Magmatic processes in the Bishop Tuff rhyolitic magma based on trace elements in melt inclusions and pumice matrix glass
To investigate the origin of compositional zonation in the Bishop Tuff magma body, we have analyzed trace elements in the matrix glass of pumice clasts and in quartz-hosted melt inclusions. Our results show contrasting patterns for quartz in different parts of the Bishop Tuff. In all samples from th...
Saved in:
Published in: | Contributions to mineralogy and petrology Vol. 165; no. 2; pp. 237 - 257 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer-Verlag
01-02-2013
Springer Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To investigate the origin of compositional zonation in the Bishop Tuff magma body, we have analyzed trace elements in the matrix glass of pumice clasts and in quartz-hosted melt inclusions. Our results show contrasting patterns for quartz in different parts of the Bishop Tuff. In all samples from the early part of the eruption, trace element compositions of matrix glasses are similar to but slightly more evolved than quartz-hosted melt inclusions. This indicates a cogenetic relationship between quartz crystals and their surrounding matrix glass, consistent with in situ crystallization. The range of incompatible element concentrations in melt inclusions and matrix glass from single pumice clasts requires 16–20 wt% in situ crystallization. This is greater than the actual crystal content of the pumices (<15 % crystals). In contrast to the pattern for the early pumices, pyroclastic flow samples from the middle part of the eruption show contrasting trends: In some clasts, the matrix is more evolved than the inclusions, whereas in other clasts, the matrix is less evolved. In the late Bishop Tuff, all crystal-rich samples have matrix glasses that are less evolved than the melt inclusions. Trace element abundances indicate that the cores of quartz in the late Bishop Tuff crystallized from more differentiated rhyolitic magma that was similar in many ways, yet distinct from the early-erupted Bishop Tuff. Our results are compatible with a model of secular incremental zoning (Hildreth and Wilson in Compositional zoning of the Bishop Tuff. J Petrol 48(5):951–999,
2007
), in which melt batches from underlying crystal mush rise to various levels in a growing magma body according to their buoyancy. Early- and middle-erupted quartz crystallized from highly evolved rhyolitic melt, but then some parts of the middle-erupted magma were invaded by less differentiated rhyolite such that the matrix melt at the time of eruption was less evolved than the melt inclusions. A similar process occurred but to a greater extent in magma that erupted to form the late Bishop Tuff. In addition, there was a final, major magma mixing event in the late magma that formed Ti-rich rims on quartz and Ba-rich rims on sanidine, trapped less evolved rhyolitic melt inclusions, and resulted in dark and swirly crystal-poor pumice that is a rare type throughout much of the Bishop Tuff. |
---|---|
ISSN: | 0010-7999 1432-0967 |
DOI: | 10.1007/s00410-012-0807-8 |