The Importance of Cannizzaro-Type Reactions during Electrocatalytic Reduction of Carbon Dioxide

A seemingly catalytically inactive electrode, boron-doped diamond (BDD), is found to be active for CO2 and CO reduction to formaldehyde and even methane. At very cathodic potentials, formic acid and methanol are formed as well. However, these products are the result of base-catalyzed Cannizzaro-type...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society Vol. 139; no. 5; pp. 2030 - 2034
Main Authors: Birdja, Yuvraj Y, Koper, Marc T. M
Format: Journal Article
Language:English
Published: United States American Chemical Society 08-02-2017
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A seemingly catalytically inactive electrode, boron-doped diamond (BDD), is found to be active for CO2 and CO reduction to formaldehyde and even methane. At very cathodic potentials, formic acid and methanol are formed as well. However, these products are the result of base-catalyzed Cannizzaro-type disproportionation reactions. A local alkaline environment near the electrode surface, caused by the hydrogen evolution reaction, initiates aldehyde disproportionation promoted by hydroxide ions, which leads to the formation of the corresponding carboxylic acid and alcohol. This phenomenon is strongly influenced by the electrolyte pH and buffer capacity and not limited to BDD or formaldehyde, but can be generalized to different electrode materials and to C2 and C3 aldehydes as well. The importance of these reactions is emphasized as the formation of acids and alcohols is often ascribed to direct CO2 reduction products. The results obtained here may explain the concomitant formation of acids and alcohols often observed during CO2 reduction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.6b12008