Covalent Modification of Silicon Nitride Nanopore by Amphoteric Polylysine for Short DNA Detection

In this work, we demonstrate a chemical modification approach, by means of covalent-bonding amphoteric poly-l-lysine (PLL) on the interior nanopore surface, which could intensively protect the pore from etching when exposed in the electrolyte under various pH conditions (from pH 4 to 12). Nanopore w...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega Vol. 2; no. 10; pp. 7127 - 7135
Main Authors: Yin, Bohua, Xie, Wanyi, Liang, Liyuan, Deng, Yunsheng, He, Shixuan, He, Feng, Zhou, Daming, Tlili, Chaker, Wang, Deqiang
Format: Journal Article
Language:English
Published: United States American Chemical Society 31-10-2017
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we demonstrate a chemical modification approach, by means of covalent-bonding amphoteric poly-l-lysine (PLL) on the interior nanopore surface, which could intensively protect the pore from etching when exposed in the electrolyte under various pH conditions (from pH 4 to 12). Nanopore was generated via simple current dielectric breakdown methodology, covalent modification was performed in three steps, and the functional nanopore was fully characterized in terms of chemical structure, hydrophilicity, and surface morphology. I–V curves were recorded under a broad range of pH stimuli to evaluate the stability of the chemical bonding layer; the plotted curves demonstrated that nanopore with a covalent bonding layer has good pH tolerance and showed apparent reversibility. In addition, we have also measured the conductance of modified nanopore with varied KCl concentration (from 0.1 mM to 1 M) at different pH conditions (pHs 5, 7, 9, and 11). The results suggested that the surface charge density does not fluctuate with variation in salt concentration, which inferred that the SiN x nanopore was fully covered by PLL. Moreover, the PLL functionalized nanopore has realized the detection of single-stranded DNA homopolymer translocation under bias voltage of 500 mV, and the 20 nt homopolymers could be evidently differentiated in terms of the current amplitude and dwell time at pHs 5, 8, and 11.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.7b01245