Force Field for Water over Pt(111): Development, Assessment, and Comparison

Metal/water interfaces are key in many natural and industrial processes, such as corrosion, atmospheric, or environmental chemistry. Even today, the only practical approach to simulate large interfaces between a metal and water is to perform force-field simulations. In this work, we propose a novel...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical theory and computation Vol. 14; no. 6; pp. 3238 - 3251
Main Authors: Steinmann, Stephan N, Ferreira De Morais, Rodrigo, Götz, Andreas W, Fleurat-Lessard, Paul, Iannuzzi, Marcella, Sautet, Philippe, Michel, Carine
Format: Journal Article
Language:English
Published: United States American Chemical Society 12-06-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metal/water interfaces are key in many natural and industrial processes, such as corrosion, atmospheric, or environmental chemistry. Even today, the only practical approach to simulate large interfaces between a metal and water is to perform force-field simulations. In this work, we propose a novel force field, GAL17, to describe the interaction of water and a Pt(111) surface. GAL17 builds on three terms: (i) a standard Lennard-Jones potential for the bonding interaction between the surface and water, (ii) a Gaussian term to improve the surface corrugation, and (iii) two terms describing the angular dependence of the interaction energy. The 12 parameters of this force field are fitted against a set of 210 adsorption geometries of water on Pt(111). The performance of GAL17 is compared to several other approaches that have not been validated against extensive first-principles computations yet. Their respective accuracy is evaluated on an extended set of 802 adsorption geometries of H2O on Pt(111), 52 geometries derived from icelike layers, and an MD simulation of an interface between a c(4 × 6) Pt(111) surface and a water layer of 14 Å thickness. The newly developed GAL17 force field provides a significant improvement over previously existing force fields for Pt(111)/H2O interactions. Its well-balanced performance suggests that it is an ideal candidate to generate relevant geometries for the metal/water interface, paving the way to a representative sampling of the equilibrium distribution at the interface and to predict solvation free energies at the solid/liquid interface.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1549-9618
1549-9626
DOI:10.1021/acs.jctc.7b01177