Ram pressure stripping of the cool core of the Ophiuchus Cluster
(abridged) We report results from a Chandra study of the central regions of the nearby, X-ray bright, Ophiuchus Cluster (z = 0.03), the second-brightest cluster in the sky. Our study reveals a dramatic, close-up view of the stripping and potential destruction of a cool core within a rich cluster. Th...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
28-02-2010
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | (abridged) We report results from a Chandra study of the central regions of
the nearby, X-ray bright, Ophiuchus Cluster (z = 0.03), the second-brightest
cluster in the sky. Our study reveals a dramatic, close-up view of the
stripping and potential destruction of a cool core within a rich cluster. The
X-ray emission from the Ophiuchus Cluster core exhibits a comet-like morphology
extending to the north, driven by merging activity, indicative of ram-pressure
stripping caused by rapid motion through the ambient cluster gas. A cold front
at the southern edge implies a velocity of 1000$\pm$200 km/s (M~0.6). The X-ray
emission from the cluster core is sharply peaked. As previously noted, the peak
is offset by 4 arcsec (~2 kpc) from the optical center of the associated cD
galaxy, indicating that ram pressure has slowed the core, allowing the
relatively collisionless stars and dark matter to carry on ahead. The cluster
exhibits the strongest central temperature gradient of any massive cluster
observed to date: the temperature rises from 0.7 keV within 1 kpc of the
brightness peak, to 10 keV by 30 kpc. A strong metallicity gradient is also
observed within the same region. This supports a picture in which the outer
parts of the cool core have been stripped by ram-pressure due to its rapid
motion. The cooling time of the innermost gas is very short, ~5$\times10^7$
yrs. Within the central 10 kpc radius, multiple small-scale fronts and a
complex thermodynamic structure are observed, indicating significant motions.
Beyond the central 50 kpc, and out to a radius ~150 kpc, the cluster appears
relatively isothermal and has near constant metallicity. The exception is a
large, coherent ridge of enhanced metallicity observed to trail the cool core,
and which is likely to have been stripped from it. |
---|---|
DOI: | 10.48550/arxiv.0910.0025 |