Trapped ions in Rydberg-dressed atomic gases
Phys. Rev. Lett. 118, 263201 (2017) We theoretically study trapped ions that are immersed in an ultracold gas of Rydberg-dressed atoms. By off-resonant coupling on a dipole-forbidden transition, the adiabatic atom-ion potential can be made repulsive. We study the energy exchange between the atoms an...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
29-06-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Phys. Rev. Lett. 118, 263201 (2017) We theoretically study trapped ions that are immersed in an ultracold gas of
Rydberg-dressed atoms. By off-resonant coupling on a dipole-forbidden
transition, the adiabatic atom-ion potential can be made repulsive. We study
the energy exchange between the atoms and a single trapped ion and find that
Langevin collisions are inhibited in the ultracold regime for these repulsive
interactions. Therefore, the proposed system avoids recently observed ion
heating in hybrid atom-ion systems caused by coupling to the ion's radio
frequency trapping field and retains ultracold temperatures even in the
presence of excess micromotion. |
---|---|
DOI: | 10.48550/arxiv.1612.07112 |