Automatic Differentiation With Higher Infinitesimals, or Computational Smooth Infinitesimal Analysis in Weil Algebra

Computer Algebra in Scientific Computing, pp. 174-191. CASC 2021. Lecture Notes in Computer Science, vol 12865. Springer, Cham We propose an algorithm to compute the $C^\infty$-ring structure of arbitrary Weil algebra. It allows us to do some analysis with higher infinitesimals numerically and symbo...

Full description

Saved in:
Bibliographic Details
Main Author: Ishii, Hiromi
Format: Journal Article
Language:English
Published: 05-07-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Computer Algebra in Scientific Computing, pp. 174-191. CASC 2021. Lecture Notes in Computer Science, vol 12865. Springer, Cham We propose an algorithm to compute the $C^\infty$-ring structure of arbitrary Weil algebra. It allows us to do some analysis with higher infinitesimals numerically and symbolically. To that end, we first give a brief description of the (Forward-mode) automatic differentiation (AD) in terms of $C^\infty$-rings. The notion of a $C^\infty$-ring was introduced by Lawvere and used as the fundamental building block of smooth infinitesimal analysis and synthetic differential geometry. We argue that interpreting AD in terms of $C^\infty$-rings gives us a unifying theoretical framework and modular ways to express multivariate partial derivatives. In particular, we can "package" higher-order Forward-mode AD as a Weil algebra, and take tensor products to compose them to achieve multivariate higher-order AD. The algorithms in the present paper can also be used for a pedagogical purpose in learning and studying smooth infinitesimal analysis as well.
AbstractList Computer Algebra in Scientific Computing, pp. 174-191. CASC 2021. Lecture Notes in Computer Science, vol 12865. Springer, Cham We propose an algorithm to compute the $C^\infty$-ring structure of arbitrary Weil algebra. It allows us to do some analysis with higher infinitesimals numerically and symbolically. To that end, we first give a brief description of the (Forward-mode) automatic differentiation (AD) in terms of $C^\infty$-rings. The notion of a $C^\infty$-ring was introduced by Lawvere and used as the fundamental building block of smooth infinitesimal analysis and synthetic differential geometry. We argue that interpreting AD in terms of $C^\infty$-rings gives us a unifying theoretical framework and modular ways to express multivariate partial derivatives. In particular, we can "package" higher-order Forward-mode AD as a Weil algebra, and take tensor products to compose them to achieve multivariate higher-order AD. The algorithms in the present paper can also be used for a pedagogical purpose in learning and studying smooth infinitesimal analysis as well.
Author Ishii, Hiromi
Author_xml – sequence: 1
  givenname: Hiromi
  surname: Ishii
  fullname: Ishii, Hiromi
BackLink https://doi.org/10.48550/arXiv.2106.14153$$DView paper in arXiv
https://doi.org/10.1007/978-3-030-85165-1_11$$DView published paper (Access to full text may be restricted)
BookMark eNpVj7tOwzAUhj3AAIUHYMIPQIIvcVqPUbi0UiUGKjFGTnLcHimxK8dF9O0xgYXp3D59Ov81uXDeASF3nOXFSin2aMIXfuaCszLnBVfyisTqFP1oInb0Ca2FAC5iGr2jHxgPdI37AwS6cRYdRphwNMP0QH2gtR-PpzijZqDvo_cJ_8fRKl3OE04Ukw0wLYY9tMHckEubNHD7Vxdk9_K8q9fZ9u11U1fbzCihMsl5obSGQtuSWaZM13dCLJkqGXAJOjU9KwwrW6FEL4wWSy1XWvedUlZCKxfk_lc7x26OIT0Vzs1P_GaOL78BpwlYNw
ContentType Journal Article
Copyright http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: http://creativecommons.org/licenses/by/4.0
DBID AKY
AKZ
GOX
DOI 10.48550/arxiv.2106.14153
DatabaseName arXiv Computer Science
arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2106_14153
GroupedDBID AKY
AKZ
GOX
ID FETCH-LOGICAL-a525-3114599e49f60f05acdc2270560e13e9056d04a06b252d2a92793899dc55f3eb3
IEDL.DBID GOX
IngestDate Mon Jan 08 05:38:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a525-3114599e49f60f05acdc2270560e13e9056d04a06b252d2a92793899dc55f3eb3
OpenAccessLink https://arxiv.org/abs/2106.14153
ParticipantIDs arxiv_primary_2106_14153
PublicationCentury 2000
PublicationDate 20210705
PublicationDateYYYYMMDD 2021-07-05
PublicationDate_xml – month: 07
  year: 2021
  text: 20210705
  day: 05
PublicationDecade 2020
PublicationYear 2021
Score 1.8122834
SecondaryResourceType preprint
Snippet Computer Algebra in Scientific Computing, pp. 174-191. CASC 2021. Lecture Notes in Computer Science, vol 12865. Springer, Cham We propose an algorithm to...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Computer Science - Mathematical Software
Computer Science - Numerical Analysis
Computer Science - Symbolic Computation
Mathematics - Category Theory
Mathematics - Differential Geometry
Mathematics - Numerical Analysis
Title Automatic Differentiation With Higher Infinitesimals, or Computational Smooth Infinitesimal Analysis in Weil Algebra
URI https://arxiv.org/abs/2106.14153
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07T8MwELZoJxYEAlSe8sBIRHKx8xgr2lIWGFqJbpHjB0SiCUpTxM_nbKcCBjbLPsXS55x8L39HyA1a-ALveRWkUWQCJpUORCbjIIaMc-k8EBuHnC_Sp1U2mVqaHLp7CyPar-rT8wOXmzv0RxLUZdTKARkA2JKth-eVT046Kq5e_kcObUw39euSmB2Sg966o2N_HEdkT9fHpBtvu8Yxo9JJ346k84DQl6p7o77Ugj7WprIG4KZa4y9xS5uW-pYLfbiOLtYNwvpXju5IRWiFX9MVTry_2lzwCVnOpsv7edA3OwgEB5uMjhjPc81yk4Qm5EIqCZCieRLqKNY5DhTCGiYlcFAgckDFQl9JSc5NjB7xKRnWTa1HhGaRUAwXQZaKAVNlGincw2hWcmXi5IyMHETFh-ezKCx6hUPv_P-lC7IPtpzDRjb5JRl27VZfkcFGba_doXwDfsyLpA
link.rule.ids 228,230,782,887
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Differentiation+With+Higher+Infinitesimals%2C+or+Computational+Smooth+Infinitesimal+Analysis+in+Weil+Algebra&rft.au=Ishii%2C+Hiromi&rft.date=2021-07-05&rft_id=info:doi/10.48550%2Farxiv.2106.14153&rft.externalDocID=2106_14153