Dynamics and mass balance of Taylor Glacier, Antarctica: 1. Geometry and surface velocities
Taylor Glacier, Antarctica, exemplifies a little‐studied type of outlet glacier, one that flows slowly through a region of rugged topography and dry climate. This glacier, in addition, connects the East Antarctic Ice Sheet with the McMurdo Dry Valleys, a region much studied for geomorphology, paleoc...
Saved in:
Published in: | Journal of Geophysical Research. B. Solid Earth Vol. 114; no. F4 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
Blackwell Publishing Ltd
01-12-2009
American Geophysical Union |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Taylor Glacier, Antarctica, exemplifies a little‐studied type of outlet glacier, one that flows slowly through a region of rugged topography and dry climate. This glacier, in addition, connects the East Antarctic Ice Sheet with the McMurdo Dry Valleys, a region much studied for geomorphology, paleoclimate, and ecology. Here we report extensive new measurements of surface velocities, ice thicknesses, and surface elevations, acquired with InSAR, GPS, and GPR. The latter two were used to construct elevation models of the glacier's surface and bed. Ice velocities in 2002–2004 closely matched those in 2000 and the mid‐1970s, indicating negligible interannual variations of flow. Comparing velocities with bed elevations shows that, along much of the glacier, flow concentrates in a narrow axis of relatively fast flowing ice that overlies a bedrock trough. The flow of the glacier over major undulations in its bed can be regarded as a “cascade”; it speeds up over bedrock highs and through valley narrows and slows down over deep basins and in wide spots. This pattern is an expected consequence of mass conservation for a glacier near steady state. Neither theory nor data from this Taylor Glacier study support the alternative view, recently proposed, that an outlet glacier of this type trickles slowly over bedrock highs and flows fastest over deep basins. |
---|---|
AbstractList | Taylor Glacier, Antarctica, exemplifies a little-studied type of outlet glacier, one that flows slowly through a region of rugged topography and dry climate. This glacier, in addition, connects the East Antarctic Ice Sheet with the McMurdo Dry Valleys, a region much studied for geomorphology, paleoclimate, and ecology. Here we report extensive new measurements of surface velocities, ice thicknesses, and surface elevations, acquired with InSAR, GPS, and GPR. The latter two were used to construct elevation models of the glacier's surface and bed. Ice velocities in 20022004 closely matched those in 2000 and the mid-1970s, indicating negligible interannual variations of flow. Comparing velocities with bed elevations shows that, along much of the glacier, flow concentrates in a narrow axis of relatively fast flowing ice that overlies a bedrock trough. The flow of the glacier over major undulations in its bed can be regarded as a cascade; it speeds up over bedrock highs and through valley narrows and slows down over deep basins and in wide spots. This pattern is an expected consequence of mass conservation for a glacier near steady state. Neither theory nor data from this Taylor Glacier study support the alternative view, recently proposed, that an outlet glacier of this type trickles slowly over bedrock highs and flows fastest over deep basins. Taylor Glacier, Antarctica, exemplifies a little-studied type of outlet glacier, one that flows slowly through a region of rugged topography and dry climate. This glacier, in addition, connects the East Antarctic Ice Sheet with the McMurdo Dry Valleys, a region much studied for geomorphology, paleoclimate, and ecology. Here we report extensive new measurements of surface velocities, ice thicknesses, and surface elevations, acquired with InSAR, GPS, and GPR. The latter two were used to