The evolution of the Galactic metallicity gradient from high-resolution spectroscopy of open clusters

Open clusters offer a unique possibility to study the time evolution of the radial metallicity gradients of several elements in our Galaxy, because they span large intervals in age and Galactocentric distance, and both quantities can be more accurately derived than for field stars. We re-address the...

Full description

Saved in:
Bibliographic Details
Main Authors: Magrini, Laura, Sestito, Paola, Randich, Sofia, Galli, Daniele
Format: Journal Article
Language:English
Published: 04-12-2008
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Open clusters offer a unique possibility to study the time evolution of the radial metallicity gradients of several elements in our Galaxy, because they span large intervals in age and Galactocentric distance, and both quantities can be more accurately derived than for field stars. We re-address the issue of the Galactic metallicity gradient and its time evolution by comparing the empirical gradients traced by a sample of 45 open clusters with a chemical evolution model of the Galaxy. At variance with previous similar studies, we have collected from the literature only abundances derived from high--resolution spectra. The clusters have distances $7 < RGC<22$ kpc and ages from $\sim 30$ Myr to 11 Gyr. We also consider the $\alpha$-elements Si, Ca, Ti, and the iron-peak elements Cr and Ni. The data for iron-peak and $\alpha$-elements indicate a steep metallicity gradient for R_GC<12$ kpc and a plateau at larger radii. The time evolution of the metallicity distribution is characterized by a uniform increase of the metallicity at all radii, preserving the shape of the gradient, with marginal evidence for a flattening of the gradient with time in the radial range 7-12 kpc. Our model is able to reproduce the main features of the metallicity gradient and its evolution with an infall law exponentially decreasing with radius and with a collapse time scale of the order of 8 Gyr at the solar radius. This results in a rapid collapse in the inner regions, i.e. $R_{\rm GC}\lesssim 12$ kpc (that we associate with an early phase of disk formation from the collapse of the halo) and in a slow inflow of material per unit area in the outer regions at a constant rate with time.
DOI:10.48550/arxiv.0812.0854