Dynamics and mass balance of Taylor Glacier, Antarctica: 1. Geometry and surface velocities

Taylor Glacier, Antarctica, exemplifies a little‐studied type of outlet glacier, one that flows slowly through a region of rugged topography and dry climate. This glacier, in addition, connects the East Antarctic Ice Sheet with the McMurdo Dry Valleys, a region much studied for geomorphology, paleoc...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research. B. Solid Earth Vol. 114; no. F4
Main Authors: Kavanaugh, J. L., Cuffey, K. M., Morse, D. L., Conway, H., Rignot, E.
Format: Journal Article
Language:English
Published: Washington, DC Blackwell Publishing Ltd 01-12-2009
American Geophysical Union
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Taylor Glacier, Antarctica, exemplifies a little‐studied type of outlet glacier, one that flows slowly through a region of rugged topography and dry climate. This glacier, in addition, connects the East Antarctic Ice Sheet with the McMurdo Dry Valleys, a region much studied for geomorphology, paleoclimate, and ecology. Here we report extensive new measurements of surface velocities, ice thicknesses, and surface elevations, acquired with InSAR, GPS, and GPR. The latter two were used to construct elevation models of the glacier's surface and bed. Ice velocities in 2002–2004 closely matched those in 2000 and the mid‐1970s, indicating negligible interannual variations of flow. Comparing velocities with bed elevations shows that, along much of the glacier, flow concentrates in a narrow axis of relatively fast flowing ice that overlies a bedrock trough. The flow of the glacier over major undulations in its bed can be regarded as a “cascade”; it speeds up over bedrock highs and through valley narrows and slows down over deep basins and in wide spots. This pattern is an expected consequence of mass conservation for a glacier near steady state. Neither theory nor data from this Taylor Glacier study support the alternative view, recently proposed, that an outlet glacier of this type trickles slowly over bedrock highs and flows fastest over deep basins.
AbstractList Taylor Glacier, Antarctica, exemplifies a little-studied type of outlet glacier, one that flows slowly through a region of rugged topography and dry climate. This glacier, in addition, connects the East Antarctic Ice Sheet with the McMurdo Dry Valleys, a region much studied for geomorphology, paleoclimate, and ecology. Here we report extensive new measurements of surface velocities, ice thicknesses, and surface elevations, acquired with InSAR, GPS, and GPR. The latter two were used to construct elevation models of the glacier's surface and bed. Ice velocities in 20022004 closely matched those in 2000 and the mid-1970s, indicating negligible interannual variations of flow. Comparing velocities with bed elevations shows that, along much of the glacier, flow concentrates in a narrow axis of relatively fast flowing ice that overlies a bedrock trough. The flow of the glacier over major undulations in its bed can be regarded as a cascade; it speeds up over bedrock highs and through valley narrows and slows down over deep basins and in wide spots. This pattern is an expected consequence of mass conservation for a glacier near steady state. Neither theory nor data from this Taylor Glacier study support the alternative view, recently proposed, that an outlet glacier of this type trickles slowly over bedrock highs and flows fastest over deep basins.
Taylor Glacier, Antarctica, exemplifies a little-studied type of outlet glacier, one that flows slowly through a region of rugged topography and dry climate. This glacier, in addition, connects the East Antarctic Ice Sheet with the McMurdo Dry Valleys, a region much studied for geomorphology, paleoclimate, and ecology. Here we report extensive new measurements of surface velocities, ice thicknesses, and surface elevations, acquired with InSAR, GPS, and GPR. The latter two were used to construct elevation models of the glacier's surface and bed. Ice velocities in 2002-2004 closely matched those in 2000 and the mid-1970s, indicating negligible interannual variations of flow. Comparing velocities with bed elevations shows that, along much of the glacier, flow concentrates in a narrow axis of relatively fast flowing ice that overlies a bedrock trough. The flow of the glacier over major undulations in its bed can be regarded as a 'cascade'; it speeds up over bedrock highs and through valley narrows and slows down over deep basins and in wide spots. This pattern is an expected consequence of mass conservation for a glacier near steady state. Neither theory nor data from this Taylor Glacier study support the alternative view, recently proposed, that an outlet glacier of this type trickles slowly over bedrock highs and flows fastest over deep basins.
