Magnetic field in atypical prominence structures: Bubble, tornado and eruption
Spectropolarimetric observations of prominences have been obtained with the THEMIS telescope during four years of coordinated campaigns. Our aim is now to understand the conditions of the cool plasma and magnetism in `atypical' prominences, namely when the measured inclination of the magnetic f...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
19-05-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spectropolarimetric observations of prominences have been obtained with the
THEMIS telescope during four years of coordinated campaigns. Our aim is now to
understand the conditions of the cool plasma and magnetism in `atypical'
prominences, namely when the measured inclination of the magnetic field
departs, to some extent, from the predominantly horizontal field found in
`typical' prominences. What is the role of the magnetic field in these
prominence types? Are plasma dynamics more important in these cases than the
magnetic support? We focus our study on three types of `atypical' prominences
(tornadoes, bubbles and jet-like prominence eruptions) that have all been
observed by THEMIS in the He I D_3 line, from which the Stokes parameters can
be derived. The magnetic field strength, inclination and azimuth in each pixel
are obtained by using the Principal Component Analysis inversion method on a
model of single scattering in the presence of the Hanle effect. The magnetic
field in tornadoes is found to be more or less horizontal, whereas for the
eruptive prominence it is mostly vertical. We estimate a tendency towards
higher values of magnetic field strength inside the bubbles than outside in the
surrounding prominence. In all of the models in our database, only one magnetic
field orientation is considered for each pixel. While sufficient for most of
the main prominence body, this assumption appears to be oversimplified in
atypical prominence structures. We should consider these observations as the
result of superposition of multiple magnetic fields, possibly even with a
turbulent field component. |
---|---|
DOI: | 10.48550/arxiv.1605.05964 |