construct elevation models of the glacier's surface and bed. Ice velocities in 2002-2004 closely matched those in 2000 and the mid-1970s, indicating negligible interannual variations of flow. Comparing velocities with bed elevations shows that, along much of the glacier, flow concentrates in a narrow axis of relatively fast flowing ice that overlies a bedrock trough. The flow of the glacier over major undulations in its bed can be regarded as a 'cascade'; it speeds up over bedrock highs and through valley narrows and slows down over deep basins and in wide spots. This pattern is an expected consequence of mass conservation for a glacier near steady state. Neither theory nor data from this Taylor Glacier study support the alternative view, recently proposed, that an outlet glacier of this type trickles slowly over bedrock highs and flows fastest over deep basins. Taylor Glacier, Antarctica, exemplifies a little-studied type of outlet glacier, one that flows slowly through a region of rugged topography and dry climate. This glacier, in addition, connects the East Antarctic Ice Sheet with the McMurdo Dry Valleys, a region much studied for geomorphology, paleoclimate, and ecology. Here we report extensive new measurements of surface velocities, ice thicknesses, and surface elevations, acquired with InSAR, GPS, and GPR. The latter two were used to construct elevation models of the glacierʼ s surface and bed. Ice velocities in 2002-2004 closely matched those in 2000 and the mid-1970s, indicating negligible interannual variations of flow. Comparing velocities with bed elevations shows that, along much of the glacier, flow concentrates in a narrow axis of relatively fast flowing ice that overlies a bedrock trough. The flow of the glacier over major undulations in its bed can be regarded as a cascade; it speeds up over bedrock highs and through valley narrows and slows down over deep basins and in wide spots. This pattern is an expected consequence of mass conservation for a glacier near steady state. Neither theory nor data from this Taylor Glacier study support the alternative view, recently proposed, that an outlet glacier of this type trickles slowly over bedrock highs and flows fastest over deep basins. |
Author | Morse, D. L. Conway, H. Cuffey, K. M. Kavanaugh, J. L. Rignot, E. |
Author_xml | – sequence: 1 givenname: J. L. surname: Kavanaugh fullname: Kavanaugh, J. L. organization: Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada – sequence: 2 givenname: K. M. surname: Cuffey fullname: Cuffey, K. M. email: kcuffey@berkeley.edu organization: Department of Geography, University of California, California, Berkeley, USA – sequence: 3 givenname: D. L. surname: Morse fullname: Morse, D. L. organization: Institute for Geophysics, University of Texas at Austin, Texas, Austin, USA – sequence: 4 givenname: H. surname: Conway fullname: Conway, H. organization: Department of Earth and Space Sciences, University of Washington, Washington, Seattle, USA – sequence: 5 givenname: E. surname: Rignot fullname: Rignot, E. organization: Department of Earth System Science, University of California, California, Irvine, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22390091$$DView record in Pascal Francis |
BookMark | eNqFkU1rFTEYhYNU8Np25w8IgrrptHnzOXFXqnfaUhTslYIuQm4mA6kzkzaZq86_N_WWIi7abN7N8xxyOC_RzhhHj9ArIIdAqD6ihOjzJSHAiH6GFhSErCgldActCPC6IpSqF2g_52tSHheSE1ig7x_m0Q7BZWzHFg82Z7y2vR2dx7HDKzv3MeGmty74dICPx8kmNwVn32M4xI2Pg5_S_NfNm9TZov30fXRhCj7voeed7bPfv7-76Ovy4-rktLr43JydHF9UVlAlKsW1FC2HGgRpNdNCaEY5cC1KJSZhrTjYmnBYew3StYyupVCatqC1ah1ju-jdNvcmxduNz5MZQna-LzV83GSjhABaA-hCvn2UZJIpziV7EqTAoFZaFPD1f-B13KSx1DW1BCCS1bRAB1vIpZhz8p25SWGwaTZAzN145t_xCv7mPtNmZ_sulTlCfnAoZbrgUDjYcr9C7-dHM81582Up-d1_q60T8uR_Pzg2_TBSMSXM1afGiNXl1fL08puh7A_rSLML |