Taylor Glacier, Antarctica, exemplifies a little-studied type of outlet glacier, one that flows slowly through a region of rugged topography and dry climate. This glacier, in addition, connects the East Antarctic Ice Sheet with the McMurdo Dry Valleys, a region much studied for geomorphology, paleoclimate, and ecology. Here we report extensive new measurements of surface velocities, ice thicknesses, and surface elevations, acquired with InSAR, GPS, and GPR. The latter two were used to construct elevation models of the glacierʼ s surface and bed. Ice velocities in 2002-2004 closely matched those in 2000 and the mid-1970s, indicating negligible interannual variations of flow. Comparing velocities with bed elevations shows that, along much of the glacier, flow concentrates in a narrow axis of relatively fast flowing ice that overlies a bedrock trough. The flow of the glacier over major undulations in its bed can be regarded as a cascade; it speeds up over bedrock highs and through valley narrows and slows down over deep basins and in wide spots. This pattern is an expected consequence of mass conservation for a glacier near steady state. Neither theory nor data from this Taylor Glacier study support the alternative view, recently proposed, that an outlet glacier of this type trickles slowly over bedrock highs and flows fastest over deep basins.
Author Morse, D. L.
Conway, H.
Cuffey, K. M.
Kavanaugh, J. L.
Rignot, E.
Author_xml – sequence: 1
  givenname: J. L.
  surname: Kavanaugh
  fullname: Kavanaugh, J. L.
  organization: Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
– sequence: 2
  givenname: K. M.
  surname: Cuffey
  fullname: Cuffey, K. M.
  email: kcuffey@berkeley.edu
  organization: Department of Geography, University of California, California, Berkeley, USA
– sequence: 3
  givenname: D. L.
  surname: Morse
  fullname: Morse, D. L.
  organization: Institute for Geophysics, University of Texas at Austin, Texas, Austin, USA
– sequence: 4
  givenname: H.
  surname: Conway
  fullname: Conway, H.
  organization: Department of Earth and Space Sciences, University of Washington, Washington, Seattle, USA
– sequence: 5
  givenname: E.
  surname: Rignot
  fullname: Rignot, E.
  organization: Department of Earth System Science, University of California, California, Irvine, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22390091$$DView record in Pascal Francis
BookMark eNqFkU1rFTEYhYNU8Np25w8IgrrptHnzOXFXqnfaUhTslYIuQm4mA6kzkzaZq86_N_WWIi7abN7N8xxyOC_RzhhHj9ArIIdAqD6ihOjzJSHAiH6GFhSErCgldActCPC6IpSqF2g_52tSHheSE1ig7x_m0Q7BZWzHFg82Z7y2vR2dx7HDKzv3MeGmty74dICPx8kmNwVn32M4xI2Pg5_S_NfNm9TZov30fXRhCj7voeed7bPfv7-76Ovy4-rktLr43JydHF9UVlAlKsW1FC2HGgRpNdNCaEY5cC1KJSZhrTjYmnBYew3StYyupVCatqC1ah1ju-jdNvcmxduNz5MZQna-LzV83GSjhABaA-hCvn2UZJIpziV7EqTAoFZaFPD1f-B13KSx1DW1BCCS1bRAB1vIpZhz8p25SWGwaTZAzN145t_xCv7mPtNmZ_sulTlCfnAoZbrgUDjYcr9C7-dHM81582Up-d1_q60T8uR_Pzg2_TBSMSXM1afGiNXl1fL08puh7A_rSLML
CitedBy_id crossref_primary_10_1029_2011JF002291
crossref_primary_10_1029_2011JF002086
crossref_primary_10_1038_s41550_024_02212_z
crossref_primary_10_1073_pnas_1320329111
crossref_primary_10_5194_cp_13_943_2017
crossref_primary_10_1029_2020GL089110
crossref_primary_10_1016_j_quascirev_2010_02_001
crossref_primary_10_1080_2150704X_2015_1094588
crossref_primary_10_1130_B31319_1
crossref_primary_10_1029_2009JF001331
crossref_primary_10_1029_2011JF002028
crossref_primary_10_5194_cp_15_1537_2019
crossref_primary_10_1029_2009JF001329
crossref_primary_10_5194_tc_17_843_2023
Cites_doi 10.1017/S0022143000005888
10.1111/1468-0459.00122
10.1111/1468-0459.00130
10.3189/172756404781813970
10.1029/2006JF000599
10.1029/2004JB003222
10.1130/0091-7613(2000)28<351:EACGB>2.0.CO;2
10.1130/0016-7606(1996)108<0181:LCAPRF>2.3.CO;2
10.1016/j.yqres.2007.07.013
10.1016/0033-5894(89)90004-5
10.1016/j.epsl.2004.05.007
10.1006/qres.2001.2276
10.3189/002214307783258530
10.1016/0033-5894(79)90002-4
10.1029/98GL52486
10.1038/ngeo201
10.1017/S0022143000023194
10.1029/2005JE002525
10.1046/j.1365-2427.2000.00513.x
10.1029/2009JF001329
10.2307/521204
10.1006/qres.1993.1002
10.1017/S0022143000015604
10.1038/nature710
10.2307/521200
10.2307/1313730
10.1111/j.0435-3676.1999.00096.x
10.1029/2009JF001331
ContentType Journal Article
Copyright Copyright 2009 by the American Geophysical Union.
