Multiple Positive Solutions for Nonlocal Elliptic Problems Involving the Hardy Potential and Concave-Convex Nonlinearities

In this paper, we study the existence and multiplicity of solutions for the following fractional problem involving the Hardy potential and concave-convex nonlinearities: $$({-}{ \Delta})^{\frac{\alpha}{2}}u- \gamma \frac{u}{|x|^{\alpha}}= \lambda f(x) |u|^{q - 2} u + g(x) {\frac{|u|^{p-2}u}{|x|^s}}...

Full description

Saved in:
Bibliographic Details
Main Author: Shakerian, Shaya
Format: Journal Article
Language:English
Published: 04-08-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we study the existence and multiplicity of solutions for the following fractional problem involving the Hardy potential and concave-convex nonlinearities: $$({-}{ \Delta})^{\frac{\alpha}{2}}u- \gamma \frac{u}{|x|^{\alpha}}= \lambda f(x) |u|^{q - 2} u + g(x) {\frac{|u|^{p-2}u}{|x|^s}} \ \text{ in } {\Omega,} \quad \text{ with Dirichlet boundary condition } u = 0 \ \text{ in } \mathbb{R}^n \setminus \Omega,$$ where $\Omega \subset \mathbb{R}^n$ is a smooth bounded domain in $\mathbb{R}^n$ containing $0$ in its interior, and $f,g \in C(\overline{\Omega})$ with $f^+,g^+ \not\equiv 0$ which may change sign in $\overline{\Omega}.$ We use the variational methods and the Nehari manifold decomposition to prove that this problem has at least two positive solutions for $\lambda$ sufficiently small. The variational approach requires that $0 < \alpha <2,$ $ 0 <s < \alpha <n,$ $ 1<q<2<p \le 2_{\alpha}^*(s):= \frac{2(n-s)}{n-\alpha},$ and $ \gamma < \gamma_H(\alpha) ,$ the latter being the best fractional Hardy constant on $\mathbb{R}^n.$
AbstractList In this paper, we study the existence and multiplicity of solutions for the following fractional problem involving the Hardy potential and concave-convex nonlinearities: $$({-}{ \Delta})^{\frac{\alpha}{2}}u- \gamma \frac{u}{|x|^{\alpha}}= \lambda f(x) |u|^{q - 2} u + g(x) {\frac{|u|^{p-2}u}{|x|^s}} \ \text{ in } {\Omega,} \quad \text{ with Dirichlet boundary condition } u = 0 \ \text{ in } \mathbb{R}^n \setminus \Omega,$$ where $\Omega \subset \mathbb{R}^n$ is a smooth bounded domain in $\mathbb{R}^n$ containing $0$ in its interior, and $f,g \in C(\overline{\Omega})$ with $f^+,g^+ \not\equiv 0$ which may change sign in $\overline{\Omega}.$ We use the variational methods and the Nehari manifold decomposition to prove that this problem has at least two positive solutions for $\lambda$ sufficiently small. The variational approach requires that $0 < \alpha <2,$ $ 0 <s < \alpha <n,$ $ 1<q<2<p \le 2_{\alpha}^*(s):= \frac{2(n-s)}{n-\alpha},$ and $ \gamma < \gamma_H(\alpha) ,$ the latter being the best fractional Hardy constant on $\mathbb{R}^n.$
Author Shakerian, Shaya
Author_xml – sequence: 1
  givenname: Shaya
  surname: Shakerian
  fullname: Shakerian, Shaya
BackLink https://doi.org/10.48550/arXiv.1708.01369$$DView paper in arXiv
https://doi.org/10.1142/S021919972050008X$$DView published paper (Access to full text may be restricted)
BookMark eNotkE1OwzAUhL2ABRQOwApfIME_SeosUVRopQKV6D56iV_AkmtHjhu1nJ40sBqNNPpGM7fkynmHhDxwlmYqz9kThJMZU75kKmVcFuUN-Xk72mh6i3TnBxPNiPTT22M03g2084G-e2d9C5aurDV9NC3dBd9YPAx040ZvR-O-aPxGuoagzxMlootmyoPTtPKuhRGTSUc8zSzjEMJUhMMdue7ADnj_rwuyf1ntq3Wy_XjdVM_bBHJRJG2WQyFUmQnNsWOlKjJW6kxjoRQvgXEApaVsOpa3kgloxORkoTgXWvBlIxfk8Q87j6_7YA4QzvXlhHo-Qf4CZUta8A
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKZ
GOX
DOI 10.48550/arxiv.1708.01369
DatabaseName arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 1708_01369
GroupedDBID AKZ
GOX
ID FETCH-LOGICAL-a526-c45a628942d1ef0986409d4de68819a01aa8d33bf05c302ab2d33368112d217b3
IEDL.DBID GOX
IngestDate Mon Jan 08 05:44:11 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a526-c45a628942d1ef0986409d4de68819a01aa8d33bf05c302ab2d33368112d217b3
OpenAccessLink https://arxiv.org/abs/1708.01369
ParticipantIDs arxiv_primary_1708_01369
PublicationCentury 2000
PublicationDate 20170804
PublicationDateYYYYMMDD 2017-08-04
PublicationDate_xml – month: 08
  year: 2017
  text: 20170804
  day: 04
PublicationDecade 2010
PublicationYear 2017
Score 1.6737742
SecondaryResourceType preprint
Snippet In this paper, we study the existence and multiplicity of solutions for the following fractional problem involving the Hardy potential and concave-convex...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Mathematics - Analysis of PDEs
Title Multiple Positive Solutions for Nonlocal Elliptic Problems Involving the Hardy Potential and Concave-Convex Nonlinearities
URI https://arxiv.org/abs/1708.01369
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdZ27T8MwEMZPtBMLAgEqT3lgtYjt1HFGVFrKQKlEh26RX5FYHNSXKv56zk54LIxJTh7OSe67-JfPAHeSM-dYHbFy6yneFCXVzNfUqkIoiwpeJdpi-lbMlupxHG1yyPe_MHq1f9-1_sBmfc-KiDoyIcse9DiPyNbT67JdnExWXF38bxxqzHTqT5GYHMNRp-7IQzsdJ3Dgwyl8vnTQHpknQmrnyc_HKIKakcyakEoKiQAFPsKWzNttXtbkOeDrI_b8BIUaScvsOMomIj4Yr4MjoyZYvfN0FPHxfRoLhaNeJafUM1hMxovRlHZbHlA95JLafKgltkA5d5iwLFqnZ6XLnZcKK7fOmNbKCWHqbGhFxrXheCSkQtHksLcw4hz6oQl-AMSgNBLS1caK6IlmSyu9LIwpmdW1qs0FDFKiqo_W1aKKOaxSDi__v3QFhzzWtchM5NfQ36y2_gZ6a7e9TVPzBXl7jvk
link.rule.ids 228,230,782,887
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Positive+Solutions+for+Nonlocal+Elliptic+Problems+Involving+the+Hardy+Potential+and+Concave-Convex+Nonlinearities&rft.au=Shakerian%2C+Shaya&rft.date=2017-08-04&rft_id=info:doi/10.48550%2Farxiv.1708.01369&rft.externalDocID=1708_01369