Towards super-approximation in positive characteristic

In this note we show that the family of Cayley graphs of a finitely generated subgroup of ${\rm GL}_{n_0}(\mathbb{F}_p(t))$ modulo some admissible square-free polynomials is a family of expanders under certain algebraic conditions. Here is a more precise formulation of our main result. For a positiv...

Full description

Saved in:
Bibliographic Details
Main Authors: Longo, Brian, Golsefidy, Alireza Salehi
Format: Journal Article
Language:English
Published: 15-01-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this note we show that the family of Cayley graphs of a finitely generated subgroup of ${\rm GL}_{n_0}(\mathbb{F}_p(t))$ modulo some admissible square-free polynomials is a family of expanders under certain algebraic conditions. Here is a more precise formulation of our main result. For a positive integer $c_0$, we say a square-free polynomial is $c_0$-admissible if degree of irreducible factors of $f$ are distinct integers with prime factors at least $c_0$. Suppose $\Omega$ is a finite symmetric subset of ${\rm GL}_{n_0}(\mathbb{F}_p(t))$, where $p$ is a prime more than $5$. Let $\Gamma$ be the group generated by $\Omega$. Suppose the Zariski-closure of $\Gamma$ is connected, simply-connected, and absolutely almost simple; further assume that the field generated by the traces of ${\rm Ad}(\Gamma)$ is $\mathbb{F}_p(t)$. Then for some positive integer $c_0$ the family of Cayley graphs ${\rm Cay}(\pi_{f(x)}(\Gamma),\pi_{f(x)}(\Omega))$ as $f$ ranges in the set of $c_0$-admissible polynomials is a family of expanders, where $\pi_{f(t)}$ is the quotient map for the congruence modulo $f(t)$.
AbstractList In this note we show that the family of Cayley graphs of a finitely generated subgroup of ${\rm GL}_{n_0}(\mathbb{F}_p(t))$ modulo some admissible square-free polynomials is a family of expanders under certain algebraic conditions. Here is a more precise formulation of our main result. For a positive integer $c_0$, we say a square-free polynomial is $c_0$-admissible if degree of irreducible factors of $f$ are distinct integers with prime factors at least $c_0$. Suppose $\Omega$ is a finite symmetric subset of ${\rm GL}_{n_0}(\mathbb{F}_p(t))$, where $p$ is a prime more than $5$. Let $\Gamma$ be the group generated by $\Omega$. Suppose the Zariski-closure of $\Gamma$ is connected, simply-connected, and absolutely almost simple; further assume that the field generated by the traces of ${\rm Ad}(\Gamma)$ is $\mathbb{F}_p(t)$. Then for some positive integer $c_0$ the family of Cayley graphs ${\rm Cay}(\pi_{f(x)}(\Gamma),\pi_{f(x)}(\Omega))$ as $f$ ranges in the set of $c_0$-admissible polynomials is a family of expanders, where $\pi_{f(t)}$ is the quotient map for the congruence modulo $f(t)$.
Author Golsefidy, Alireza Salehi
Longo, Brian
Author_xml – sequence: 1
  givenname: Brian
  surname: Longo
  fullname: Longo, Brian
– sequence: 2
  givenname: Alireza Salehi
  surname: Golsefidy
  fullname: Golsefidy, Alireza Salehi
BackLink https://doi.org/10.48550/arXiv.1908.07014$$DView paper in arXiv
https://doi.org/10.1112/jlms.12535$$DView published paper (Access to full text may be restricted)
BookMark eNotj8FOwzAQRH2AAxQ-gFPzAwm7iR0nx6oCilSJS-7RxlmrliC27LSUvye0zGU0l9F79-Jm8hML8YRQyEYpeKZ4dqcCW2gK0IDyTtSd_6Y4piwdA8ecQoj-7L5odn7K3JQFn9zsTpyZA0UyM0eXZmcexK2lz8SP_70S3etLt93l-4-39-1mn5MqdV4jYznYwWiwo60tSE16kFBWitUS1FYBNGgYcWQcm3bQsrV6WVYus1qJ9fX2At6HuJDFn_5PoL8IVL8mM0Kg
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKZ
GOX
DOI 10.48550/arxiv.1908.07014
DatabaseName arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 1908_07014
GroupedDBID AKZ
GOX
ID FETCH-LOGICAL-a527-61e12bfbc70fdf6f047a7b40235e555517f50081ce11de1d89b749f711df41d83
IEDL.DBID GOX
IngestDate Mon Jan 08 05:43:30 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a527-61e12bfbc70fdf6f047a7b40235e555517f50081ce11de1d89b749f711df41d83
OpenAccessLink https://arxiv.org/abs/1908.07014
ParticipantIDs arxiv_primary_1908_07014
PublicationCentury 2000
PublicationDate 20200115
PublicationDateYYYYMMDD 2020-01-15
PublicationDate_xml – month: 01
  year: 2020
  text: 20200115
  day: 15
PublicationDecade 2020
PublicationYear 2020
Score 1.7588322
SecondaryResourceType preprint
Snippet In this note we show that the family of Cayley graphs of a finitely generated subgroup of ${\rm GL}_{n_0}(\mathbb{F}_p(t))$ modulo some admissible square-free...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Mathematics - Group Theory
Title Towards super-approximation in positive characteristic
URI https://arxiv.org/abs/1908.07014
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV09T8MwELVoJxYEAlSgIA-shji2c_GIoKUTDGToFuViW8pSVQ2p-vPxRxAw4O3sW85n6d3Jd-8IuRfaKIUlMiVdwSRkwBA1Mi1aACFMo-LUktUHvK3Ll0WgyaHfvTDN7tDtEz8w9o8ercoH_yjDpOpJnoeSrdf3dfqcjFRco_6Pno8x49YvkFiekpMxuqNPyR1n5MhuzklRxdLUnvbD1u5YZPE-dKllkHYbmuqm9pa2f8iTL0i1XFTPKzaOK2CNykOvneU5Omwhc8YVLpPQAMrAJ2OVXxycCgDcWs6N5abUCFI78JKTXhSXZOozfjsj1IO4do0AY6GUlltdeOWmQEQfvAhQV2QWjay3iZGiDvbX0f7r_49uyHEeksWMM67mZPq5G-wtmfRmuIvX-gUpKnXo
link.rule.ids 228,230,782,887
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+super-approximation+in+positive+characteristic&rft.au=Longo%2C+Brian&rft.au=Golsefidy%2C+Alireza+Salehi&rft.date=2020-01-15&rft_id=info:doi/10.48550%2Farxiv.1908.07014&rft.externalDocID=1908_07014