2015 INIST-CNRS
Copyright 2009 by American Geophysical Union
Copyright_xml – notice: Copyright 2009 by the American Geophysical Union.
– notice: 2015 INIST-CNRS
– notice: Copyright 2009 by American Geophysical Union
DBID BSCLL
IQODW
AAYXX
CITATION
3V.
7ST
7TG
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PATMY
PCBAR
PQEST
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
SOI
7U6
7SM
DOI 10.1029/2009JF001309
DatabaseName Istex
Pascal-Francis
CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Proquest Research Library
ProQuest Science Journals
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
Sustainability Science Abstracts
Earthquake Engineering Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
Sustainability Science Abstracts
Earthquake Engineering Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Earthquake Engineering Abstracts

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
2169-9011
EndPage n/a
ExternalDocumentID 2315446961
10_1029_2009JF001309
22390091
JGRF645
ark_67375_WNG_5TSWFHSZ_2
Genre article
Feature
GeographicLocations Narrows
New York
Taylor Glacier
United States
polar regions
Antarctica
Victoria Land
Antarctic ice sheet
Antarctica, Victoria Land, McMurdo Dry Valley
GeographicLocations_xml – name: Antarctica
– name: Antarctica, Victoria Land, McMurdo Dry Valley
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
08R
ALUQN
IQODW
AAMNL
AAYXX
CITATION
05W
0R~
33P
3V.
52M
702
7ST
7TG
7UA
7XB
8FD
8FG
8FK
AAESR
AASGY
AAZKR
ABJCF
ACGOD
ACIWK
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AFKRA
AFRAH
AIURR
ARAPS
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BFHJK
BGLVJ
C1K
CCPQU
DPXWK
EBS
F1W
FEDTE
FR3
H8D
H96
HGLYW
HVGLF
HZ~
KL.
KR7
L.G
L6V
L7M
LEEKS
LK5
M7R
M7S
MBDVC
MY~
O9-
P2W
P62
PATMY
PCBAR
PQEST
PQQKQ
PQUKI
PROAC
PTHSS
PYCSY
Q9U
R.K
SOI
SUPJJ
WBKPD
7U6
7SM
ID FETCH-LOGICAL-a5275-74965d418150d9395593241495200361b741a8041be916cd32b65792d1997dc33
ISSN 0148-0227
2169-9003
IngestDate Wed Jul 24 12:55:09 EDT 2024
Fri Aug 16 07:26:51 EDT 2024
Sat Aug 17 04:13:48 EDT 2024
Sat Nov 09 09:33:25 EST 2024
Thu Nov 21 20:54:15 EST 2024
Sun Oct 22 16:07:35 EDT 2023
Sat Aug 24 00:57:58 EDT 2024
Wed Oct 30 09:45:05 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue F4
Keywords geomorphology
mass balance
thickness
Spot
ice
undulation
North America
paleoclimate
cascades
dynamics
ecology
bedrock
Outlet glacier
flow
Synthetic aperture radar
troughs
models
interferometry
topography
climate
velocity
dry valleys
ground-penetrating radar
Global Positioning System
Interannual variation
geometry
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a5275-74965d418150d9395593241495200361b741a8041be916cd32b65792d1997dc33
Notes istex:ADEEB218D107E6E0EB597126E9E4AC505C0D581C
ark:/67375/WNG-5TSWFHSZ-2
ArticleID:2009JF001309
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://escholarship.org/content/qt5xh678rm/qt5xh678rm.pdf?t=nud1fh
PQID 861106382
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_755128119
proquest_miscellaneous_36374463
proquest_miscellaneous_21318795
proquest_journals_861106382
crossref_primary_10_1029_2009JF001309
pascalfrancis_primary_22390091
wiley_primary_10_1029_2009JF001309_JGRF645
istex_primary_ark_67375_WNG_5TSWFHSZ_2
PublicationCentury 2000
PublicationDate December 2009
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: December 2009
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: Washington
PublicationTitle Journal of Geophysical Research. B. Solid Earth
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2009
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Kavanaugh, J. L., and K. M. Cuffey (2009), Dynamics and mass balance of Taylor Glacier, Antarctica: 2. Force balance and longitudinal coupling, J. Geophys. Res., 114, F04011, doi:10.1029/2009JF001329.
