Fluid structure in the immediate vicinity of an equilibrium three-phase contact line and assessment of disjoining pressure models using density functional theory

Phys. Fluids 26, 072001 (2014) We examine the nanoscale behavior of an equilibrium three-phase contact line in the presence of long-ranged intermolecular forces by employing a statistical mechanics of fluids approach, namely density functional theory (DFT) together with fundamental measure theory (F...

Full description

Saved in:
Bibliographic Details
Main Authors: Nold, Andreas, Sibley, David N, Goddard, Benjamin D, Kalliadasis, Serafim
Format: Journal Article
Language:English
Published: 04-08-2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phys. Fluids 26, 072001 (2014) We examine the nanoscale behavior of an equilibrium three-phase contact line in the presence of long-ranged intermolecular forces by employing a statistical mechanics of fluids approach, namely density functional theory (DFT) together with fundamental measure theory (FMT). This enables us to evaluate the predictive quality of effective Hamiltonian models in the vicinity of the contact line. In particular, we compare the results for mean field effective Hamiltonians with disjoining pressures defined through (I) the adsorption isotherm for a planar liquid film, and (II) the normal force balance at the contact line. We find that the height profile obtained using (I) shows good agreement with the adsorption film thickness of the DFT-FMT equilibrium density profile in terms of maximal curvature and the behavior at large film heights. In contrast, we observe that while the height profile obtained by using (II) satisfies basic sum rules, it shows little agreement with the adsorption film thickness of the DFT results. The results are verified for contact angles of 20, 40 and 60 degrees.
DOI:10.48550/arxiv.1406.5465