Lensfree Spectral Light-field Fusion Microscopy for Contrast- and Resolution-enhanced Imaging of Biological Specimens

A lensfree spectral light-field fusion microscopy (LSLFM) system is presented for enabling contrast- and resolution-enhanced imaging of biological specimens. LSLFM consists of a pulsed multispectral lensfree microscope for capturing interferometric light-field encodings at various wavelengths, and B...

Full description

Saved in:
Bibliographic Details
Main Authors: Kazemzadeh, Farnoud, Jin, Chao, Molladavoodi, Sara, Mei, Yu, Emelko, Monica B, Gorbet, Maud B, Wong, Alexander
Format: Journal Article
Language:English
Published: 02-08-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A lensfree spectral light-field fusion microscopy (LSLFM) system is presented for enabling contrast- and resolution-enhanced imaging of biological specimens. LSLFM consists of a pulsed multispectral lensfree microscope for capturing interferometric light-field encodings at various wavelengths, and Bayesian-based fusion to reconstruct a fused object light-field from the encodings. By fusing unique object detail information captured at different wavelengths, LSLFM can achieve improved resolution, contrast, and signal-to-noise ratio (SNR) over a single-channel lensfree microscopy system. A five-channel LSLFM system was developed and quantitatively evaluated to validate the design. Experimental results demonstrated that the LSLFM system provided SNR improvements of 6-12 dB, as well as a six-fold improvement in the dispersion index (DI), over that achieved using a single-channel, resolution-enhancing lensfree deconvolution microscopy system or its multi-wavelength counterpart. Furthermore, the LSLFM system achieved an increase in numerical aperture (NA) of ~16% over a single-channel resolution-enhancing lensfree deconvolution microscopy system at the highest-resolution wavelength used in the study. Samples of Staurastrum paradoxum, a waterborne algae, and human corneal epithelial cells were imaged using the system to illustrate its potential for enhanced imaging of biological specimens.
DOI:10.48550/arxiv.1506.02201