Higgins, S. M., C. H. Hendy, and G. H. Denton (2000), Geochronology of Bonney Drift, Taylor Valley, Antarctica: Evidence for interglacial expansions of Taylor Glacier, Geogr. Ann., Ser. A, 82, 391-409, doi:10.1111/1468-0459.00130.
Lyons, W. B., A. Fountain, P. Doran, J. C. Priscu, K. Neumann, and K. A. Welch (2000), Importance of landscape position and legacy: The evolution of the lakes in Taylor Valley, Antarctica, Freshwater Biol., 43, 355-367, doi:10.1046/j.1365-2427.2000.00513.x.
Aciego, S. M., K. M. Cuffey, J. L. Kavanaugh, D. L. Morse, and J. P. Severinghaus (2007), Pleistocene ice and paleo-strain rates at Taylor Glacier, Antarctica, Quat. Res., 68, 303-313, doi:10.1016/j.yqres.2007.07.013.
Cuffey, K. M., H. Conway, A. M. Gades, B. Hallet, R. Lorrain, J. P. Severinghaus, E. J. Steig, B. Vaughn, and J. W. C. White (2000), Entrainment at cold glacier beds, Geology, 28, 351-354, doi:10.1130/0091-7613(2000)28<351:EACGB>2.0.CO;2.
Hendy, C. H., T. R. Healy, E. M. Rayner, J. Shaw, and A. T. Wilson (1979), Late Pleistocene glacial chronology of the Taylor Valley, Antarctica, and the global climate, Quat. Res., 11, 172-184, doi:10.1016/0033-5894(79)90002-4.
Marchant, D. R., G. H. Denton, and C. C. Swisher III (1993), Miocene-Pliocene-Pleistocene glacial history of Arena Valley, Quartermain Mountains, Antarctica, Geogr. Ann., Ser. A, 75, 269-302, doi:10.2307/521204.
Morse, D. L., E. D. Waddington, and E. J. Steig (1998), Ice age storm trajectories inferred from radar stratigraphy at Taylor Dome, Antarctica, Geophys. Res. Lett., 25, 3383-3386, doi:10.1029/98GL52486.
Sugden, D. E., and B. S. John (1976), Glaciers and Landscape, 376 pp., Edward Arnold, London.
Denton, G. H., D. E. Sugden, D. R. Marchant, B. L. Hall, and T. I. Wilch (1993), East Antarctic Ice Sheet sensitivity to Pliocene climatic change from a dry valleys perspective, Geogr. Ann., Ser. A, 75, 155-204, doi:10.2307/521200.
Denton, G. H., J. G. Bockheim, S. C. Wilson, and M. Stuiver (1989), Late Wisconsin and early Holocene glacial history, inner Ross Embayment, Antarctica, Quat. Res., 31, 151-182, doi:10.1016/0033-5894(89)90004-5.
Fountain, A. G., et al. (1999), Physical controls on the Taylor Valley ecosystem, Antarctica, BioScience, 49, 961-971, doi:10.2307/1313730.
Morse, D. L., E. D. Waddington, H.-P. Marshall, T. A. Neumann, E. J. Steig, J. E. Dibb, D. P. Winebrenner, and R. J. Arthern (1999), Accumulation rate measurements at Taylor Dome, East Antarctica: Techniques and strategies for mass balance measurements in polar environments, Geogr. Ann., Ser. A, 81, 683-694, doi:10.1111/j.0435-3676.1999.00096.x.
Calkin, P. E. (1974), Subglacial geomorphology surrounding the ice-free valleys of southern Victoria Land, Antarctica, J. Glaciol., 13, 415-429.
Doran, P. T., et al. (2002), Antarctic climate cooling and terrestrial ecosystem response, Nature, 415, 517-520, doi:10.1038/nature710.
Marchant, D. R., G. H. Denton, C. C. Swisher, and N. Potter (1996), Late Cenozoic Antarctic paleoclimate reconstructed from volcanic ashes in the dry valleys region of southern Victoria Land, Geol. Soc. Am. Bull., 108, 181-194, doi:10.1130/0016-7606(1996)108<0181:LCAPRF>2.3.CO;2.
Kamb, B., and K. Echelmeyer (1986), Stress-gradient coupling in glacier flow: 1. Longitudinal averaging of the influence of ice thickness and surface slope, J. Glaciol., 32, 267-284.
Keys, J. R. (1979), Saline discharge at the terminus of Taylor Glacier, Antarct. J. U. S., 14(5), 82-85.
Hubbard, A., W. Lawson, B. Anderson, B. Hubbard, and H. Blatter (2004), Evidence for subglacial ponding across Taylor Glacier, Dry Valleys, Antarctica, Ann. Glaciol., 39, 79-84, doi:10.3189/172756404781813970.
