Multiple Positive Solutions for Nonlocal Elliptic Problems Involving the Hardy Potential and Concave-Convex Nonlinearities
In this paper, we study the existence and multiplicity of solutions for the following fractional problem involving the Hardy potential and concave-convex nonlinearities: $$({-}{ \Delta})^{\frac{\alpha}{2}}u- \gamma \frac{u}{|x|^{\alpha}}= \lambda f(x) |u|^{q - 2} u + g(x) {\frac{|u|^{p-2}u}{|x|^s}}...
Saved in:
Main Author: | |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
04-08-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In this paper, we study the existence and multiplicity of solutions for the
following fractional problem involving the Hardy potential and concave-convex
nonlinearities: $$({-}{ \Delta})^{\frac{\alpha}{2}}u- \gamma
\frac{u}{|x|^{\alpha}}= \lambda f(x) |u|^{q - 2} u + g(x)
{\frac{|u|^{p-2}u}{|x|^s}} \ \text{ in } {\Omega,} \quad \text{ with Dirichlet
boundary condition } u = 0 \ \text{ in } \mathbb{R}^n \setminus \Omega,$$ where
$\Omega \subset \mathbb{R}^n$ is a smooth bounded domain in $\mathbb{R}^n$
containing $0$ in its interior, and $f,g \in C(\overline{\Omega})$ with
$f^+,g^+ \not\equiv 0$ which may change sign in $\overline{\Omega}.$ We use the
variational methods and the Nehari manifold decomposition to prove that this
problem has at least two positive solutions for $\lambda$ sufficiently small.
The variational approach requires that $0 < \alpha <2,$ $ 0 <s < \alpha <n,$ $
1<q<2<p \le 2_{\alpha}^*(s):= \frac{2(n-s)}{n-\alpha},$ and $ \gamma <
\gamma_H(\alpha) ,$ the latter being the best fractional Hardy constant on
$\mathbb{R}^n.$ |
---|---|
AbstractList | In this paper, we study the existence and multiplicity of solutions for the
following fractional problem involving the Hardy potential and concave-convex
nonlinearities: $$({-}{ \Delta})^{\frac{\alpha}{2}}u- \gamma
\frac{u}{|x|^{\alpha}}= \lambda f(x) |u|^{q - 2} u + g(x)
{\frac{|u|^{p-2}u}{|x|^s}} \ \text{ in } {\Omega,} \quad \text{ with Dirichlet
boundary condition } u = 0 \ \text{ in } \mathbb{R}^n \setminus \Omega,$$ where
$\Omega \subset \mathbb{R}^n$ is a smooth bounded domain in $\mathbb{R}^n$
containing $0$ in its interior, and $f,g \in C(\overline{\Omega})$ with
$f^+,g^+ \not\equiv 0$ which may change sign in $\overline{\Omega}.$ We use the
variational methods and the Nehari manifold decomposition to prove that this
problem has at least two positive solutions for $\lambda$ sufficiently small.
The variational approach requires that $0 < \alpha <2,$ $ 0 <s < \alpha <n,$ $
1<q<2<p \le 2_{\alpha}^*(s):= \frac{2(n-s)}{n-\alpha},$ and $ \gamma <
\gamma_H(\alpha) ,$ the latter being the best fractional Hardy constant on
$\mathbb{R}^n.$ |
Author | Shakerian, Shaya |
Author_xml | – sequence: 1 givenname: Shaya surname: Shakerian fullname: Shakerian, Shaya |
BackLink | https://doi.org/10.48550/arXiv.1708.01369$$DView paper in arXiv https://doi.org/10.1142/S021919972050008X$$DView published paper (Access to full text may be restricted) |
BookMark | eNotkE1OwzAUhL2ABRQOwApfIME_SeosUVRopQKV6D56iV_AkmtHjhu1nJ40sBqNNPpGM7fkynmHhDxwlmYqz9kThJMZU75kKmVcFuUN-Xk72mh6i3TnBxPNiPTT22M03g2084G-e2d9C5aurDV9NC3dBd9YPAx040ZvR-O-aPxGuoagzxMlootmyoPTtPKuhRGTSUc8zSzjEMJUhMMdue7ADnj_rwuyf1ntq3Wy_XjdVM_bBHJRJG2WQyFUmQnNsWOlKjJW6kxjoRQvgXEApaVsOpa3kgloxORkoTgXWvBlIxfk8Q87j6_7YA4QzvXlhHo-Qf4CZUta8A |
ContentType | Journal Article |
Copyright | http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
Copyright_xml | – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0 |
DBID | AKZ GOX |
DOI | 10.48550/arxiv.1708.01369 |
DatabaseName | arXiv Mathematics arXiv.org |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | 1708_01369 |
GroupedDBID | AKZ GOX |
ID | FETCH-LOGICAL-a526-c45a628942d1ef0986409d4de68819a01aa8d33bf05c302ab2d33368112d217b3 |
IEDL.DBID | GOX |
IngestDate | Mon Jan 08 05:44:11 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a526-c45a628942d1ef0986409d4de68819a01aa8d33bf05c302ab2d33368112d217b3 |
OpenAccessLink | https://arxiv.org/abs/1708.01369 |
ParticipantIDs | arxiv_primary_1708_01369 |
PublicationCentury | 2000 |
PublicationDate | 20170804 |
PublicationDateYYYYMMDD | 2017-08-04 |
PublicationDate_xml | – month: 08 year: 2017 text: 20170804 day: 04 |
PublicationDecade | 2010 |
PublicationYear | 2017 |
Score | 1.6737742 |
SecondaryResourceType | preprint |
Snippet | In this paper, we study the existence and multiplicity of solutions for the
following fractional problem involving the Hardy potential and concave-convex... |
SourceID | arxiv |
SourceType | Open Access Repository |
SubjectTerms | Mathematics - Analysis of PDEs |
Title | Multiple Positive Solutions for Nonlocal Elliptic Problems Involving the Hardy Potential and Concave-Convex Nonlinearities |
URI | https://arxiv.org/abs/1708.01369 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdZ27T8MwEMZPtBMLAgEqT3lgtYjt1HFGVFrKQKlEh26RX5FYHNSXKv56zk54LIxJTh7OSe67-JfPAHeSM-dYHbFy6yneFCXVzNfUqkIoiwpeJdpi-lbMlupxHG1yyPe_MHq1f9-1_sBmfc-KiDoyIcse9DiPyNbT67JdnExWXF38bxxqzHTqT5GYHMNRp-7IQzsdJ3Dgwyl8vnTQHpknQmrnyc_HKIKakcyakEoKiQAFPsKWzNttXtbkOeDrI_b8BIUaScvsOMomIj4Yr4MjoyZYvfN0FPHxfRoLhaNeJafUM1hMxovRlHZbHlA95JLafKgltkA5d5iwLFqnZ6XLnZcKK7fOmNbKCWHqbGhFxrXheCSkQtHksLcw4hz6oQl-AMSgNBLS1caK6IlmSyu9LIwpmdW1qs0FDFKiqo_W1aKKOaxSDi__v3QFhzzWtchM5NfQ36y2_gZ6a7e9TVPzBXl7jvk |
link.rule.ids | 228,230,782,887 |
linkProvider | Cornell University |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Positive+Solutions+for+Nonlocal+Elliptic+Problems+Involving+the+Hardy+Potential+and+Concave-Convex+Nonlinearities&rft.au=Shakerian%2C+Shaya&rft.date=2017-08-04&rft_id=info:doi/10.48550%2Farxiv.1708.01369&rft.externalDocID=1708_01369 |