbl_vO5_sO4EU_JydA5bEvHR_dcA5wnMSFb50OJBk4ZyUnJ5990uPP8ckp0-S8WebCtPwQqwM31ozmf80KPnVFRzbAHJmcP58OGw4z-gVvS0LizJ0fhpNVFEGqplgaKVLkk5mPuovv1P9ovfeGSdrm2f3BVySxplkq2vIWG_hzHcU2Zmh0738_4D7c7QCoeNvumF24kZc9uNWWpPzZg501gsIe7HaqX4vXHT_14QMwH0tBsFG0NbUElk7MuTbYV1EVYobTKyfadOJacPP8uqqZu-DKCi5XjWUu2tzIZpBzrOci_Y58ci8mJFW5PbgYnV4cn_ldnQYfFfuyYR4UoQptZpEUWmWWQFVk-4XUeZah1IhWyjzCAcfkoiSzsbPRgBrYWUIZPoStsirzRyAw6KPEWLkBPcnXyhClcsrJmICfjgsPXi5XykxbNg7TRNGDxKxPpwevmmVcCeHsG99g08pcjlOjhx_Sy3H0xQw82N9Y59-jSnbYIw-eL9fdkN5xMIWmqVrUhnBPP9SJViRz8AeZgOkbCSJ6cNhshL--s0mHxyoJHv-D7AHcnpyMzPm78fsncKclCeDzoaewNZ8t8n24WbvFs0YnfgG6iwa_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+origin+and+timing+of+rapid+changes+in+atmospheric+methane+during+the+Last+Glacial+Period&rft.jtitle=Global+biogeochemical+cycles&rft.au=Brook%2C+Edward+J.&rft.au=Harder%2C+Susan&rft.au=Severinghaus%2C+Jeff&rft.au=Steig%2C+Eric+J.&rft.date=2000-06-01&rft.issn=0886-6236&rft.eissn=1944-9224&rft.volume=14&rft.issue=2&rft.spage=559&rft.epage=572&rft_id=info:doi/10.1029%2F1999GB001182&rft.externalDBID=10.1029%252F1999GB001182&rft.externalDocID=GBC592
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-6236&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-6236&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-6236&client=summon