Steig, E. J., et al. (2000), Wisconsinan and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica, Geogr. Ann., Ser. A, 82, 213-235, doi:10.1111/1468-0459.00122.
Kavanaugh, J. L., K. M. Cuffey, D. L. Morse, A. K. Bliss, and S. M. Aciego (2009), Dynamics and mass balance of Taylor Glacier, Antarctica: 3. State of mass balance, J. Geophys. Res., 114, F04012, doi:10.1029/2009JF001331.
Robinson, P. H. (1984), Ice dynamics and thermal regime of Taylor Glacier, South Victoria Land, Antarctica, J. Glaciol., 30(105), 153-160.
Mazo, V. L. (1987), Effects of glacial erosion on the flow of ice sheets and the morphology of their beds, IAHS Publ., 170, 145-155.
Paterson, W. S. B. (1994), The Physics of Glaciers, 3rd ed., 480 pp., Elsevier Sci., Tarrytown, N. Y.
Brook, E. J., M. D. Kurz, R. P. Ackert Jr., G. H. Denton, E. T. Brown, G. M. Raisbeck, and F. Yiou (1993), Chronology of Taylor Glacier advances in Arena Valley, Antarctica, using in-situ cosmogenic 3He and 10Be, Quat. Res., 39, 11-23, doi:10.1006/qres.1993.1002.
Kessler, M. A., R. S. Anderson, and J. P. Briner (2008), Fjord insertion into continental margins driven by topographic steering of ice, Nat. Geosci., 1, 365-369, doi:10.1038/ngeo201.
Johnson, J. V., and J. W. Staiger (2007), Modeling long-term stability of the Ferrar Glacier, East Antarctica: Implications for interpreting cosmogenic nuclide inheritance, J. Geophys. Res., 112, F03S30, doi:10.1029/2006JF000599.
Peters, M. E., D. D. Blankenship, and D. L. Morse (2005), Analysis techniques for coherent airborne radar sounding: Application to West Antarctic ice streams, J. Geophys. Res., 110, B06303, doi:10.1029/2004JB003222.
Monnin, E., et al. (2004), Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C, and DML ice cores, Earth Planet. Sci. Lett., 224, 45-54, doi:10.1016/j.epsl.2004.05.007.
Morse, D. L., E. D. Waddington, and L. A. Rasmussen (2007), Ice deformation in the vicinity of the ice-core site at Taylor Dome, Antarctica, and a derived accumulation history, J. Glaciol., 53(182), 449-460, doi:10.3189/002214307783258530.
Holt, J. W., M. E. Peters, S. D. Kempf, D. L. Morse, and D. D. Blankenship (2006a), Echo source discrimination in single-pass airborne radar sounding data from the Dry Valleys, Antarctica: implications for orbital sounding of Mars, J. Geophys. Res., 111, E06S24, doi:10.1029/2005JE002525.
Grootes, P. M., E. J. Steig, M. Stuiver, E. D. Waddington, and D. L. Morse (2001), The Taylor dome antarctic 18O record and globally synchronous changes in climate, Quat. Res., 56, 289-298, doi:10.1006/qres.2001.2276.
1974; 13
2004; 224
2000; 28
1979; 14
2005; 110
1986; 32
2000; 43
1999; 49
1998
1976
2002; 415
2007
2006
1994
2008; 1
2007; 53
1999; 81
1979; 11
2009; 114
1996; 108
1987; 170
2006; 111
1998; 25
2007; 112
1984; 30
1993; 39
1989; 31
2001
2004; 39
1993; 75
2000; 82
1982
2001; 56
2007; 68
e_1_2_10_23_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
Mazo V. L. (e_1_2_10_29_1) 1987; 170
Keys J. R. (e_1_2_10_24_1) 1979; 14
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
Sugden D. E. (e_1_2_10_38_1) 1976
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Drewry D. J. (e_1_2_10_10_1) 1982
Paterson W. S. B. (e_1_2_10_34_1) 1994
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 53
  start-page: 449
  issue: 182
  year: 2007
  end-page: 460
  article-title: Ice deformation in the vicinity of the ice‐core site at Taylor Dome, Antarctica, and a derived accumulation history
  publication-title: J. Glaciol.
– volume: 28
  start-page: 351
  year: 2000
  end-page: 354
  article-title: Entrainment at cold glacier beds
  publication-title: Geology
– volume: 11
  start-page: 172
  year: 1979
  end-page: 184
  article-title: Late Pleistocene glacial chronology of the Taylor Valley, Antarctica, and the global climate
  publication-title: Quat. Res.
