Evidence for a Peierls phase-transition in a three-dimensional multiple charge-density waves solid
The effect of dimensionality on materials properties has become strikingly evident with the recent discovery of graphene. Charge ordering phenomena can be induced in one dimension by periodic distortions of a material's crystal structure, termed Peierls ordering transition. Charge-density waves...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
04-04-2012
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effect of dimensionality on materials properties has become strikingly
evident with the recent discovery of graphene. Charge ordering phenomena can be
induced in one dimension by periodic distortions of a material's crystal
structure, termed Peierls ordering transition. Charge-density waves can also be
induced in solids by strong Coulomb repulsion between carriers, and at the
extreme limit, Wigner predicted that crystallization itself can be induced in
an electrons gas in free space close to the absolute zero of temperature.
Similar phenomena are observed also in higher dimensions, but the microscopic
description of the corresponding phase transition is often controversial, and
remains an open field of research for fundamental physics. Here, we photoinduce
the melting of the charge ordering in a complex three-dimensional solid and
monitor the consequent charge redistribution by probing the optical response
over a broad spectral range with ultrashort laser pulses. Although the
photoinduced electronic temperature far exceeds the critical value, the
charge-density wave is preserved until the lattice is sufficiently distorted to
induce the phase transition. Combining this result with it ab initio}
electronic structure calculations, we identified the Peierls origin of multiple
charge-density waves in a three-dimensional system for the first time. |
---|---|
DOI: | 10.48550/arxiv.1204.0883 |