CitedBy_id | crossref_primary_10_1029_2011JF002291 crossref_primary_10_1029_2011JF002086 crossref_primary_10_1038_s41550_024_02212_z crossref_primary_10_1073_pnas_1320329111 crossref_primary_10_5194_cp_13_943_2017 crossref_primary_10_1029_2020GL089110 crossref_primary_10_1016_j_quascirev_2010_02_001 crossref_primary_10_1080_2150704X_2015_1094588 crossref_primary_10_1130_B31319_1 crossref_primary_10_1029_2009JF001331 crossref_primary_10_1029_2011JF002028 crossref_primary_10_5194_cp_15_1537_2019 crossref_primary_10_1029_2009JF001329 crossref_primary_10_5194_tc_17_843_2023 |
Cites_doi | 10.1017/S0022143000005888 10.1111/1468-0459.00122 10.1111/1468-0459.00130 10.3189/172756404781813970 10.1029/2006JF000599 10.1029/2004JB003222 10.1130/0091-7613(2000)28<351:EACGB>2.0.CO;2 10.1130/0016-7606(1996)108<0181:LCAPRF>2.3.CO;2 10.1016/j.yqres.2007.07.013 10.1016/0033-5894(89)90004-5 10.1016/j.epsl.2004.05.007 10.1006/qres.2001.2276 10.3189/002214307783258530 10.1016/0033-5894(79)90002-4 10.1029/98GL52486 10.1038/ngeo201 10.1017/S0022143000023194 10.1029/2005JE002525 10.1046/j.1365-2427.2000.00513.x 10.1029/2009JF001329 10.2307/521204 10.1006/qres.1993.1002 10.1017/S0022143000015604 10.1038/nature710 10.2307/521200 10.2307/1313730 10.1111/j.0435-3676.1999.00096.x 10.1029/2009JF001331 |
ContentType | Journal Article |
Copyright | Copyright 2009 by the American Geophysical Union. 2015 INIST-CNRS Copyright 2009 by American Geophysical Union |
Copyright_xml | – notice: Copyright 2009 by the American Geophysical Union. – notice: 2015 INIST-CNRS – notice: Copyright 2009 by American Geophysical Union |
DBID | BSCLL IQODW AAYXX CITATION 3V. 7ST 7TG 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KL. KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PATMY PCBAR PQEST PQQKQ PQUKI PTHSS PYCSY Q9U SOI 7U6 7SM |
DOI | 10.1029/2009JF001309 |
DatabaseName | Istex Pascal-Francis CrossRef ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Proquest Research Library ProQuest Science Journals Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts Sustainability Science Abstracts Earthquake Engineering Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Prep ProQuest Central Student Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) Sustainability Science Abstracts Earthquake Engineering Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef Earthquake Engineering Abstracts Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 2169-9011 |
EndPage | n/a |
ExternalDocumentID | 2315446961 10_1029_2009JF001309 22390091 JGRF645 ark_67375_WNG_5TSWFHSZ_2 |
Genre | article Feature |
GeographicLocations | Narrows New York Taylor Glacier United States polar regions Antarctica Victoria Land Antarctic ice sheet Antarctica, Victoria Land, McMurdo Dry Valley |
GeographicLocations_xml | – name: Antarctica – name: Antarctica, Victoria Land, McMurdo Dry Valley |
GroupedDBID | 12K 1OC 24P 7XC 88I 8FE 8FH 8G5 8R4 8R5 AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A 08R ALUQN IQODW AAMNL AAYXX CITATION 05W 0R~ 33P 3V. 52M 702 7ST 7TG 7UA 7XB 8FD 8FG 8FK AAESR AASGY AAZKR ABJCF ACGOD ACIWK ACPOU ACXQS ADKYN ADOZA ADXAS ADZMN AFKRA AFRAH AIURR ARAPS ASPBG AVWKF AZFZN AZQEC AZVAB BFHJK BGLVJ C1K CCPQU DPXWK EBS F1W FEDTE FR3 H8D H96 HGLYW HVGLF HZ~ KL. KR7 L.G L6V L7M LEEKS LK5 M7R M7S MBDVC MY~ O9- P2W P62 PATMY PCBAR PQEST PQQKQ PQUKI PROAC PTHSS PYCSY Q9U R.K SOI SUPJJ WBKPD 7U6 7SM |
ID | FETCH-LOGICAL-a5275-74965d418150d9395593241495200361b741a8041be916cd32b65792d1997dc33 |
ISSN | 0148-0227 2169-9003 |
IngestDate | Wed Jul 24 12:55:09 EDT 2024 Fri Aug 16 07:26:51 EDT 2024 Sat Aug 17 04:13:48 EDT 2024 Sat Nov 09 09:33:25 EST 2024 Thu Nov 21 20:54:15 EST 2024 Sun Oct 22 16:07:35 EDT 2023 Sat Aug 24 00:57:58 EDT 2024 Wed Oct 30 09:45:05 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | F4 |