– volume: 82
  start-page: 391
  year: 2000
  end-page: 409
  article-title: Geochronology of Bonney Drift, Taylor Valley, Antarctica: Evidence for interglacial expansions of Taylor Glacier
  publication-title: Geogr. Ann., Ser. A
– volume: 110
  year: 2005
  article-title: Analysis techniques for coherent airborne radar sounding: Application to West Antarctic ice streams
  publication-title: J. Geophys. Res.
– volume: 13
  start-page: 415
  year: 1974
  end-page: 429
  article-title: Subglacial geomorphology surrounding the ice‐free valleys of southern Victoria Land, Antarctica
  publication-title: J. Glaciol.
– volume: 114
  year: 2009
  article-title: Dynamics and mass balance of Taylor Glacier, Antarctica: 3. State of mass balance
  publication-title: J. Geophys. Res.
– year: 2007
– year: 2001
– start-page: 977
  year: 1982
  end-page: 983
– volume: 32
  start-page: 267
  year: 1986
  end-page: 284
  article-title: Stress‐gradient coupling in glacier flow: 1. Longitudinal averaging of the influence of ice thickness and surface slope
  publication-title: J. Glaciol.
– year: 1994
– year: 1998
– volume: 82
  start-page: 213
  year: 2000
  end-page: 235
  article-title: Wisconsinan and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica
  publication-title: Geogr. Ann., Ser. A
– volume: 75
  start-page: 155
  year: 1993
  end-page: 204
  article-title: East Antarctic Ice Sheet sensitivity to Pliocene climatic change from a dry valleys perspective
  publication-title: Geogr. Ann., Ser. A
– volume: 224
  start-page: 45
  year: 2004
  end-page: 54
  article-title: Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO in the Taylor Dome, Dome C, and DML ice cores
  publication-title: Earth Planet. Sci. Lett.
– volume: 49
  start-page: 961
  year: 1999
  end-page: 971
  article-title: Physical controls on the Taylor Valley ecosystem, Antarctica
  publication-title: BioScience
– volume: 112
  year: 2007
  article-title: Modeling long‐term stability of the Ferrar Glacier, East Antarctica: Implications for interpreting cosmogenic nuclide inheritance
  publication-title: J. Geophys. Res.
– volume: 108
  start-page: 181
  year: 1996
  end-page: 194
  article-title: Late Cenozoic Antarctic paleoclimate reconstructed from volcanic ashes in the dry valleys region of southern Victoria Land
  publication-title: Geol. Soc. Am. Bull.
– volume: 56
  start-page: 289
  year: 2001
  end-page: 298
  article-title: The Taylor dome antarctic O record and globally synchronous changes in climate
  publication-title: Quat. Res.
– volume: 75
  start-page: 269
  year: 1993
  end-page: 302
  article-title: Miocene‐Pliocene‐Pleistocene glacial history of Arena Valley, Quartermain Mountains, Antarctica
  publication-title: Geogr. Ann., Ser. A
– volume: 30
  start-page: 153
  issue: 105
  year: 1984
  end-page: 160
  article-title: Ice dynamics and thermal regime of Taylor Glacier, South Victoria Land, Antarctica
  publication-title: J. Glaciol.
– volume: 415
  start-page: 517
  year: 2002
  end-page: 520
  article-title: Antarctic climate cooling and terrestrial ecosystem response
  publication-title: Nature
– volume: 1
  start-page: 365
  year: 2008
  end-page: 369
  article-title: Fjord insertion into continental margins driven by topographic steering of ice
  publication-title: Nat. Geosci.
– volume: 14
  start-page: 82
  issue: 5
  year: 1979
  end-page: 85
  article-title: Saline discharge at the terminus of Taylor Glacier
  publication-title: Antarct. J. U. S.
– volume: 170
  start-page: 145
  year: 1987
  end-page: 155
  article-title: Effects of glacial erosion on the flow of ice sheets and the morphology of their beds
  publication-title: IAHS Publ.
– volume: 39
  start-page: 11
  year: 1993
  end-page: 23
  article-title: Chronology of Taylor Glacier advances in Arena Valley, Antarctica, using in‐situ cosmogenic He and Be
  publication-title: Quat. Res.
– volume: 111
  year: 2006
  article-title: Echo source discrimination in single‐pass airborne radar sounding data from the Dry Valleys, Antarctica: implications for orbital sounding of Mars
  publication-title: J. Geophys. Res.
– volume: 43
  start-page: 355
  year: 2000
  end-page: 367
  article-title: Importance of landscape position and legacy: The evolution of the lakes in Taylor Valley, Antarctica
  publication-title: Freshwater Biol.
– year: 2006
– volume: 81
  start-page: 683
  year: 1999
  end-page: 694
  article-title: Accumulation rate measurements at Taylor Dome, East Antarctica: Techniques and strategies for mass balance measurements in polar environments
  publication-title: Geogr. Ann., Ser. A
– volume: 31
  start-page: 151
  year: 1989
  end-page: 182
  article-title: Late Wisconsin and early Holocene glacial history, inner Ross Embayment, Antarctica
  publication-title: Quat. Res.
– volume: 39
  start-page: 79
  year: 2004
  end-page: 84
  article-title: Evidence for subglacial ponding across Taylor Glacier, Dry Valleys, Antarctica
  publication-title: Ann. Glaciol.
– volume: 68
  start-page: 303
  year: 2007
  end-page: 313
  article-title: Pleistocene ice and paleo‐strain rates at Taylor Glacier, Antarctica
  publication-title: Quat. Res.
– volume: 114
  year: 2009
  article-title: Dynamics and mass balance of Taylor Glacier, Antarctica: 2. Force balance and longitudinal coupling
  publication-title: J. Geophys. Res.
– volume: 25
  start-page: 3383
  year: 1998
  end-page: 3386
  article-title: Ice age storm trajectories inferred from radar stratigraphy at Taylor Dome, Antarctica
  publication-title: Geophys. Res. Lett.
– year: 1976
– ident: e_1_2_10_36_1
  doi: 10.1017/S0022143000005888
– ident: e_1_2_10_37_1
  doi: 10.1111/1468-0459.00122
– ident: e_1_2_10_15_1
  doi: 10.1111/1468-0459.00130
– ident: e_1_2_10_18_1
  doi: 10.3189/172756404781813970
– ident: e_1_2_10_19_1
  doi: 10.1029/2006JF000599
– ident: e_1_2_10_35_1
  doi: 10.1029/2004JB003222
– ident: e_1_2_10_5_1
  doi: 10.1130/0091-7613(2000)28<351:EACGB>2.0.CO;2
– ident: e_1_2_10_28_1
  doi: 10.1130/0016-7606(1996)108<0181:LCAPRF>2.3.CO;2
– ident: e_1_2_10_2_1
  doi: 10.1016/j.yqres.2007.07.013
– ident: e_1_2_10_7_1
  doi: 10.1016/0033-5894(89)90004-5
– ident: e_1_2_10_30_1
  doi: 10.1016/j.epsl.2004.05.007
– ident: e_1_2_10_13_1
  doi: 10.1006/qres.2001.2276
– ident: e_1_2_10_33_1
  doi: 10.3189/002214307783258530
– ident: e_1_2_10_14_1
  doi: 10.1016/0033-5894(79)90002-4
– ident: e_1_2_10_31_1
  doi: 10.1029/98GL52486
– ident: e_1_2_10_23_1
  doi: 10.1038/ngeo201
– ident: e_1_2_10_4_1
  doi: 10.1017/S0022143000023194
– ident: e_1_2_10_16_1
  doi: 10.1029/2005JE002525
– ident: e_1_2_10_26_1
  doi: 10.1046/j.1365-2427.2000.00513.x
– ident: e_1_2_10_12_1
– ident: e_1_2_10_21_1
  doi: 10.1029/2009JF001329
– ident: e_1_2_10_27_1
  doi: 10.2307/521204
– volume-title: Glaciers and Landscape
  year: 1976
  ident: e_1_2_10_38_1
  contributor:
    fullname: Sugden D. E.
– ident: e_1_2_10_3_1
  doi: 10.1006/qres.1993.1002
– ident: e_1_2_10_20_1
  doi: 10.1017/S0022143000015604
– ident: e_1_2_10_9_1
  doi: 10.1038/nature710
– start-page: 977
  volume-title: Antarctic Geoscience 1
  year: 1982
  ident: e_1_2_10_10_1
  contributor:
    fullname: Drewry D. J.
– ident: e_1_2_10_8_1
  doi: 10.2307/521200
– ident: e_1_2_10_11_1
  doi: 10.2307/1313730
– volume: 14
  start-page: 82
  issue: 5
  year: 1979
  ident: e_1_2_10_24_1
  article-title: Saline discharge at the terminus of Taylor Glacier
  publication-title: Antarct. J. U. S.
  contributor:
    fullname: Keys J. R.
– ident: e_1_2_10_25_1
– ident: e_1_2_10_6_1
– ident: e_1_2_10_17_1
– volume-title: The Physics of Glaciers
  year: 1994
  ident: e_1_2_10_34_1
  contributor:
    fullname: Paterson W. S. B.
– ident: e_1_2_10_32_1
  doi: 10.1111/j.0435-3676.1999.00096.x
– ident: e_1_2_10_22_1
  doi: 10.1029/2009JF001331
– volume: 170
  start-page: 145
  year: 1987
  ident: e_1_2_10_29_1
  article-title: Effects of glacial erosion on the flow of ice sheets and the morphology of their beds
  publication-title: IAHS Publ.
  contributor:
    fullname: Mazo V. L.
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000816912
Score 2.1443317
Snippet Taylor Glacier, Antarctica, exemplifies a little‐studied type of outlet glacier, one that flows slowly through a region of rugged topography and dry climate....
Taylor Glacier, Antarctica, exemplifies a little-studied type of outlet glacier, one that flows slowly through a region of rugged topography and dry climate....
SourceID proquest
crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Antarctica
Bedrock
Cryosphere
Earth sciences
Earth, ocean, space
Elevation
Exact sciences and technology
Geomorphology
glacier dynamics
glacier erosion
Glaciers
Global Positioning System
Outlets
Paleoclimate
Satellite navigation systems
Surface velocity
Valleys
Title Dynamics and mass balance of Taylor Glacier, Antarctica: 1. Geometry and surface velocities
URI https://api.istex.fr/ark:/67375/WNG-5TSWFHSZ-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2009JF001309
https://www.proquest.com/docview/861106382
https://search.proquest.com/docview/21318795
https://search.proquest.com/docview/36374463
https://search.proquest.com/docview/755128119
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9Mw1FpXISEkBAO0MBg-wA6UhMZxkppbtbWdBhvT2ml8HCI3cSTElkzJKti_5_kjX0Kb2IFLFTu2K-d9Pz-_h9BrFiep4JTbKSCTTWOX2iwm1OY-iz0mPEaZvCi8Pw-Pvoz2JnSytlZVyWr6_iukoQ9gLW_O3gHa9aLQAc8Ac_gFqMPvP8F9T5eY16mXL0A1Hixl9GKsfAPaPh_MzjmQdGGSB8AHkA5t5RtwpJP8QlwVOi1TuSpSDlNlYFGscq_eoMzCrMsK4lUwn1xwwuWx0FwvUzN3rio569OdA2fwyalPQlZpqn3oH53BYd19mBe6_uNeZ3Ce_eL6goXTcV6wViBI48-UWQy1OFJ9oIQENiHDLpPWV00NNk5pS2DX4uwvaTAkMpmq_N-DqTqiZY3Uq07663H-bSOVwD-YnUwD6vdQnwBXA6baH09Ov57ULj2VmqeJMHKpujOsG0AJo06DtBteu0HbDb_dCKoGBbGgK22az2eudMBG3rc30VG2-pJv_JbBv7wEbEh14ZaOZdW2z5SCtXiEHhpkwmON0o_Rmsg20Oa4lGc1-cU13sHqWaNZuYHu6TKq1_A0E-bJOgQbMC9UCybsnv8Ag8y8e_A5FjwzGdph0rFe6An6XpEMBpTHkmSwIRmcp1iTDDYk8w43BPMBuw6uyEXNNeSCG3J5ik6nk8Xuvm1qjgB3IqFvh7J-QkJB7_WHCfNkfkYwOaQbQUZxBu4SNHAuc3YtBRhWceKRZeCHjCQyYCuJPe8ZWs_yTGwinI4CGnjDOEmIoMINeZCSUMRsmYY0BT3cQm8q4ESXOrVMpEJCCIvaQLTQjoJcPYgXP2U4ZuhHZ0ezyF_Mz6b7828RsdB2B7T1BDABGCzoWmirgnVkWFYZjQKwAEAKw_RX9VuQMfLgkGciX5URcUHyh8y_eYQXeCGF3VoI3zAiBNOMjFwXtvNWYdmte44MrT2_y-AtdL_hMS_Q-lWxEi9Rr0xW26jnecfbhmD_AD-9_hw
link.rule.ids 315,782,786,27933,27934
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+and+mass+balance+of+Taylor+Glacier%2C+Antarctica%3A+1.+Geometry+and+surface+velocities&rft.jtitle=Journal+of+Geophysical+Research%3A+Earth+Surface&rft.au=Kavanaugh%2C+J.+L.&rft.au=Cuffey%2C+K.+M.&rft.au=Morse%2C+D.+L.&rft.au=Conway%2C+H.&rft.date=2009-12-01&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=114&rft.issue=F4&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2009JF001309&rft.externalDBID=10.1029%252F2009JF001309&rft.externalDocID=JGRF645
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon