Automatic Differentiation With Higher Infinitesimals, or Computational Smooth Infinitesimal Analysis in Weil Algebra
Computer Algebra in Scientific Computing, pp. 174-191. CASC 2021. Lecture Notes in Computer Science, vol 12865. Springer, Cham We propose an algorithm to compute the $C^\infty$-ring structure of arbitrary Weil algebra. It allows us to do some analysis with higher infinitesimals numerically and symbo...
Saved in:
Main Author: | |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
05-07-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Computer Algebra in Scientific Computing, pp. 174-191. CASC 2021.
Lecture Notes in Computer Science, vol 12865. Springer, Cham We propose an algorithm to compute the $C^\infty$-ring structure of arbitrary
Weil algebra. It allows us to do some analysis with higher infinitesimals
numerically and symbolically. To that end, we first give a brief description of
the (Forward-mode) automatic differentiation (AD) in terms of $C^\infty$-rings.
The notion of a $C^\infty$-ring was introduced by Lawvere and used as the
fundamental building block of smooth infinitesimal analysis and synthetic
differential geometry. We argue that interpreting AD in terms of
$C^\infty$-rings gives us a unifying theoretical framework and modular ways to
express multivariate partial derivatives. In particular, we can "package"
higher-order Forward-mode AD as a Weil algebra, and take tensor products to
compose them to achieve multivariate higher-order AD. The algorithms in the
present paper can also be used for a pedagogical purpose in learning and
studying smooth infinitesimal analysis as well. |
---|---|
AbstractList | Computer Algebra in Scientific Computing, pp. 174-191. CASC 2021.
Lecture Notes in Computer Science, vol 12865. Springer, Cham We propose an algorithm to compute the $C^\infty$-ring structure of arbitrary
Weil algebra. It allows us to do some analysis with higher infinitesimals
numerically and symbolically. To that end, we first give a brief description of
the (Forward-mode) automatic differentiation (AD) in terms of $C^\infty$-rings.
The notion of a $C^\infty$-ring was introduced by Lawvere and used as the
fundamental building block of smooth infinitesimal analysis and synthetic
differential geometry. We argue that interpreting AD in terms of
$C^\infty$-rings gives us a unifying theoretical framework and modular ways to
express multivariate partial derivatives. In particular, we can "package"
higher-order Forward-mode AD as a Weil algebra, and take tensor products to
compose them to achieve multivariate higher-order AD. The algorithms in the
present paper can also be used for a pedagogical purpose in learning and
studying smooth infinitesimal analysis as well. |
Author | Ishii, Hiromi |
Author_xml | – sequence: 1 givenname: Hiromi surname: Ishii fullname: Ishii, Hiromi |
BackLink | https://doi.org/10.48550/arXiv.2106.14153$$DView paper in arXiv https://doi.org/10.1007/978-3-030-85165-1_11$$DView published paper (Access to full text may be restricted) |
BookMark | eNpVj7tOwzAUhj3AAIUHYMIPQIIvcVqPUbi0UiUGKjFGTnLcHimxK8dF9O0xgYXp3D59Ov81uXDeASF3nOXFSin2aMIXfuaCszLnBVfyisTqFP1oInb0Ca2FAC5iGr2jHxgPdI37AwS6cRYdRphwNMP0QH2gtR-PpzijZqDvo_cJ_8fRKl3OE04Ukw0wLYY9tMHckEubNHD7Vxdk9_K8q9fZ9u11U1fbzCihMsl5obSGQtuSWaZM13dCLJkqGXAJOjU9KwwrW6FEL4wWSy1XWvedUlZCKxfk_lc7x26OIT0Vzs1P_GaOL78BpwlYNw |
ContentType | Journal Article |
Copyright | http://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: http://creativecommons.org/licenses/by/4.0 |
DBID | AKY AKZ GOX |
DOI | 10.48550/arxiv.2106.14153 |
DatabaseName | arXiv Computer Science arXiv Mathematics arXiv.org |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: GOX name: arXiv.org url: http://arxiv.org/find sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | 2106_14153 |
GroupedDBID | AKY AKZ GOX |
ID | FETCH-LOGICAL-a525-3114599e49f60f05acdc2270560e13e9056d04a06b252d2a92793899dc55f3eb3 |
IEDL.DBID | GOX |
IngestDate | Mon Jan 08 05:38:36 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a525-3114599e49f60f05acdc2270560e13e9056d04a06b252d2a92793899dc55f3eb3 |
OpenAccessLink | https://arxiv.org/abs/2106.14153 |
ParticipantIDs | arxiv_primary_2106_14153 |
PublicationCentury | 2000 |
PublicationDate | 20210705 |
PublicationDateYYYYMMDD | 2021-07-05 |
PublicationDate_xml | – month: 07 year: 2021 text: 20210705 day: 05 |
PublicationDecade | 2020 |
PublicationYear | 2021 |
Score | 1.8122834 |
SecondaryResourceType | preprint |
Snippet | Computer Algebra in Scientific Computing, pp. 174-191. CASC 2021.
Lecture Notes in Computer Science, vol 12865. Springer, Cham We propose an algorithm to... |
SourceID | arxiv |
SourceType | Open Access Repository |
SubjectTerms | Computer Science - Mathematical Software Computer Science - Numerical Analysis Computer Science - Symbolic Computation Mathematics - Category Theory Mathematics - Differential Geometry Mathematics - Numerical Analysis |
Title | Automatic Differentiation With Higher Infinitesimals, or Computational Smooth Infinitesimal Analysis in Weil Algebra |
URI | https://arxiv.org/abs/2106.14153 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07T8MwELZoJxYEAlSe8sBIRHKx8xgr2lIWGFqJbpHjB0SiCUpTxM_nbKcCBjbLPsXS55x8L39HyA1a-ALveRWkUWQCJpUORCbjIIaMc-k8EBuHnC_Sp1U2mVqaHLp7CyPar-rT8wOXmzv0RxLUZdTKARkA2JKth-eVT046Kq5e_kcObUw39euSmB2Sg966o2N_HEdkT9fHpBtvu8Yxo9JJ346k84DQl6p7o77Ugj7WprIG4KZa4y9xS5uW-pYLfbiOLtYNwvpXju5IRWiFX9MVTry_2lzwCVnOpsv7edA3OwgEB5uMjhjPc81yk4Qm5EIqCZCieRLqKNY5DhTCGiYlcFAgckDFQl9JSc5NjB7xKRnWTa1HhGaRUAwXQZaKAVNlGincw2hWcmXi5IyMHETFh-ezKCx6hUPv_P-lC7IPtpzDRjb5JRl27VZfkcFGba_doXwDfsyLpA |
link.rule.ids | 228,230,782,887 |
linkProvider | Cornell University |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Differentiation+With+Higher+Infinitesimals%2C+or+Computational+Smooth+Infinitesimal+Analysis+in+Weil+Algebra&rft.au=Ishii%2C+Hiromi&rft.date=2021-07-05&rft_id=info:doi/10.48550%2Farxiv.2106.14153&rft.externalDocID=2106_14153 |