Keywords | geomorphology mass balance thickness Spot ice undulation North America paleoclimate cascades dynamics ecology bedrock Outlet glacier flow Synthetic aperture radar troughs models interferometry topography climate velocity dry valleys ground-penetrating radar Global Positioning System Interannual variation geometry |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a5275-74965d418150d9395593241495200361b741a8041be916cd32b65792d1997dc33 |
Notes | istex:ADEEB218D107E6E0EB597126E9E4AC505C0D581C ark:/67375/WNG-5TSWFHSZ-2 ArticleID:2009JF001309 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://escholarship.org/content/qt5xh678rm/qt5xh678rm.pdf?t=nud1fh |
PQID | 861106382 |
PQPubID | 23500 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_755128119 proquest_miscellaneous_36374463 proquest_miscellaneous_21318795 proquest_journals_861106382 crossref_primary_10_1029_2009JF001309 pascalfrancis_primary_22390091 wiley_primary_10_1029_2009JF001309_JGRF645 istex_primary_ark_67375_WNG_5TSWFHSZ_2 |
PublicationCentury | 2000 |
PublicationDate | December 2009 |
PublicationDateYYYYMMDD | 2009-12-01 |
PublicationDate_xml | – month: 12 year: 2009 text: December 2009 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: Washington |
PublicationTitle | Journal of Geophysical Research. B. Solid Earth |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2009 |
Publisher | Blackwell Publishing Ltd American Geophysical Union |
Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union |
References | Kavanaugh, J. L., and K. M. Cuffey (2009), Dynamics and mass balance of Taylor Glacier, Antarctica: 2. Force balance and longitudinal coupling, J. Geophys. Res., 114, F04011, doi:10.1029/2009JF001329. Higgins, S. M., C. H. Hendy, and G. H. Denton (2000), Geochronology of Bonney Drift, Taylor Valley, Antarctica: Evidence for interglacial expansions of Taylor Glacier, Geogr. Ann., Ser. A, 82, 391-409, doi:10.1111/1468-0459.00130. Lyons, W. B., A. Fountain, P. Doran, J. C. Priscu, K. Neumann, and K. A. Welch (2000), Importance of landscape position and legacy: The evolution of the lakes in Taylor Valley, Antarctica, Freshwater Biol., 43, 355-367, doi:10.1046/j.1365-2427.2000.00513.x. Aciego, S. M., K. M. Cuffey, J. L. Kavanaugh, D. L. Morse, and J. P. Severinghaus (2007), Pleistocene ice and paleo-strain rates at Taylor Glacier, Antarctica, Quat. Res., 68, 303-313, doi:10.1016/j.yqres.2007.07.013. Cuffey, K. M., H. Conway, A. M. Gades, B. Hallet, R. Lorrain, J. P. Severinghaus, E. J. Steig, B. Vaughn, and J. W. C. White (2000), Entrainment at cold glacier beds, Geology, 28, 351-354, doi:10.1130/0091-7613(2000)28<351:EACGB>2.0.CO;2. Hendy, C. H., T. R. Healy, E. M. Rayner, J. Shaw, and A. T. Wilson (1979), Late Pleistocene glacial chronology of the Taylor Valley, Antarctica, and the global climate, Quat. Res., 11, 172-184, doi:10.1016/0033-5894(79)90002-4. Marchant, D. R., G. H. Denton, and C. C. Swisher III (1993), Miocene-Pliocene-Pleistocene glacial history of Arena Valley, Quartermain Mountains, Antarctica, Geogr. Ann., Ser. A, 75, 269-302, doi:10.2307/521204. Morse, D. L., E. D. Waddington, and E. J. Steig (1998), Ice age storm trajectories inferred from radar stratigraphy at Taylor Dome, Antarctica, Geophys. Res. Lett., 25, 3383-3386, doi:10.1029/98GL52486. Sugden, D. E., and B. S. John (1976), Glaciers and Landscape, 376 pp., Edward Arnold, London. Denton, G. H., D. E. Sugden, D. R. Marchant, B. L. Hall, and T. I. Wilch (1993), East Antarctic Ice Sheet sensitivity to Pliocene climatic change from a dry valleys perspective, Geogr. Ann., Ser. A, 75, 155-204, doi:10.2307/521200. Denton, G. H., J. G. Bockheim, S. C. Wilson, and M. Stuiver (1989), Late Wisconsin and early Holocene glacial history, inner Ross Embayment, Antarctica, Quat. Res., 31, 151-182, doi:10.1016/0033-5894(89)90004-5. Fountain, A. G., et al. (1999), Physical controls on the Taylor Valley ecosystem, Antarctica, BioScience, 49, 961-971, doi:10.2307/1313730. Morse, D. L., E. D. Waddington, H.-P. Marshall, T. A. Neumann, E. J. Steig, J. E. Dibb, D. P. Winebrenner, and R. J. Arthern (1999), Accumulation rate measurements at Taylor Dome, East Antarctica: Techniques and strategies for mass balance measurements in polar environments, Geogr. Ann., Ser. A, 81, 683-694, doi:10.1111/j.0435-3676.1999.00096.x. Calkin, P. E. (1974), Subglacial geomorphology surrounding the ice-free valleys of southern Victoria Land, Antarctica, J. Glaciol., 13, 415-429. Doran, P. T., et al. (2002), Antarctic climate cooling and terrestrial ecosystem response, Nature, 415, 517-520, doi:10.1038/nature710. Marchant, D. R., G. H. Denton, C. C. Swisher, and N. Potter (1996), Late Cenozoic Antarctic paleoclimate reconstructed from volcanic ashes in the dry valleys region of southern Victoria Land, Geol. Soc. Am. Bull., 108, 181-194, doi:10.1130/0016-7606(1996)108<0181:LCAPRF>2.3.CO;2. Kamb, B., and K. Echelmeyer (1986), Stress-gradient coupling in glacier flow: 1. Longitudinal averaging of the influence of ice thickness and surface slope, J. Glaciol., 32, 267-284. Keys, J. R. (1979), Saline discharge at the terminus of Taylor Glacier, Antarct. J. U. S., 14(5), 82-85. Hubbard, A., W. Lawson, B. Anderson, B. Hubbard, and H. Blatter (2004), Evidence for subglacial ponding across Taylor Glacier, Dry Valleys, Antarctica, Ann. Glaciol., 39, 79-84, doi:10.3189/172756404781813970. Steig, E. J., et al. (2000), Wisconsinan and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica, Geogr. Ann., Ser. A, 82, 213-235, doi:10.1111/1468-0459.00122. Kavanaugh, J. L., K. M. Cuffey, D. L. Morse, A. K. Bliss, and S. M. Aciego (2009), Dynamics and mass balance of Taylor Glacier, Antarctica: 3. State of mass balance, J. Geophys. Res., 114, F04012, doi:10.1029/2009JF001331. Robinson, P. H. (1984), Ice dynamics and thermal regime of Taylor Glacier, South Victoria Land, Antarctica, J. Glaciol., 30(105), 153-160. Mazo, V. L. (1987), Effects of glacial erosion on the flow of ice sheets and the morphology of their beds, IAHS Publ., 170, 145-155. Paterson, W. S. B. (1994), The Physics of Glaciers, 3rd ed., 480 pp., Elsevier Sci., Tarrytown, N. Y. Brook, E. J., M. D. Kurz, R. P. Ackert Jr., G. H. Denton, E. T. Brown, G. M. Raisbeck, and F. Yiou (1993), Chronology of Taylor Glacier advances in Arena Valley, Antarctica, using in-situ cosmogenic 3He and 10Be, Quat. Res., 39, 11-23, doi:10.1006/qres.1993.1002. Kessler, M. A., R. S. Anderson, and J. P. Briner (2008), Fjord insertion into continental margins driven by topographic steering of ice, Nat. Geosci., 1, 365-369, doi:10.1038/ngeo201. Johnson, J. V., and J. W. Staiger (2007), Modeling long-term stability of the Ferrar Glacier, East Antarctica: Implications for interpreting cosmogenic nuclide inheritance, J. Geophys. Res., 112, F03S30, doi:10.1029/2006JF000599. Peters, M. E., D. D. Blankenship, and D. L. Morse (2005), Analysis techniques for coherent airborne radar sounding: Application to West Antarctic ice streams, J. Geophys. Res., 110, B06303, doi:10.1029/2004JB003222. Monnin, E., et al. (2004), Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C, and DML ice cores, Earth Planet. Sci. Lett., 224, 45-54, doi:10.1016/j.epsl.2004.05.007. Morse, D. L., E. D. Waddington, and L. A. Rasmussen (2007), Ice deformation in the vicinity of the ice-core site at Taylor Dome, Antarctica, and a derived accumulation history, J. Glaciol., 53(182), 449-460, doi:10.3189/002214307783258530. Holt, J. W., M. E. Peters, S. D. Kempf, D. L. Morse, and D. D. Blankenship (2006a), Echo source discrimination in single-pass airborne radar sounding data from the Dry Valleys, Antarctica: implications for orbital sounding of Mars, J. Geophys. Res., 111, E06S24, doi:10.1029/2005JE002525. Grootes, P. M., E. J. Steig, M. Stuiver, E. D. Waddington, and D. L. Morse (2001), The Taylor dome antarctic 18O record and globally synchronous changes in climate, Quat. Res., 56, 289-298, doi:10.1006/qres.2001.2276. 1974; 13 2004; 224 2000; 28 1979; 14 2005; 110 1986; 32 2000; 43 1999; 49 1998 1976 2002; 415 2007 2006 1994 2008; 1 2007; 53 1999; 81 1979; 11 2009; 114 1996; 108 1987; 170 2006; 111 1998; 25 2007; 112 1984; 30 1993; 39 1989; 31 2001 2004; 39 1993; 75 2000; 82 1982 2001; 56 2007; 68 e_1_2_10_23_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 Mazo V. L. (e_1_2_10_29_1) 1987; 170 Keys J. R. (e_1_2_10_24_1) 1979; 14 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 Sugden D. E. (e_1_2_10_38_1) 1976 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 Drewry D. J. (e_1_2_10_10_1) 1982 Paterson W. S. B. (e_1_2_10_34_1) 1994 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 53 start-page: 449 issue: 182 year: 2007 end-page: 460 article-title: Ice deformation in the vicinity of the ice‐core site at Taylor Dome, Antarctica, and a derived accumulation history publication-title: J. Glaciol. – volume: 28 start-page: 351 year: 2000 end-page: 354 article-title: Entrainment at cold glacier beds publication-title: Geology – volume: 11 start-page: 172 year: 1979 end-page: 184 article-title: Late Pleistocene glacial chronology of the Taylor Valley, Antarctica, and the global climate publication-title: Quat. Res. – volume: 82 start-page: 391 year: 2000 end-page: 409 article-title: Geochronology of Bonney Drift, Taylor Valley, Antarctica: Evidence for interglacial expansions of Taylor Glacier publication-title: Geogr. Ann., Ser. A – volume: 110 year: 2005 article-title: Analysis techniques for coherent airborne radar sounding: Application to West Antarctic ice streams publication-title: J. Geophys. Res. – volume: 13 start-page: 415 year: 1974 end-page: 429 article-title: Subglacial geomorphology surrounding the ice‐free valleys of southern Victoria Land, Antarctica publication-title: J. Glaciol. – volume: 114 year: 2009 article-title: Dynamics and mass balance of Taylor Glacier, Antarctica: 3. State of mass balance publication-title: J. Geophys. Res. – year: 2007 – year: 2001 – start-page: 977 year: 1982 end-page: 983 – volume: 32 start-page: 267 year: 1986 end-page: 284 article-title: Stress‐gradient coupling in glacier flow: 1. Longitudinal averaging of the influence of ice thickness and surface slope publication-title: J. Glaciol. – year: 1994 – year: 1998 – volume: 82 start-page: 213 year: 2000 end-page: 235 article-title: Wisconsinan and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica publication-title: Geogr. Ann., Ser. A – volume: 75 start-page: 155 year: 1993 end-page: 204 article-title: East Antarctic Ice Sheet sensitivity to Pliocene climatic change from a dry valleys perspective publication-title: Geogr. Ann., Ser. A – volume: 224 start-page: 45 year: 2004 end-page: 54 article-title: Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO in the Taylor Dome, Dome C, and DML ice cores publication-title: Earth Planet. Sci. Lett. – volume: 49 start-page: 961 year: 1999 end-page: 971 article-title: Physical controls on the Taylor Valley ecosystem, Antarctica publication-title: BioScience – volume: 112 year: 2007 article-title: Modeling long‐term stability of the Ferrar Glacier, East Antarctica: Implications for interpreting cosmogenic nuclide inheritance publication-title: J. Geophys. Res. – volume: 108 start-page: 181 year: 1996 end-page: 194 article-title: Late Cenozoic Antarctic paleoclimate reconstructed from volcanic ashes in the dry valleys region of southern Victoria Land publication-title: Geol. Soc. Am. Bull. – volume: 56 start-page: 289 year: 2001 end-page: 298 article-title: The Taylor dome antarctic O record and globally synchronous changes in climate publication-title: Quat. Res. – volume: 75 start-page: 269 year: 1993 end-page: 302 article-title: Miocene‐Pliocene‐Pleistocene glacial history of Arena Valley, Quartermain Mountains, Antarctica publication-title: Geogr. Ann., Ser. A – volume: 30 start-page: 153 issue: 105 year: 1984 end-page: 160 article-title: Ice dynamics and thermal regime of Taylor Glacier, South Victoria Land, Antarctica publication-title: J. Glaciol. – volume: 415 start-page: 517 year: 2002 end-page: 520 article-title: Antarctic climate cooling and terrestrial ecosystem response publication-title: Nature – volume: 1 start-page: 365 year: 2008 end-page: 369 article-title: Fjord insertion into continental margins driven by topographic steering of ice publication-title: Nat. Geosci. – volume: 14 start-page: 82 issue: 5 year: 1979 end-page: 85 article-title: Saline discharge at the terminus of Taylor Glacier publication-title: Antarct. J. U. S. – volume: 170 start-page: 145 year: 1987 end-page: 155 article-title: Effects of glacial erosion on the flow of ice sheets and the morphology of their beds publication-title: IAHS Publ. – volume: 39 start-page: 11 year: 1993 end-page: 23 article-title: Chronology of Taylor Glacier advances in Arena Valley, Antarctica, using in‐situ cosmogenic He and Be publication-title: Quat. Res. – volume: 111 year: 2006 article-title: Echo source discrimination in single‐pass airborne radar sounding data from the Dry Valleys, Antarctica: implications for orbital sounding of Mars publication-title: J. Geophys. Res. – volume: 43 start-page: 355 year: 2000 end-page: 367 article-title: Importance of landscape position and legacy: The evolution of the lakes in Taylor Valley, Antarctica publication-title: Freshwater Biol. – year: 2006 – volume: 81 start-page: 683 year: 1999 end-page: 694 article-title: Accumulation rate measurements at Taylor Dome, East Antarctica: Techniques and strategies for mass balance measurements in polar environments publication-title: Geogr. Ann., Ser. A – volume: 31 start-page: 151 year: 1989 end-page: 182 article-title: Late Wisconsin and early Holocene glacial history, inner Ross Embayment, Antarctica publication-title: Quat. Res. – volume: 39 start-page: 79 year: 2004 end-page: 84 article-title: Evidence for subglacial ponding across Taylor Glacier, Dry Valleys, Antarctica publication-title: Ann. Glaciol. – volume: 68 start-page: 303 year: 2007 end-page: 313 article-title: Pleistocene ice and paleo‐strain rates at Taylor Glacier, Antarctica publication-title: Quat. Res. – volume: 114 year: 2009 article-title: Dynamics and mass balance of Taylor Glacier, Antarctica: 2. Force balance and longitudinal coupling publication-title: J. Geophys. Res. – volume: 25 start-page: 3383 year: 1998 end-page: 3386 article-title: Ice age storm trajectories inferred from radar stratigraphy at Taylor Dome, Antarctica publication-title: Geophys. Res. Lett. – year: 1976 – ident: e_1_2_10_36_1 doi: 10.1017/S0022143000005888 – ident: e_1_2_10_37_1 doi: 10.1111/1468-0459.00122 – ident: e_1_2_10_15_1 doi: 10.1111/1468-0459.00130 – ident: e_1_2_10_18_1 doi: 10.3189/172756404781813970 – ident: e_1_2_10_19_1 doi: 10.1029/2006JF000599 – ident: e_1_2_10_35_1 doi: 10.1029/2004JB003222 – ident: e_1_2_10_5_1 doi: 10.1130/0091-7613(2000)28<351:EACGB>2.0.CO;2 – ident: e_1_2_10_28_1 doi: 10.1130/0016-7606(1996)108<0181:LCAPRF>2.3.CO;2 – ident: e_1_2_10_2_1 doi: 10.1016/j.yqres.2007.07.013 – ident: e_1_2_10_7_1 doi: 10.1016/0033-5894(89)90004-5 – ident: e_1_2_10_30_1 doi: 10.1016/j.epsl.2004.05.007 – ident: e_1_2_10_13_1 doi: 10.1006/qres.2001.2276 – ident: e_1_2_10_33_1 doi: 10.3189/002214307783258530 – ident: e_1_2_10_14_1 doi: 10.1016/0033-5894(79)90002-4 – ident: e_1_2_10_31_1 doi: 10.1029/98GL52486 – ident: e_1_2_10_23_1 doi: 10.1038/ngeo201 – ident: e_1_2_10_4_1 doi: 10.1017/S0022143000023194 – ident: e_1_2_10_16_1 doi: 10.1029/2005JE002525 – ident: e_1_2_10_26_1 doi: 10.1046/j.1365-2427.2000.00513.x – ident: e_1_2_10_12_1 – ident: e_1_2_10_21_1 doi: 10.1029/2009JF001329 – ident: e_1_2_10_27_1 doi: 10.2307/521204 – volume-title: Glaciers and Landscape year: 1976 ident: e_1_2_10_38_1 contributor: fullname: Sugden D. E. – ident: e_1_2_10_3_1 doi: 10.1006/qres.1993.1002 – ident: e_1_2_10_20_1 doi: 10.1017/S0022143000015604 – ident: e_1_2_10_9_1 doi: 10.1038/nature710 – start-page: 977 volume-title: Antarctic Geoscience 1 year: 1982 ident: e_1_2_10_10_1 contributor: fullname: Drewry D. J. – ident: e_1_2_10_8_1 doi: 10.2307/521200 – ident: e_1_2_10_11_1 doi: 10.2307/1313730 – volume: 14 start-page: 82 issue: 5 year: 1979 ident: e_1_2_10_24_1 article-title: Saline discharge at the terminus of Taylor Glacier publication-title: Antarct. J. U. S. contributor: fullname: Keys J. R. – ident: e_1_2_10_25_1 – ident: e_1_2_10_6_1 – ident: e_1_2_10_17_1 – volume-title: The Physics of Glaciers year: 1994 ident: e_1_2_10_34_1 contributor: fullname: Paterson W. S. B. – ident: e_1_2_10_32_1 doi: 10.1111/j.0435-3676.1999.00096.x – ident: e_1_2_10_22_1 doi: 10.1029/2009JF001331 – volume: 170 start-page: 145 year: 1987 ident: e_1_2_10_29_1 article-title: Effects of glacial erosion on the flow of ice sheets and the morphology of their beds publication-title: IAHS Publ. contributor: fullname: Mazo V. L. |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 ssj0000816912 |
Score | 2.1443317 |
Snippet | Taylor Glacier, Antarctica, exemplifies a little‐studied type of outlet glacier, one that flows slowly through a region of rugged topography and dry climate.... Taylor Glacier, Antarctica, exemplifies a little-studied type of outlet glacier, one that flows slowly through a region of rugged topography and dry climate.... |
SourceID | proquest crossref pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Antarctica Bedrock Cryosphere Earth sciences Earth, ocean, space Elevation Exact sciences and technology Geomorphology glacier dynamics glacier erosion Glaciers Global Positioning System Outlets Paleoclimate Satellite navigation systems Surface velocity Valleys |
Title | Dynamics and mass balance of Taylor Glacier, Antarctica: 1. Geometry and surface velocities |
URI | https://api.istex.fr/ark:/67375/WNG-5TSWFHSZ-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2009JF001309 https://www.proquest.com/docview/861106382 https://search.proquest.com/docview/21318795 https://search.proquest.com/docview/36374463 https://search.proquest.com/docview/755128119 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9Mw1FpXISEkBAO0MBg-wA6UhMZxkppbtbWdBhvT2ml8HCI3cSTElkzJKti_5_kjX0Kb2IFLFTu2K-d9Pz-_h9BrFiep4JTbKSCTTWOX2iwm1OY-iz0mPEaZvCi8Pw-Pvoz2JnSytlZVyWr6_iukoQ9gLW_O3gHa9aLQAc8Ac_gFqMPvP8F9T5eY16mXL0A1Hixl9GKsfAPaPh_MzjmQdGGSB8AHkA5t5RtwpJP8QlwVOi1TuSpSDlNlYFGscq_eoMzCrMsK4lUwn1xwwuWx0FwvUzN3rio569OdA2fwyalPQlZpqn3oH53BYd19mBe6_uNeZ3Ce_eL6goXTcV6wViBI48-UWQy1OFJ9oIQENiHDLpPWV00NNk5pS2DX4uwvaTAkMpmq_N-DqTqiZY3Uq07663H-bSOVwD-YnUwD6vdQnwBXA6baH09Ov57ULj2VmqeJMHKpujOsG0AJo06DtBteu0HbDb_dCKoGBbGgK22az2eudMBG3rc30VG2-pJv_JbBv7wEbEh14ZaOZdW2z5SCtXiEHhpkwmON0o_Rmsg20Oa4lGc1-cU13sHqWaNZuYHu6TKq1_A0E-bJOgQbMC9UCybsnv8Ag8y8e_A5FjwzGdph0rFe6An6XpEMBpTHkmSwIRmcp1iTDDYk8w43BPMBuw6uyEXNNeSCG3J5ik6nk8Xuvm1qjgB3IqFvh7J-QkJB7_WHCfNkfkYwOaQbQUZxBu4SNHAuc3YtBRhWceKRZeCHjCQyYCuJPe8ZWs_yTGwinI4CGnjDOEmIoMINeZCSUMRsmYY0BT3cQm8q4ESXOrVMpEJCCIvaQLTQjoJcPYgXP2U4ZuhHZ0ezyF_Mz6b7828RsdB2B7T1BDABGCzoWmirgnVkWFYZjQKwAEAKw_RX9VuQMfLgkGciX5URcUHyh8y_eYQXeCGF3VoI3zAiBNOMjFwXtvNWYdmte44MrT2_y-AtdL_hMS_Q-lWxEi9Rr0xW26jnecfbhmD_AD-9_hw |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+and+mass+balance+of+Taylor+Glacier%2C+Antarctica%3A+1.+Geometry+and+surface+velocities&rft.jtitle=Journal+of+Geophysical+Research%3A+Earth+Surface&rft.au=Kavanaugh%2C+J.+L.&rft.au=Cuffey%2C+K.+M.&rft.au=Morse%2C+D.+L.&rft.au=Conway%2C+H.&rft.date=2009-12-01&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=114&rft.issue=F4&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2009JF001309&rft.externalDBID=10.1029%252F2009JF001309&rft.externalDocID=JGRF645 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |