Source regions and timescales for the delivery of water to the Earth
— In the primordial solar system, the most plausible sources of the water accreted by the Earth were in the outer asteroid belt, in the giant planet regions, and in the Kuiper Belt. We investigate the implications on the origin of Earth's water of dynamical models of primordial evolution of sol...
Saved in:
Published in: | Meteoritics & planetary science Vol. 35; no. 6; pp. 1309 - 1320 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford, UK
Blackwell Publishing Ltd
01-11-2000
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | — In the primordial solar system, the most plausible sources of the water accreted by the Earth were in the outer asteroid belt, in the giant planet regions, and in the Kuiper Belt. We investigate the implications on the origin of Earth's water of dynamical models of primordial evolution of solar system bodies and check them with respect to chemical constraints. We find that it is plausible that the Earth accreted water all along its formation, from the early phases when the solar nebula was still present to the late stages of gas‐free sweepup of scattered planetesimals. Asteroids and the comets from the Jupiter‐Saturn region were the first water deliverers, when the Earth was less than half its present mass. The bulk of the water presently on Earth was carried by a few planetary embryos, originally formed in the outer asteroid belt and accreted by the Earth at the final stage of its formation. Finally, a late veneer, accounting for at most 10% of the present water mass, occurred due to comets from the Uranus‐Neptune region and from the Kuiper Belt. The net result of accretion from these several reservoirs is that the water on Earth had essentially the D/H ratio typical of the water condensed in the outer asteroid belt. This is in agreement with the observation that the D/H ratio in the oceans is very close to the mean value of the D/H ratio of the water inclusions in carbonaceous chondrites. |
---|---|
AbstractList | — In the primordial solar system, the most plausible sources of the water accreted by the Earth were in the outer asteroid belt, in the giant planet regions, and in the Kuiper Belt. We investigate the implications on the origin of Earth's water of dynamical models of primordial evolution of solar system bodies and check them with respect to chemical constraints. We find that it is plausible that the Earth accreted water all along its formation, from the early phases when the solar nebula was still present to the late stages of gas‐free sweepup of scattered planetesimals. Asteroids and the comets from the Jupiter‐Saturn region were the first water deliverers, when the Earth was less than half its present mass. The bulk of the water presently on Earth was carried by a few planetary embryos, originally formed in the outer asteroid belt and accreted by the Earth at the final stage of its formation. Finally, a late veneer, accounting for at most 10% of the present water mass, occurred due to comets from the Uranus‐Neptune region and from the Kuiper Belt. The net result of accretion from these several reservoirs is that the water on Earth had essentially the D/H ratio typical of the water condensed in the outer asteroid belt. This is in agreement with the observation that the D/H ratio in the oceans is very close to the mean value of the D/H ratio of the water inclusions in carbonaceous chondrites. Abstract— In the primordial solar system, the most plausible sources of the water accreted by the Earth were in the outer asteroid belt, in the giant planet regions, and in the Kuiper Belt. We investigate the implications on the origin of Earth's water of dynamical models of primordial evolution of solar system bodies and check them with respect to chemical constraints. We find that it is plausible that the Earth accreted water all along its formation, from the early phases when the solar nebula was still present to the late stages of gas‐free sweepup of scattered planetesimals. Asteroids and the comets from the Jupiter‐Saturn region were the first water deliverers, when the Earth was less than half its present mass. The bulk of the water presently on Earth was carried by a few planetary embryos, originally formed in the outer asteroid belt and accreted by the Earth at the final stage of its formation. Finally, a late veneer, accounting for at most 10% of the present water mass, occurred due to comets from the Uranus‐Neptune region and from the Kuiper Belt. The net result of accretion from these several reservoirs is that the water on Earth had essentially the D/H ratio typical of the water condensed in the outer asteroid belt. This is in agreement with the observation that the D/H ratio in the oceans is very close to the mean value of the D/H ratio of the water inclusions in carbonaceous chondrites. |
Author | Robert, F. Morbidelli, A. Chambers, J. Petit, J. M. Lunine, J. I. Cyr, K. E. Valsecchi, G. B. |
Author_xml | – sequence: 1 givenname: A. surname: Morbidelli fullname: Morbidelli, A. email: morby@obs-nice.fr organization: Observatoire de la Côte d'Azur, Nice, France – sequence: 2 givenname: J. surname: Chambers fullname: Chambers, J. organization: Armagh Observatory, College Hill, Armagh, BT61 9DG, U.K – sequence: 3 givenname: J. I. surname: Lunine fullname: Lunine, J. I. organization: Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721, USA – sequence: 4 givenname: J. M. surname: Petit fullname: Petit, J. M. organization: Observatoire de la Côte d'Azur, Nice, France – sequence: 5 givenname: F. surname: Robert fullname: Robert, F. organization: Muséum d' Histoire Naturelle, Paris, France – sequence: 6 givenname: G. B. surname: Valsecchi fullname: Valsecchi, G. B. organization: Istituto di Astrofisica Spaziale, Rome, Italy – sequence: 7 givenname: K. E. surname: Cyr fullname: Cyr, K. E. organization: Planetary Science Branch, NASA Johnson Space Center, Houston, Texas 77058, USA |
BookMark | eNqVUMtOwzAQtFCRKIV_iLgn2HH8CCeq0geiBaSCerSceE1T0gbZgbZ_T0Kr3tnD7mhHM9LMJepsqg0gdENwRJq5XUUkTVjICMZRjJtVZ5gwIqPdGeqeqE6DseRhSkV6gS69X2FMGaFJFz3Mq2-XQ-Dgo6g2PtAbE9TFGnyuS_CBrVxQLyEwUBY_4PZBZYOtrqH5Vn_EULt6eYXOrS49XB9vD72Phm-DSTh9GT8O-tNQJ6mQIY9TRpklzFhspJBSak4ZNyBtKpngIA3kicltGmdJZjJLcw6MGmNjTIXQtIfuDr65q7x3YNWXK9ba7RXBqu1DrVQbWrWhVduHOvahdo34_iDeFiXs_6FUs_7rvIWNRXiwKHwNu5OFdp-KCyqYWjyP1ROdjfhkIdSM_gJkOHmM |
CitedBy_id | crossref_primary_10_1016_j_gca_2017_08_041 crossref_primary_10_1086_505596 crossref_primary_10_1016_j_actaastro_2014_06_041 crossref_primary_10_1109_JMW_2021_3060622 crossref_primary_10_1016_j_icarus_2021_114497 crossref_primary_10_1016_j_pss_2018_08_003 crossref_primary_10_1146_annurev_earth_30_091201_140243 crossref_primary_10_3847_1538_3881_aa7202 crossref_primary_10_1016_S0273_1177_01_00494_X crossref_primary_10_1051_0004_6361_201630040 crossref_primary_10_1016_j_icarus_2006_09_011 crossref_primary_10_3847_2041_8205_828_1_L2 crossref_primary_10_1016_j_epsl_2016_02_031 crossref_primary_10_1016_j_epsl_2016_10_026 crossref_primary_10_1073_pnas_1013480108 crossref_primary_10_1086_520501 crossref_primary_10_3847_2041_8213_ac511c crossref_primary_10_1093_pasj_60_3_557 crossref_primary_10_1038_433814b crossref_primary_10_1089_ast_2019_2187 crossref_primary_10_1016_j_gca_2013_08_034 crossref_primary_10_1016_j_chemgeo_2024_122104 crossref_primary_10_1093_mnras_staa097 crossref_primary_10_1093_mnras_stac158 crossref_primary_10_1016_j_icarus_2017_10_031 crossref_primary_10_1093_mnras_stv1835 crossref_primary_10_1016_j_icarus_2009_07_011 crossref_primary_10_1016_j_icarus_2009_07_015 crossref_primary_10_1073_pnas_1820719116 crossref_primary_10_1016_j_pss_2011_03_020 crossref_primary_10_1017_S1473550410000261 crossref_primary_10_1089_ast_2014_1231 crossref_primary_10_1098_rsta_2008_0111 crossref_primary_10_1111_j_1749_6632_2011_06276_x crossref_primary_10_1016_j_icarus_2023_115805 crossref_primary_10_1007_s11084_012_9264_7 crossref_primary_10_1016_j_epsl_2018_05_024 crossref_primary_10_1016_j_icarus_2018_12_033 crossref_primary_10_1038_ngeo1066 crossref_primary_10_1093_nsr_nwz033 crossref_primary_10_1017_S1743921310008161 crossref_primary_10_1051_0004_6361_201425461 crossref_primary_10_1093_mnras_stz049 crossref_primary_10_1016_j_gca_2014_03_034 crossref_primary_10_1126_sciadv_aay7604 crossref_primary_10_1093_pasj_psac041 crossref_primary_10_1051_0004_6361_202038047 crossref_primary_10_1021_acsearthspacechem_6b00016 crossref_primary_10_3847_0004_637X_830_2_157 crossref_primary_10_1093_mnras_stad148 crossref_primary_10_1038_s41598_019_41880_0 crossref_primary_10_1098_rsta_2016_0209 crossref_primary_10_2138_rmg_2024_90_03 crossref_primary_10_1016_j_gca_2004_05_036 crossref_primary_10_1093_mnras_sty1475 crossref_primary_10_1126_science_1064051 crossref_primary_10_1126_science_1235142 crossref_primary_10_2747_0020_6814_44_2_137 crossref_primary_10_1051_lhb_2010028 crossref_primary_10_1038_35082174 crossref_primary_10_1017_S1743921310001420 crossref_primary_10_1051_0004_6361_201629376 crossref_primary_10_1089_ast_2015_1387 crossref_primary_10_1016_j_icarus_2010_12_009 crossref_primary_10_1029_2019JE006276 crossref_primary_10_1007_s11214_012_9943_8 crossref_primary_10_1016_j_icarus_2013_02_009 crossref_primary_10_3847_PSJ_ac8ced crossref_primary_10_1088_0004_637X_786_1_33 crossref_primary_10_1038_nature17434 crossref_primary_10_1007_s11214_007_9225_z crossref_primary_10_1093_nsr_nwae201 crossref_primary_10_1126_science_1212145 crossref_primary_10_1130_B30764_1 crossref_primary_10_1029_2008JE003134 crossref_primary_10_1016_j_chemer_2007_05_002 crossref_primary_10_3847_1538_3881_aace01 crossref_primary_10_3847_2041_8213_acfcbc crossref_primary_10_1016_j_icarus_2003_11_019 crossref_primary_10_1016_j_chemer_2019_125546 crossref_primary_10_1016_j_epsl_2012_11_049 crossref_primary_10_1142_S0218127405012545 crossref_primary_10_1360_SSTe_2021_0235 crossref_primary_10_1051_eas_1041039 crossref_primary_10_1016_j_gca_2016_07_029 crossref_primary_10_1073_pnas_98_3_809 crossref_primary_10_1016_j_icarus_2014_10_015 crossref_primary_10_1007_s11214_006_8315_7 crossref_primary_10_1016_j_pss_2021_105335 crossref_primary_10_1016_j_gca_2004_12_021 crossref_primary_10_1088_1538_3873_aaca8b crossref_primary_10_1093_mnras_stac2933 crossref_primary_10_3847_1538_4357_ac4969 crossref_primary_10_1016_S1387_6473_02_00272_5 crossref_primary_10_1016_j_gca_2020_01_051 crossref_primary_10_1051_0004_6361_202244499 crossref_primary_10_1007_s12064_022_00377_7 crossref_primary_10_1007_s11214_008_9413_5 crossref_primary_10_1016_j_epsl_2011_10_040 crossref_primary_10_1029_2018JE005698 crossref_primary_10_3847_1538_4357_aaaa72 crossref_primary_10_1111_maps_12295 crossref_primary_10_1007_s11214_007_9192_4 crossref_primary_10_1016_j_chemgeo_2009_04_017 crossref_primary_10_1051_0004_6361_201323313 crossref_primary_10_1126_science_aba1948 crossref_primary_10_3847_2041_8213_ac1db1 crossref_primary_10_1098_rstb_2006_1898 crossref_primary_10_1016_j_gca_2021_01_004 crossref_primary_10_1146_annurev_astro_091918_104409 crossref_primary_10_1016_j_pss_2023_105701 crossref_primary_10_3367_UFNr_2021_08_039044 crossref_primary_10_1111_maps_14224 crossref_primary_10_1086_518121 crossref_primary_10_1089_ast_2008_0316 crossref_primary_10_1111_j_1945_5100_2003_tb00321_x crossref_primary_10_1196_annals_1311_004 crossref_primary_10_1089_ast_2006_0124 crossref_primary_10_1051_bioconf_20140201003 crossref_primary_10_1088_2041_8205_796_2_L22 crossref_primary_10_1089_ast_2006_0125 crossref_primary_10_1088_0004_637X_807_1_9 crossref_primary_10_1111_j_1945_5100_2001_tb01847_x crossref_primary_10_1016_j_icarus_2024_116032 crossref_primary_10_1088_0004_637X_795_1_25 crossref_primary_10_1093_mnras_stad3249 crossref_primary_10_1007_s10686_008_9115_8 crossref_primary_10_1007_s11430_021_9864_8 crossref_primary_10_1080_00107514_2011_598370 crossref_primary_10_1016_j_plantsci_2008_08_007 crossref_primary_10_1126_science_1256717 crossref_primary_10_1016_j_gca_2017_10_019 crossref_primary_10_1038_s41561_019_0414_7 crossref_primary_10_3847_0004_6256_152_6_167 crossref_primary_10_1126_sciadv_aav8106 crossref_primary_10_1088_0004_637X_767_1_54 crossref_primary_10_1093_mnras_stw1935 crossref_primary_10_1016_j_epsl_2015_09_022 crossref_primary_10_3847_1538_3881_aac81c crossref_primary_10_1051_0004_6361_201322400 crossref_primary_10_1088_0004_6256_140_5_1129 crossref_primary_10_1007_s11214_023_00954_2 crossref_primary_10_1038_ncomms15455 crossref_primary_10_1093_mnras_stz3408 crossref_primary_10_1016_j_gca_2020_05_007 crossref_primary_10_1111_j_1365_3121_2008_00843_x crossref_primary_10_3390_life11050429 crossref_primary_10_1089_ast_2006_6_735 crossref_primary_10_1002_2016EA000198 crossref_primary_10_1016_j_icarus_2007_09_007 crossref_primary_10_3847_1538_3881_aaad01 crossref_primary_10_1007_s11214_017_0433_x crossref_primary_10_1007_s11084_005_5010_8 crossref_primary_10_1016_j_pss_2014_03_003 crossref_primary_10_1088_0004_637X_756_2_178 crossref_primary_10_1146_annurev_earth_063016_020239 crossref_primary_10_1126_science_abc8116 crossref_primary_10_1051_0004_6361_201424447 crossref_primary_10_1098_rsta_2013_0072 crossref_primary_10_1051_0004_6361_20066171 crossref_primary_10_1039_c0cc02312d crossref_primary_10_1017_S174392131000147X crossref_primary_10_1051_0004_6361_201118147 crossref_primary_10_1016_j_newast_2016_03_001 crossref_primary_10_1111_maps_12498 crossref_primary_10_1088_0004_637X_794_1_11 crossref_primary_10_1016_j_icarus_2015_11_027 crossref_primary_10_1111_maps_13348 crossref_primary_10_1111_j_1945_5100_2002_tb00808_x crossref_primary_10_1089_ast_2016_1533 crossref_primary_10_1093_mnras_sty2614 crossref_primary_10_1086_527314 crossref_primary_10_1093_mnras_stt1051 crossref_primary_10_1021_acs_jpcc_6b11689 crossref_primary_10_3847_1538_4357_836_1_118 crossref_primary_10_1016_j_earscirev_2019_02_008 crossref_primary_10_1016_j_icarus_2014_10_031 crossref_primary_10_1088_0004_637X_802_1_21 crossref_primary_10_1016_j_pss_2009_06_006 crossref_primary_10_1038_nature11908 crossref_primary_10_1111_j_1945_5100_2001_tb01913_x crossref_primary_10_1016_j_icarus_2023_115754 crossref_primary_10_1016_S0273_1177_03_00451_4 crossref_primary_10_1007_s10686_011_9253_2 crossref_primary_10_1016_j_icarus_2012_09_016 crossref_primary_10_1086_519921 crossref_primary_10_1007_s11214_006_7018_4 crossref_primary_10_3847_1538_4357_aa6544 crossref_primary_10_1098_rsta_2013_0174 crossref_primary_10_3847_PSJ_ac8669 crossref_primary_10_1146_annurev_earth_31_100901_145451 crossref_primary_10_1016_j_ppnp_2018_05_002 crossref_primary_10_1016_S0019_1035_03_00198_2 crossref_primary_10_1051_0004_6361_201936366 crossref_primary_10_1051_0004_6361_201528035 crossref_primary_10_1111_maps_13888 crossref_primary_10_1126_science_aal4765 crossref_primary_10_1051_0004_6361_201731747 crossref_primary_10_1016_S0016_7037_02_00985_7 crossref_primary_10_1016_j_gsf_2012_11_001 crossref_primary_10_1038_nature10519 crossref_primary_10_1051_0004_6361_200912079 crossref_primary_10_1111_j_1365_2966_2007_12712_x crossref_primary_10_1146_annurev_astro_41_071601_170049 crossref_primary_10_1051_0004_6361_201936014 crossref_primary_10_3847_2041_8213_ab0bb4 crossref_primary_10_1038_ngeo193 crossref_primary_10_1016_j_chemgeo_2005_09_015 crossref_primary_10_1051_0004_6361_201322845 crossref_primary_10_1029_2020JE006643 crossref_primary_10_1103_PhysRevC_84_065808 crossref_primary_10_1016_j_epsl_2004_07_026 crossref_primary_10_1029_2018JE005600 crossref_primary_10_1002_2017GC007388 crossref_primary_10_1038_s41550_021_01487_w crossref_primary_10_1126_science_1125150 crossref_primary_10_1016_j_icarus_2024_116098 crossref_primary_10_3847_2041_8213_836_1_L7 crossref_primary_10_1016_j_icarus_2016_12_001 crossref_primary_10_1017_njg_2015_2 crossref_primary_10_1017_S1743921308016773 crossref_primary_10_1093_mnras_stz1412 crossref_primary_10_1016_j_asr_2017_10_020 crossref_primary_10_1111_j_1945_5100_2001_tb01880_x crossref_primary_10_1016_j_icarus_2012_08_042 crossref_primary_10_1088_0004_637X_778_2_109 crossref_primary_10_1016_j_epsl_2023_118225 crossref_primary_10_1088_0004_637X_690_2_L110 crossref_primary_10_1111_j_1745_3933_2012_01290_x crossref_primary_10_1038_s41550_022_01824_7 crossref_primary_10_1016_j_gca_2020_07_034 crossref_primary_10_1098_rsta_2015_0394 crossref_primary_10_1146_annurev_earth_042711_105531 crossref_primary_10_3847_1538_4357_ad0e0e crossref_primary_10_1089_ast_2009_0372 crossref_primary_10_1017_S1743921308016645 crossref_primary_10_1016_j_epsl_2009_07_016 crossref_primary_10_1088_2041_8205_783_2_L28 crossref_primary_10_1017_S007418090019343X crossref_primary_10_1016_j_epsl_2013_11_040 crossref_primary_10_1007_s11430_015_5241_0 crossref_primary_10_3847_1538_3881_aab608 crossref_primary_10_3847_1538_4357_ab0ae9 crossref_primary_10_1016_j_chemer_2008_05_001 crossref_primary_10_3847_PSJ_acb64b crossref_primary_10_1016_j_epsl_2018_10_029 crossref_primary_10_3847_0004_637X_821_1_2 crossref_primary_10_3847_1538_4357_acac8f crossref_primary_10_1051_0004_6361_202142143 crossref_primary_10_1016_j_asoc_2012_01_014 crossref_primary_10_1016_j_earscirev_2017_07_013 crossref_primary_10_1111_j_1945_5100_2001_tb01881_x crossref_primary_10_1088_0004_637X_782_1_31 crossref_primary_10_1089_ast_2009_0368 crossref_primary_10_1093_mnras_stw2182 crossref_primary_10_1007_s00159_012_0056_x crossref_primary_10_3847_2041_8213_ad2463 crossref_primary_10_3847_2041_8213_ac9052 crossref_primary_10_1016_j_crte_2007_09_001 crossref_primary_10_1016_j_crte_2007_09_002 crossref_primary_10_1111_j_1365_2966_2009_16162_x crossref_primary_10_1016_j_crte_2007_09_006 crossref_primary_10_1038_d41586_023_00979_1 crossref_primary_10_1002_2015JA022226 crossref_primary_10_1098_rsta_2011_0592 crossref_primary_10_1038_nature10201 crossref_primary_10_1089_ast_2006_06_0126 crossref_primary_10_1146_annurev_earth_042711_105319 crossref_primary_10_1089_ast_2007_0207 crossref_primary_10_1016_j_epsl_2022_117741 crossref_primary_10_3847_1538_4357_ab05d8 crossref_primary_10_1016_j_gca_2015_07_007 crossref_primary_10_1088_0004_637X_804_1_9 crossref_primary_10_1038_nature08477 crossref_primary_10_1029_2004GC000716 crossref_primary_10_1002_2015GC006210 crossref_primary_10_1051_0004_6361_201935007 crossref_primary_10_1016_j_epsl_2010_10_019 crossref_primary_10_1038_ngeo1616 crossref_primary_10_1016_j_epsl_2004_12_022 crossref_primary_10_1016_S0019_1035_03_00172_6 crossref_primary_10_1088_0004_637X_772_1_17 crossref_primary_10_3847_1538_4357_ab3b0a crossref_primary_10_1086_426902 crossref_primary_10_1093_mnrasl_sls003 crossref_primary_10_1007_s11038_009_9310_2 crossref_primary_10_1002_2017JB014723 crossref_primary_10_1016_j_asr_2018_02_032 crossref_primary_10_1016_j_epsl_2014_02_011 crossref_primary_10_1016_j_pss_2006_04_021 crossref_primary_10_1088_0004_637X_793_1_3 crossref_primary_10_1088_0004_637X_770_2_97 crossref_primary_10_1088_0004_6256_142_4_125 crossref_primary_10_1016_j_epsl_2004_04_031 crossref_primary_10_1007_s11214_023_00995_7 crossref_primary_10_1007_s11038_009_9333_8 crossref_primary_10_1038_nature11506 crossref_primary_10_3847_PSJ_abaa3e crossref_primary_10_1144_0016_76492006_054 crossref_primary_10_1126_science_1052872 crossref_primary_10_1016_S0009_2541_01_00374_6 crossref_primary_10_1016_S0301_9268_03_00106_2 crossref_primary_10_1146_annurev_earth_042711_105340 crossref_primary_10_3847_1538_4357_abd2b9 crossref_primary_10_1007_s10569_017_9795_3 crossref_primary_10_1051_0004_6361_201834556 crossref_primary_10_1038_s41598_023_30382_9 crossref_primary_10_1086_523103 crossref_primary_10_3390_life11111142 crossref_primary_10_1098_rstb_2006_1900 crossref_primary_10_1093_mnrasl_slab062 crossref_primary_10_1051_0004_6361_20010517 crossref_primary_10_1088_2041_8205_758_2_L36 crossref_primary_10_1016_j_epsl_2009_05_023 crossref_primary_10_1051_0004_6361_200810833 crossref_primary_10_1111_maps_12717 crossref_primary_10_1016_j_icarus_2014_01_040 crossref_primary_10_1111_j_1945_5100_2005_tb00960_x crossref_primary_10_1016_j_gca_2012_11_015 crossref_primary_10_1007_s11214_018_0475_8 crossref_primary_10_1016_j_chemer_2007_09_002 crossref_primary_10_1088_0004_637X_720_2_1073 crossref_primary_10_1088_2041_8205_728_1_L8 crossref_primary_10_1007_s00269_016_0809_6 crossref_primary_10_1038_s41550_021_01520_y crossref_primary_10_2343_geochemj_2_0398 crossref_primary_10_3390_math10162897 crossref_primary_10_1016_j_icarus_2012_12_016 crossref_primary_10_1144_0016_76492006_028 crossref_primary_10_1007_s00159_019_0117_5 crossref_primary_10_1029_2022GC010661 crossref_primary_10_1016_j_jcrysgro_2006_05_057 crossref_primary_10_1073_pnas_1412072111 crossref_primary_10_3847_1538_4357_aa784f crossref_primary_10_2138_rmg_2018_84_10 crossref_primary_10_1088_0004_637X_784_1_39 crossref_primary_10_1016_j_epsl_2014_10_053 crossref_primary_10_1029_2001GL014237 crossref_primary_10_1016_j_gca_2023_01_017 crossref_primary_10_1051_0004_6361_202038536 crossref_primary_10_1017_S1473550407003941 crossref_primary_10_1016_j_icarus_2017_06_030 crossref_primary_10_1029_2009GC002552 crossref_primary_10_1007_s10686_020_09681_w crossref_primary_10_1016_j_icarus_2005_03_008 crossref_primary_10_1086_500287 crossref_primary_10_1126_science_1101812 crossref_primary_10_1089_153110702762470581 crossref_primary_10_1016_j_icarus_2023_115449 crossref_primary_10_1088_0004_637X_792_2_127 crossref_primary_10_1016_j_gca_2010_06_008 crossref_primary_10_3847_1538_3881_aa71b2 crossref_primary_10_1016_j_epsl_2013_07_031 crossref_primary_10_1017_S1743921307003067 crossref_primary_10_1111_maps_12727 crossref_primary_10_1088_2041_8205_770_1_L14 crossref_primary_10_1089_ast_2005_5_622 crossref_primary_10_1016_j_icarus_2024_115973 crossref_primary_10_1126_science_1186239 crossref_primary_10_1017_S1743921316002969 crossref_primary_10_1016_j_gca_2011_08_023 crossref_primary_10_1016_j_pss_2011_01_014 crossref_primary_10_1021_acsearthspacechem_9b00136 crossref_primary_10_1088_0004_637X_720_1_887 crossref_primary_10_1016_j_icarus_2022_115020 crossref_primary_10_1016_j_icarus_2023_115682 crossref_primary_10_1093_mnras_stv278 crossref_primary_10_1093_bulcsj_uoae020 crossref_primary_10_1093_mnras_stx3359 crossref_primary_10_1007_s11214_020_00649_y crossref_primary_10_1051_0004_6361_201117714 crossref_primary_10_1089_ast_2015_1460 crossref_primary_10_1088_2041_8205_748_1_L15 crossref_primary_10_1016_j_gca_2012_08_036 crossref_primary_10_1016_j_icarus_2016_01_002 crossref_primary_10_1089_ast_2012_0867 crossref_primary_10_1093_mnras_stx2384 crossref_primary_10_1016_j_icarus_2014_05_009 crossref_primary_10_1016_j_precamres_2018_02_021 crossref_primary_10_1051_0004_6361_201629576 crossref_primary_10_3847_0004_637X_827_2_113 crossref_primary_10_1093_mnras_stac3317 crossref_primary_10_1088_0004_637X_751_1_32 crossref_primary_10_1016_j_icarus_2020_113977 crossref_primary_10_1086_591433 crossref_primary_10_1007_s11214_005_8058_x crossref_primary_10_1051_0004_6361_201732466 crossref_primary_10_1093_mnras_stx278 crossref_primary_10_1038_nature21045 crossref_primary_10_1093_mnras_stv2524 crossref_primary_10_1007_s00159_018_0108_y crossref_primary_10_1007_s00159_017_0104_7 crossref_primary_10_1134_S0016702921110070 crossref_primary_10_1007_s12133_007_0019_2 crossref_primary_10_1016_j_gca_2016_04_007 crossref_primary_10_1109_TTHZ_2020_3039459 crossref_primary_10_1051_0004_6361_201526430 crossref_primary_10_1093_mnras_stab251 crossref_primary_10_1007_s11214_020_00700_y crossref_primary_10_1007_s11783_009_0001_z crossref_primary_10_1088_2041_8205_710_1_L21 crossref_primary_10_1111_j_1945_5100_2005_tb00161_x crossref_primary_10_1016_j_chemgeo_2009_02_008 crossref_primary_10_3390_life4010004 crossref_primary_10_1016_j_chemgeo_2016_11_018 crossref_primary_10_1017_S1743921313012866 crossref_primary_10_1016_j_pss_2011_04_007 crossref_primary_10_1088_2041_8205_770_2_L20 crossref_primary_10_1016_j_icarus_2008_07_017 crossref_primary_10_1038_nature09029 crossref_primary_10_1134_S0016702920060063 crossref_primary_10_1016_j_icarus_2007_05_002 crossref_primary_10_1051_0004_6361_201117627 crossref_primary_10_1088_0004_637X_699_1_824 crossref_primary_10_1016_j_epsl_2009_04_037 crossref_primary_10_1029_2008JE003316 crossref_primary_10_1086_341808 crossref_primary_10_1017_S1473550414000159 crossref_primary_10_3847_PSJ_ac19b2 crossref_primary_10_1134_S0016702916130073 crossref_primary_10_1093_mnras_stab3611 crossref_primary_10_1038_ncomms11684 crossref_primary_10_1088_2041_8205_758_1_L3 crossref_primary_10_1093_mnras_stab2408 crossref_primary_10_1073_pnas_1500954112 crossref_primary_10_1038_nature03676 crossref_primary_10_3847_1538_3881_aae528 crossref_primary_10_1016_j_epsl_2010_11_030 crossref_primary_10_1016_j_epsl_2013_08_015 crossref_primary_10_1111_j_1945_5100_2001_tb01876_x crossref_primary_10_1016_j_icarus_2012_10_008 crossref_primary_10_1016_j_icarus_2014_08_033 crossref_primary_10_1016_j_icarus_2019_113473 crossref_primary_10_3390_molecules27238584 crossref_primary_10_1051_0004_6361_201014760 crossref_primary_10_1086_379320 crossref_primary_10_1029_2021JE006827 crossref_primary_10_1126_science_1179518 crossref_primary_10_1016_j_epsl_2012_06_015 crossref_primary_10_1088_0004_637X_806_2_216 crossref_primary_10_1002_2016GL068848 crossref_primary_10_1002_asna_202013765 crossref_primary_10_1089_ast_2021_0129 crossref_primary_10_1134_S0038094618050052 crossref_primary_10_3847_PSJ_ad4885 crossref_primary_10_1088_0004_637X_690_1_L5 crossref_primary_10_1016_j_icarus_2006_03_011 crossref_primary_10_1089_ast_2021_0127 crossref_primary_10_3847_1538_3881_aaa5a2 crossref_primary_10_1086_668293 crossref_primary_10_1021_cr400128p crossref_primary_10_1038_s43017_022_00370_0 crossref_primary_10_1093_mnras_stab1534 crossref_primary_10_1086_521587 crossref_primary_10_3367_UFNe_2021_08_039044 crossref_primary_10_1016_j_gca_2014_01_014 crossref_primary_10_1038_s41467_022_32516_5 crossref_primary_10_1086_512759 crossref_primary_10_1088_0004_637X_709_2_950 crossref_primary_10_1029_2001JE001617 crossref_primary_10_1029_2020AV000323 crossref_primary_10_1002_2017JE005286 crossref_primary_10_1038_447535a crossref_primary_10_1016_j_icarus_2018_11_029 crossref_primary_10_1038_416039a crossref_primary_10_1017_S1743921317007797 crossref_primary_10_1098_rsta_2008_0209 crossref_primary_10_1086_340809 crossref_primary_10_1017_S1743921319009608 crossref_primary_10_3847_2041_8213_aaeb1c crossref_primary_10_1088_0004_6256_143_3_66 crossref_primary_10_1017_S1743921315008546 crossref_primary_10_1038_4641286a crossref_primary_10_1016_j_icarus_2012_10_026 crossref_primary_10_1016_j_epsl_2016_05_022 crossref_primary_10_1089_ast_2005_5_100 crossref_primary_10_1051_0004_6361_202141600 crossref_primary_10_1016_j_actaastro_2023_07_035 crossref_primary_10_1016_j_icarus_2018_04_008 crossref_primary_10_1007_s11038_006_9088_4 crossref_primary_10_1016_j_epsl_2008_01_031 crossref_primary_10_1007_s11214_020_00778_4 crossref_primary_10_1016_j_asr_2005_12_012 crossref_primary_10_1098_rsta_2016_0259 crossref_primary_10_1021_acsearthspacechem_9b00096 crossref_primary_10_1098_rsta_2011_0582 crossref_primary_10_1088_2041_8205_725_2_L172 crossref_primary_10_4236_ajac_2015_64033 |
Cites_doi | 10.1007/BF00048587 10.1016/0019-1035(90)90050-J 10.1016/S0012-821X(97)00153-2 10.1016/S0009-2541(97)00146-0 10.1006/icar.1998.6007 10.1016/S0009-2541(97)00170-8 10.1111/j.1945-5100.1998.tb01707.x 10.1086/300891 10.1016/S0032-0633(99)00043-4 10.1126/science.280.5368.1421 10.1086/118483 10.1007/978-1-4612-6167-4 10.1086/116574 10.1029/94JA02936 10.1006/icar.1996.0190 10.1016/0019-1035(76)90117-2 10.1016/0016-7037(82)90293-9 10.1016/0016-7037(54)90001-0 10.1006/icar.1999.6220 10.1016/S0012-821X(99)00156-9 10.1016/0012-821X(91)90191-J 10.1016/0016-7037(84)90392-2 10.1016/0016-7037(70)90031-1 10.1007/978-94-010-2873-8_56 10.1016/0019-1035(88)90031-0 10.1006/icar.1999.6201 10.1086/300728 10.1006/icar.1999.6137 10.1006/icar.1997.5782 10.1016/0019-1035(91)90036-S 10.1038/332691a0 10.1006/icar.1999.6166 10.1016/S0032-0633(98)00093-2 10.1126/science.279.5352.842 10.1023/A:1005039822524 10.1016/0019-1035(88)90030-9 10.1126/science.276.5319.1670 10.1016/0019-1035(92)90060-K 10.1006/icar.1999.6313 10.1006/icar.1995.1122 10.1086/304912 10.1016/S0016-7037(98)00232-4 10.1016/0012-821X(89)90082-4 10.1038/377326a0 10.1086/114571 10.1086/162697 10.1126/science.255.5050.1391 10.1111/j.1945-5100.2000.tb01778.x 10.1016/0016-7037(93)90297-A 10.1029/1999JE001120 10.1023/A:1005091806594 10.1086/118091 10.1016/0016-7037(85)90141-3 10.1016/0032-0633(94)90035-3 10.1016/S0009-2541(97)00178-2 10.1006/icar.1998.5959 10.1006/icar.1994.1039 10.1016/0012-821X(88)90152-5 10.1016/0019-1035(92)90103-E 10.1007/BF00642464 |
ContentType | Journal Article |
Copyright | 2000 The Meteoritical Society |
Copyright_xml | – notice: 2000 The Meteoritical Society |
DBID | BSCLL AAYXX CITATION |
DOI | 10.1111/j.1945-5100.2000.tb01518.x |
DatabaseName | Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 1945-5100 |
EndPage | 1320 |
ExternalDocumentID | 10_1111_j_1945_5100_2000_tb01518_x MAPS1518 ark_67375_WNG_K3MF6HW7_M |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 24P 2WC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS EJD ESX F00 F01 F04 F5P FEDTE FRP G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LC2 LC3 LDC LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR RNP ROL RX1 SAMSI SUPJJ UB1 V8K VOH W8V W99 WBKPD WH7 WIH WIK WIN WOHZO WUPDE WXSBR WYISQ XG1 ZZTAW ~02 ~IA ~WT AETEA AAMNL AAYXX CITATION |
ID | FETCH-LOGICAL-a4978-629535f15df0d87888a6356de8f98576e8dec4dcf92b4bdbf3c6e53ddf20377a3 |
ISSN | 1086-9379 |
IngestDate | Thu Nov 21 21:23:03 EST 2024 Sat Aug 24 00:53:20 EDT 2024 Wed Oct 30 09:57:07 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a4978-629535f15df0d87888a6356de8f98576e8dec4dcf92b4bdbf3c6e53ddf20377a3 |
Notes | ArticleID:MAPS1518 istex:E23F3F02378A312E3199A3CE1DA02BBC6D7F992F ark:/67375/WNG-K3MF6HW7-M |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1945-5100.2000.tb01518.x |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1111_j_1945_5100_2000_tb01518_x wiley_primary_10_1111_j_1945_5100_2000_tb01518_x_MAPS1518 istex_primary_ark_67375_WNG_K3MF6HW7_M |
PublicationCentury | 2000 |
PublicationDate | November 2000 |
PublicationDateYYYYMMDD | 2000-11-01 |
PublicationDate_xml | – month: 11 year: 2000 text: November 2000 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK |
PublicationTitle | Meteoritics & planetary science |
PublicationYear | 2000 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Stern S. A. and Colwell J. E. (1997) Collisional erosion in the primordial Edgeworth-Kuiper Belt and the generation of the 30-50 AU Kuiper gap. Astrophys. J. 490, 879-885. Morfill G. E. and Volk H. J. (1984) Transport of dust and vapor and chemical fractionation in the early protosolar cloud. Astrophys. J. 287, 371-395. Ward W. R., Colombo G. and Franklin F. A. (1976) Secular resonance, solar spin down, and the orbit of Mercury. Icarus 28, 441-452. Righter K. and Drake M. (1999) Effect of water on metal-silicate partitioning of siderophile elements: A high pressure and temperature terrestrial magnam ocean and core formation. Earth Planet. Sci. Lett. 171, 383-399. Boato G. (1954) The isotopic composition of hydrogen and carbon in the carbonaceous chondrites. Geochim. Cosmochim. Acta. 6, 209-220. Owen T. and Bar-Nun A. (1995) Comets, impacts and atmospheres. Icarus 116, 215-216. Duncan M. J., Quinn T. R. and Tremaine S. (1987) The formation and extent of the solar system comet cloud. Astron. J. 94, 1330-1338. Stepinskyi T. F. and Valageas P. (1997) Global evolution of solid matter in turbulent protoplanetary disks. II. Development of icy planetesimals. Astron. Astrophys. 319, 1007-1019. Agnor C. B., Canup R. M. and Levison H. F. (1999) On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus 142, 219-237. Marty B. (1989) Neon and xenon isotopes in MORB: Implications for the Earth-atmosphere evolution. Earth Planet. Sci. Lett. 94, 45-56. Duncan M. J. and Levison H. F. (1997) Scattered comet disk and the origin of Jupiter family comets. Science 276, 1670-1672. Marty B. and Humbert F. (1997) Nitrogen and argon isotopes in oceanic basalts. Earth Planet. Sci. Lett. 152, 101-112. Deloule E., Albaréde F. and Sheppard S. M. F. (1991) Hydrogen isotope heterogeneities in the mantle from ion probe analysis of amphiboles from ultramafic rocks. Earth Planet. Sci. Lett. 105, 543-553. Bell D. R. and Rossman G. R. (1992) Water in Earth's mantle: The role of nominally anhydrous minerals. Science 255, 1391-1397. Stern S. A. (1996) On the collisional environment, accretion time scales, and architecture of the massive, primordial Kuiper Belt. Astron. J. 112, 1203-1210. Lécuyer C., Gillet Ph. and Robert F. (1998) The hydrogen isotope composition of sea water and the global water cycle. Chem Geol. 145, 249-261. Franchi I. A., Wright I. P. and Pillinger C. T. (1993) Constraints on the formation conditions of iron meteorites based on concentrations and isotopic compositions of nitrogen. Geochim. Cosmochim. Acta. 57, 3105-3121. Lecar M. and Franklin F. (1997) The solar nebula, secular resonances, gas drag, and the asteroid belt. Icarus 129, 134-146. Weidenschilling S. J. (1977) The distribution of mass in the planetary system and solar nebula. Astroph. Space Sci. 51, 153-158. ÖPik E. J. (1976) Interplanetary Encounters: Close Range Gravitational Interactions. Elsevier, New York, New York, USA. 155 pp. Gomes R. S. (1997) Dynamical effects of planetary migration on the primordial asteroid belt. Astron. J. 114, 396-401. Drouart A., Dubrulle B., Gautier D. and Robert F. (1999) Structure and transport in the solar nebula from constraints on deuterium enrichment and giant planets formation. Icarus 140, 129-155. Balsiger H., Altwegg K. and Geiss J. (1995) D/H and 18O/16O ratio in hydronium ion and in neutral water from in situ ion measurements in Comet P/Halley. J. Geophys. Res. 100, 5834-5840. Franklin F. and Lecar M. (2000) On the transport of bodies within and from the asteroid belt. Meteorit. Planet. Sci. 35, 331-340. Tolstikin I. N. and Marty B. (1998). The evolution of terrestrial volatiles: A view from helium, neon and nitrogen isotope modelling. Chem. Geol. 147, 27-52. Hahn J. M. and Malhotra R. (1999) Orbital evolution of planets embedded in a planetesimal disk. Astron. J. 117, 3041-3053. Pepin R. O. (1991) On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2-79. Guillot T. (1999) A comparison of the interiors of Jupiter and Saturn. Planet. Space Sci. 47, 10-11. Levison H. F., Duncan M. J., Zahnle K., Holman M. and Dones L. (2000) Note: Planetary impact rates from ecliptic comets. Icarus 143, 415-420. Zahnle K. J., Kasting J. F. and Pollack J. B. (1988) Evolution of a steam atmosphere during Earth's accretion. Icarus 74, 62-97. Marty B. (1995) Nitrogen content of the mantle inferred from N2-Ar correlation in oceanic basalts. Nature 377, 326-329. Meier R., Owen T. C., Matthews H. E., Jewitt D. C., Bockelée-Morvan D., Biver N., Crovisier J. and Gautier D. (1998) A determination of the DHO/H2O ratio in Comet C/1995 OI*** (Hale-Bopp). Science 279, 842-844. Ip W. H. and Fernández J. A. (1988) Exchange of condensed matter among the outer and terrestrial protoplanets and the effect on surface impact and atmospheric accretion. Icarus 74, 47-61. Dones L. (1996) Simulations of the discovery of Centaurs and Kuiper Belt objects. A AS Bulletin 28, 1081. Wetherill G. W. (1992) An alternative model for the formation of the asteroids. Icarus 100, 307-325. Morbidelli A. and Gladman B. (1998) Orbital and temporal distribution of meteorites originating in the asteroid belt. Meteorit. Planet. Sci. 33, 999-1016. Nagasawa M., Tanaka M. and Ida S. (2000) Orbital evolution of asteroids due to sweeping secular resonances. Astron. J. 119, 1480-1497. Mazor E., Heymann D. and Anders E. (1970) Noble gases in carbonaceous chondrites. Geochim. Cosmochim. Acta. 34, 781-824. Eberhardt P., Reber M., Krankowski D. and Hodges R. R. (1995) The D/H and 18O/16O ratios in water from Comet P/Halley. Astron. Astrophys. 302, 301-316. Geiss J. and Gloecker G. (1998) Abundances of deuterium and helium in the protosolar cloud. Space Sci. Rev. 84, 239-250. Jessberger E. K., Christoforidis A. and Kissel J. (1988) Aspects of the major element composition of Halley's dust. Nature 332, 691-695. Lemaitre A. and Dubru P. (1991) Secular resonances in the primitive solar nebula. Celest. Mech. Dyn. Astron. 52, 57-78. Mahaffy P. R. Donahue T. M., Atreya S. K., Owen T. C. and Niemann H. B. (1998) Galileo probe measurements of D/H in 3He/4He in Jupiter's atmosphere. Space Sci. Rev. 84, 251-263. Delsemme A. H. (1999) The deuterium enrichment observed in recent comets is consistent with the cometary origin of seawater. Planet. Space Sci. 47, 125-131. Kyser T. K. and O'Neil J. R. (1984) Hydrogen isotope systematics of submarine basalts. Geochim. Cosmochim. Acta. 48, 2123-2133. Chambers J. E. and Wetherill G. W. (1998) Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136, 304-327. Pollack J. B., Hubickyj O., Bodenheimer P., Lissauer J. J., Podolak M. and Greenzweig Y. (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62-85. Sarda P., Staudacher T. and Allégre C. J. (1988) Neon isotopes in submarine basalts. Earth Planet. Sci. Lett. 91, 73-88. Bockelée-Morvan D. et al. (1988) Deuterated water in comet C/1996 B2 (Hyakutake) and its implications for the origin of comets. Icarus 193, 147-162. Ringwood A. E. (1979) Origin of the Earth and Moon. Springer-Verlag, New York, New York, USA. 295 pp. Davis D. R., Ryan E. v. and Farinella P. (1994) Asteroid collisional evolution: Results from current scaling algorithms. Planet. Space Sci. 42, 599-610. Pavlov A. A., Pavlov A. K. and Kasting J. K. (1999) Irradiated interplanetary dust particles as a possible solution for the deuterium/hydrogen paradox of Earth's oceans. J. Geophys. Res. 104, 30 725-30 728. Robert F. and Epstein S. (1982) The concentration of isotopic compositions of hydrogen carbon and nitrogen in carbonaceous chondrites. Geochim. Cosmochim. Acta. 16, 81-95. Farinella P. and Davis D. R. (1992) Collision rates and impact velocities in the main asteroid belt. Icarus 97, 111-123. Cartigny P., Harris J. W. and Javoy M. (1998) Eclogitic diamond formation at Jwaneng: No room for a recycled component. Science 280, 1421-1424. Dauphas N., Robert F. and Marty B. (2000) The late asteroidal and cometary bombardement of Earth as recorded in water deuterium to protium ratio. Icarus (in press). Cartigny P., Harris J. W., Phillips D., Girard M. and Javoy M. (1997) Subduction-related diamonds?-The evidence for a mantle-derived origin from coupled δ13C-δ15N determinations. Chem. Geol. 147, 147-159. Levison H. F. and Duncan M. J. (1994) The long-term dynamical behavior of short-period comets. Icarus 108, 18-36. Holman M. J. and Wisdom J. (1993) Dynamical stability in the outer solar system and the delivery of short period comets. Astron. J. 105, 1987-1999. ÖZima M. and Podosek F. A. (1983) Noble Gas Geochemistry. Cambridge Univ. Press, New York, New York, USA. 367 pp. Dones L., Gladman B., Melosh H. J., Tonks W. B., Levison H. F. and Duncan M. (1999) Dynamical lifetimes and final fates of small bodies: Orbit integrations vs. Öpik's calculations. Icarus 142, 509-524. Cyr K. E., Sears W. D. and Lunine J. I. (1998) Distribution and evolution of water ice in the solar nebula: Implications for Solar System body formation. Icarus 135, 537-548. Deloule E., Doukhan J. C. and Robert F. (1998) Interstellar hydroxyle in meteorite chondrules: Implications for the origin of water in the inner solar system. Geochim. Cosmochim. Acta. 62, 3367-3378. Kerridge J. F. (1985) Carbon, hydrogen and nitrogen in carbonaceous chondrites: Abundances and isotopic compositions in bulk samples. Geochim. Cosmochim. Acta. 49, 1707-1714. Hilton J. L. (1999) US naval observatory ephemerides of the largest asteroids. Astron. J. 117, 1077-1086. Zahnle K. J., Kasting J. F. and Pollack J. B. (1990) Mass fractionation of noble gases in diffusion-limited hydrodynamic hydrogen escape. Icarus 84, 502-527. Petit J. M., Morbidelli A. and Valsecchi G. B. (1999) Large scattered planetesimals and the excitation of the small body belts. Icarus 141, 367-387. 1997; 114 1998; 280 1982; 16 1988; 193 1997; 152 1984; 287 1991; 52 1999; 171 1997; 276 1999; 47 1970; 34 1976 1972 1995; 377 1998; 279 1988; 74 1992; 97 1997; 319 1998; 84 1976; 28 1979 1990; 84 1997; 147 1996; 28 2000 1991; 92 1954; 6 1988; 332 1983 1981 1991; 105 1994; 108 1989 1997; 490 1987; 94 1984; 48 1992; 100 2000; 119 1999; 142 1997 1999; 140 1995; 116 1999; 141 1998; 136 1998; 62 1988; 91 1998; 135 1993; 105 1999; 104 1996; 124 1985; 49 1994; 42 1993; 57 1989; 94 1997; 129 2000; 35 1992; 255 1977; 51 1995; 302 2000; 143 1998; 147 1995; 100 1999; 117 1998; 145 1996; 112 1998; 33 Tolstikin I. N. (e_1_2_1_67_1) 1998; 147 e_1_2_1_41_1 e_1_2_1_66_1 e_1_2_1_68_1 e_1_2_1_24_1 e_1_2_1_45_1 e_1_2_1_43_1 e_1_2_1_49_1 Duncan M. J. (e_1_2_1_20_1) 1997; 276 e_1_2_1_26_1 e_1_2_1_47_1 Nagasawa M. (e_1_2_1_51_1) 2000; 119 Guillot T. (e_1_2_1_28_1) 1999; 47 Lunine J. I. (e_1_2_1_42_1) 2000 ÖZima M. (e_1_2_1_54_1) 1983 Safronov V. S. (e_1_2_1_62_1) 1972 Cartigny P. (e_1_2_1_8_1) 1997; 147 Guillot T. (e_1_2_1_29_1) 2000 Weissman P. R. (e_1_2_1_71_1) 1997 e_1_2_1_31_1 e_1_2_1_56_1 e_1_2_1_6_1 e_1_2_1_35_1 e_1_2_1_50_1 e_1_2_1_73_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_75_1 ÖPik E. J. (e_1_2_1_52_1) 1976 e_1_2_1_16_1 e_1_2_1_14_1 e_1_2_1_58_1 e_1_2_1_18_1 Eberhardt P. (e_1_2_1_22_1) 1995; 302 e_1_2_1_65_1 e_1_2_1_40_1 e_1_2_1_23_1 e_1_2_1_46_1 e_1_2_1_61_1 Balsiger H. (e_1_2_1_4_1) 1995; 100 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_63_1 e_1_2_1_27_1 e_1_2_1_25_1 e_1_2_1_48_1 Wetherill G. W. (e_1_2_1_72_1) 1989 e_1_2_1_69_1 Ringwood A. E. (e_1_2_1_60_1) 1979 Lemaitre A. (e_1_2_1_39_1) 1991; 52 Dauphas N. (e_1_2_1_12_1) 2000 Bockelée‐Morvan D. (e_1_2_1_7_1) 1988; 193 e_1_2_1_70_1 Abe Y. (e_1_2_1_2_1) 2000 e_1_2_1_30_1 e_1_2_1_55_1 e_1_2_1_5_1 Lecar M. (e_1_2_1_37_1) 1997; 129 e_1_2_1_57_1 e_1_2_1_3_1 Dones L. (e_1_2_1_17_1) 1996; 28 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_53_1 e_1_2_1_74_1 e_1_2_1_38_1 e_1_2_1_15_1 e_1_2_1_36_1 Stepinskyi T. F. (e_1_2_1_64_1) 1997; 319 e_1_2_1_59_1 e_1_2_1_9_1 e_1_2_1_19_1 |
References_xml | – volume: 100 start-page: 5834 year: 1995 end-page: 5840 article-title: D/H and O/ O ratio in hydronium ion and in neutral water from ion measurements in Comet P/Halley publication-title: J. Geophys. Res. – volume: 97 start-page: 111 year: 1992 end-page: 123 article-title: Collision rates and impact velocities in the main asteroid belt publication-title: Icarus – volume: 52 start-page: 57 year: 1991 end-page: 78 article-title: Secular resonances in the primitive solar nebula publication-title: Celest. Mech. Dyn. Astron. – start-page: 1055 year: 2000 end-page: 1080 – volume: 119 start-page: 1480 year: 2000 end-page: 1497 article-title: Orbital evolution of asteroids due to sweeping secular resonances publication-title: Astron. J. – volume: 117 start-page: 1077 year: 1999 end-page: 1086 article-title: US naval observatory ephemerides of the largest asteroids publication-title: Astron. J. – volume: 143 start-page: 415 year: 2000 end-page: 420 article-title: Note: Planetary impact rates from ecliptic comets publication-title: Icarus – volume: 94 start-page: 45 year: 1989 end-page: 56 article-title: Neon and xenon isotopes in MORB: Implications for the Earth‐atmosphere evolution publication-title: Earth Planet. Sci. Lett. – volume: 108 start-page: 18 year: 1994 end-page: 36 article-title: The long‐term dynamical behavior of short‐period comets publication-title: Icarus – volume: 92 start-page: 2 year: 1991 end-page: 79 article-title: On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles publication-title: Icarus – volume: 94 start-page: 1330 year: 1987 end-page: 1338 article-title: The formation and extent of the solar system comet cloud publication-title: Astron. J. – volume: 28 start-page: 1081 year: 1996 article-title: Simulations of the discovery of Centaurs and Kuiper Belt objects publication-title: A AS Bulletin – volume: 91 start-page: 73 year: 1988 end-page: 88 article-title: Neon isotopes in submarine basalts publication-title: Earth Planet. Sci. Lett. – volume: 114 start-page: 396 year: 1997 end-page: 401 article-title: Dynamical effects of planetary migration on the primordial asteroid belt publication-title: Astron. J. – volume: 84 start-page: 251 year: 1998 end-page: 263 article-title: Galileo probe measurements of D/H in He/ He in Jupiter's atmosphere publication-title: Space Sci. Rev. – volume: 112 start-page: 1203 year: 1996 end-page: 1210 article-title: On the collisional environment, accretion time scales, and architecture of the massive, primordial Kuiper Belt publication-title: Astron. J. – volume: 33 start-page: 999 year: 1998 end-page: 1016 article-title: Orbital and temporal distribution of meteorites originating in the asteroid belt publication-title: Meteorit. Planet. Sci. – year: 2000 article-title: The late asteroidal and cometary bombardement of Earth as recorded in water deuterium to protium ratio publication-title: Icarus – volume: 319 start-page: 1007 year: 1997 end-page: 1019 article-title: Global evolution of solid matter in turbulent protoplanetary disks. II. Development of icy planetesimals publication-title: Astron. Astrophys. – volume: 124 start-page: 62 year: 1996 end-page: 85 article-title: Formation of the giant planets by concurrent accretion of solids and gas publication-title: Icarus – volume: 193 start-page: 147 year: 1988 end-page: 162 article-title: Deuterated water in comet C/1996 B2 (Hyakutake) and its implications for the origin of comets publication-title: Icarus – volume: 142 start-page: 509 year: 1999 end-page: 524 article-title: Dynamical lifetimes and final fates of small bodies: Orbit integrations . Öpik's calculations publication-title: Icarus – volume: 51 start-page: 153 year: 1977 end-page: 158 article-title: The distribution of mass in the planetary system and solar nebula publication-title: Astroph. Space Sci. – volume: 117 start-page: 3041 year: 1999 end-page: 3053 article-title: Orbital evolution of planets embedded in a planetesimal disk publication-title: Astron. J. – volume: 332 start-page: 691 year: 1988 end-page: 695 article-title: Aspects of the major element composition of Halley's dust publication-title: Nature – volume: 142 start-page: 219 year: 1999 end-page: 237 article-title: On the character and consequences of large impacts in the late stage of terrestrial planet formation publication-title: Icarus – volume: 48 start-page: 2123 year: 1984 end-page: 2133 article-title: Hydrogen isotope systematics of submarine basalts publication-title: Geochim. Cosmochim. Acta. – volume: 136 start-page: 304 year: 1998 end-page: 327 article-title: Making the terrestrial planets: N‐body integrations of planetary embryos in three dimensions publication-title: Icarus – volume: 255 start-page: 1391 year: 1992 end-page: 1397 article-title: Water in Earth's mantle: The role of nominally anhydrous minerals publication-title: Science – volume: 280 start-page: 1421 year: 1998 end-page: 1424 article-title: Eclogitic diamond formation at Jwaneng: No room for a recycled component publication-title: Science – volume: 34 start-page: 781 year: 1970 end-page: 824 article-title: Noble gases in carbonaceous chondrites publication-title: Geochim. Cosmochim. Acta. – volume: 287 start-page: 371 year: 1984 end-page: 395 article-title: Transport of dust and vapor and chemical fractionation in the early protosolar cloud publication-title: Astrophys. J. – volume: 105 start-page: 543 year: 1991 end-page: 553 article-title: Hydrogen isotope heterogeneities in the mantle from ion probe analysis of amphiboles from ultramafic rocks publication-title: Earth Planet. Sci. Lett. – volume: 105 start-page: 1987 year: 1993 end-page: 1999 article-title: Dynamical stability in the outer solar system and the delivery of short period comets publication-title: Astron. J. – volume: 135 start-page: 537 year: 1998 end-page: 548 article-title: Distribution and evolution of water ice in the solar nebula: Implications for Solar System body formation publication-title: Icarus – volume: 100 start-page: 307 year: 1992 end-page: 325 article-title: An alternative model for the formation of the asteroids publication-title: Icarus – volume: 84 start-page: 239 year: 1998 end-page: 250 article-title: Abundances of deuterium and helium in the protosolar cloud publication-title: Space Sci. Rev. – volume: 490 start-page: 879 year: 1997 end-page: 885 article-title: Collisional erosion in the primordial Edgeworth‐Kuiper Belt and the generation of the 30–50 AU Kuiper gap publication-title: Astrophys. J. – start-page: 661 year: 1989 end-page: 680 – volume: 147 start-page: 27 year: 1998 end-page: 52 article-title: The evolution of terrestrial volatiles: A view from helium, neon and nitrogen isotope modelling publication-title: Chem. Geol. – volume: 35 start-page: 331 year: 2000 end-page: 340 article-title: On the transport of bodies within and from the asteroid belt publication-title: Meteorit. Planet. Sci. – volume: 49 start-page: 1707 year: 1985 end-page: 1714 article-title: Carbon, hydrogen and nitrogen in carbonaceous chondrites: Abundances and isotopic compositions in bulk samples publication-title: Geochim. Cosmochim. Acta. – year: 2000 – volume: 276 start-page: 1670 year: 1997 end-page: 1672 article-title: Scattered comet disk and the origin of Jupiter family comets publication-title: Science – volume: 47 start-page: 10 year: 1999 end-page: 11 article-title: A comparison of the interiors of Jupiter and Saturn publication-title: Planet. Space Sci. – start-page: 367 year: 1983 – volume: 171 start-page: 383 year: 1999 end-page: 399 article-title: Effect of water on metal‐silicate partitioning of siderophile elements: A high pressure and temperature terrestrial magnam ocean and core formation publication-title: Earth Planet. Sci. Lett. – volume: 140 start-page: 129 year: 1999 end-page: 155 article-title: Structure and transport in the solar nebula from constraints on deuterium enrichment and giant planets formation publication-title: Icarus – volume: 279 start-page: 842 year: 1998 end-page: 844 article-title: A determination of the DHO/H O ratio in Comet C/1995 OI*** (Hale‐Bopp) publication-title: Science – start-page: 295 year: 1979 – start-page: 559 year: 1997 end-page: 604 – volume: 104 start-page: 30 725 year: 1999 end-page: 30 728 article-title: Irradiated interplanetary dust particles as a possible solution for the deuterium/hydrogen paradox of Earth's oceans publication-title: J. Geophys. Res. – volume: 28 start-page: 441 year: 1976 end-page: 452 article-title: Secular resonance, solar spin down, and the orbit of Mercury publication-title: Icarus – volume: 145 start-page: 249 year: 1998 end-page: 261 article-title: The hydrogen isotope composition of sea water and the global water cycle publication-title: Chem Geol. – volume: 42 start-page: 599 year: 1994 end-page: 610 article-title: Asteroid collisional evolution: Results from current scaling algorithms publication-title: Planet. Space Sci. – volume: 152 start-page: 101 year: 1997 end-page: 112 article-title: Nitrogen and argon isotopes in oceanic basalts publication-title: Earth Planet. Sci. Lett. – volume: 84 start-page: 502 year: 1990 end-page: 527 article-title: Mass fractionation of noble gases in diffusion‐limited hydrodynamic hydrogen escape publication-title: Icarus – volume: 147 start-page: 147 year: 1997 end-page: 159 article-title: Subduction‐related diamonds?—The evidence for a mantle‐derived origin from coupled δ C‐δ N determinations publication-title: Chem. Geol. – volume: 302 start-page: 301 year: 1995 end-page: 316 article-title: The D/H and O/ O ratios in water from Comet P/Halley publication-title: Astron. Astrophys. – volume: 74 start-page: 47 year: 1988 end-page: 61 article-title: Exchange of condensed matter among the outer and terrestrial protoplanets and the effect on surface impact and atmospheric accretion publication-title: Icarus – start-page: 155 year: 1976 – volume: 377 start-page: 326 year: 1995 end-page: 329 article-title: Nitrogen content of the mantle inferred from N2‐Ar correlation in oceanic basalts publication-title: Nature – volume: 57 start-page: 3105 year: 1993 end-page: 3121 article-title: Constraints on the formation conditions of iron meteorites based on concentrations and isotopic compositions of nitrogen publication-title: Geochim. Cosmochim. Acta. – volume: 116 start-page: 215 year: 1995 end-page: 216 article-title: Comets, impacts and atmospheres publication-title: Icarus – volume: 6 start-page: 209 year: 1954 end-page: 220 article-title: The isotopic composition of hydrogen and carbon in the carbonaceous chondrites publication-title: Geochim. Cosmochim. Acta. – volume: 141 start-page: 367 year: 1999 end-page: 387 article-title: Large scattered planetesimals and the excitation of the small body belts publication-title: Icarus – volume: 16 start-page: 81 year: 1982 end-page: 95 article-title: The concentration of isotopic compositions of hydrogen carbon and nitrogen in carbonaceous chondrites publication-title: Geochim. Cosmochim. Acta. – start-page: 141 year: 1981 end-page: 150 – volume: 129 start-page: 134 year: 1997 end-page: 146 article-title: The solar nebula, secular resonances, gas drag, and the asteroid belt publication-title: Icarus – volume: 74 start-page: 62 year: 1988 end-page: 97 article-title: Evolution of a steam atmosphere during Earth's accretion publication-title: Icarus – volume: 47 start-page: 125 year: 1999 end-page: 131 article-title: The deuterium enrichment observed in recent comets is consistent with the cometary origin of seawater publication-title: Planet. Space Sci. – start-page: 329 year: 1972 end-page: 334 – volume: 62 start-page: 3367 year: 1998 end-page: 3378 article-title: Interstellar hydroxyle in meteorite chondrules: Implications for the origin of water in the inner solar system publication-title: Geochim. Cosmochim. Acta. – volume-title: Origin of the Earth and the Moon year: 2000 ident: e_1_2_1_2_1 contributor: fullname: Abe Y. – volume: 52 start-page: 57 year: 1991 ident: e_1_2_1_39_1 article-title: Secular resonances in the primitive solar nebula publication-title: Celest. Mech. Dyn. Astron. doi: 10.1007/BF00048587 contributor: fullname: Lemaitre A. – start-page: 559 volume-title: Pluto year: 1997 ident: e_1_2_1_71_1 contributor: fullname: Weissman P. R. – ident: e_1_2_1_75_1 doi: 10.1016/0019-1035(90)90050-J – ident: e_1_2_1_46_1 doi: 10.1016/S0012-821X(97)00153-2 – ident: e_1_2_1_38_1 doi: 10.1016/S0009-2541(97)00146-0 – start-page: 661 volume-title: Asteroids II year: 1989 ident: e_1_2_1_72_1 contributor: fullname: Wetherill G. W. – ident: e_1_2_1_10_1 doi: 10.1006/icar.1998.6007 – volume: 147 start-page: 27 year: 1998 ident: e_1_2_1_67_1 article-title: The evolution of terrestrial volatiles: A view from helium, neon and nitrogen isotope modelling publication-title: Chem. Geol. doi: 10.1016/S0009-2541(97)00170-8 contributor: fullname: Tolstikin I. N. – ident: e_1_2_1_49_1 doi: 10.1111/j.1945-5100.1998.tb01707.x – ident: e_1_2_1_30_1 doi: 10.1086/300891 – volume: 47 start-page: 10 year: 1999 ident: e_1_2_1_28_1 article-title: A comparison of the interiors of Jupiter and Saturn publication-title: Planet. Space Sci. doi: 10.1016/S0032-0633(99)00043-4 contributor: fullname: Guillot T. – ident: e_1_2_1_9_1 doi: 10.1126/science.280.5368.1421 – ident: e_1_2_1_27_1 doi: 10.1086/118483 – start-page: 295 volume-title: Origin of the Earth and Moon. year: 1979 ident: e_1_2_1_60_1 doi: 10.1007/978-1-4612-6167-4 contributor: fullname: Ringwood A. E. – ident: e_1_2_1_32_1 doi: 10.1086/116574 – volume: 100 start-page: 5834 year: 1995 ident: e_1_2_1_4_1 article-title: D/H and 18O/16O ratio in hydronium ion and in neutral water from in situ ion measurements in Comet P/Halley publication-title: J. Geophys. Res. doi: 10.1029/94JA02936 contributor: fullname: Balsiger H. – volume: 28 start-page: 1081 year: 1996 ident: e_1_2_1_17_1 article-title: Simulations of the discovery of Centaurs and Kuiper Belt objects publication-title: A AS Bulletin contributor: fullname: Dones L. – ident: e_1_2_1_58_1 doi: 10.1006/icar.1996.0190 – ident: e_1_2_1_69_1 doi: 10.1016/0019-1035(76)90117-2 – ident: e_1_2_1_61_1 doi: 10.1016/0016-7037(82)90293-9 – volume: 319 start-page: 1007 year: 1997 ident: e_1_2_1_64_1 article-title: Global evolution of solid matter in turbulent protoplanetary disks. II. Development of icy planetesimals publication-title: Astron. Astrophys. contributor: fullname: Stepinskyi T. F. – volume: 119 start-page: 1480 year: 2000 ident: e_1_2_1_51_1 article-title: Orbital evolution of asteroids due to sweeping secular resonances publication-title: Astron. J. contributor: fullname: Nagasawa M. – ident: e_1_2_1_6_1 doi: 10.1016/0016-7037(54)90001-0 – ident: e_1_2_1_18_1 doi: 10.1006/icar.1999.6220 – ident: e_1_2_1_59_1 doi: 10.1016/S0012-821X(99)00156-9 – ident: e_1_2_1_14_1 doi: 10.1016/0012-821X(91)90191-J – ident: e_1_2_1_36_1 doi: 10.1016/0016-7037(84)90392-2 – ident: e_1_2_1_47_1 doi: 10.1016/0016-7037(70)90031-1 – start-page: 329 volume-title: The Motion, Evolution of Orbits, and Origin of Comets year: 1972 ident: e_1_2_1_62_1 doi: 10.1007/978-94-010-2873-8_56 contributor: fullname: Safronov V. S. – ident: e_1_2_1_74_1 doi: 10.1016/0019-1035(88)90031-0 – ident: e_1_2_1_3_1 doi: 10.1006/icar.1999.6201 – ident: e_1_2_1_31_1 doi: 10.1086/300728 – volume: 302 start-page: 301 year: 1995 ident: e_1_2_1_22_1 article-title: The D/H and 18O/16O ratios in water from Comet P/Halley publication-title: Astron. Astrophys. contributor: fullname: Eberhardt P. – ident: e_1_2_1_19_1 doi: 10.1006/icar.1999.6137 – volume: 129 start-page: 134 year: 1997 ident: e_1_2_1_37_1 article-title: The solar nebula, secular resonances, gas drag, and the asteroid belt publication-title: Icarus doi: 10.1006/icar.1997.5782 contributor: fullname: Lecar M. – ident: e_1_2_1_56_1 doi: 10.1016/0019-1035(91)90036-S – ident: e_1_2_1_34_1 doi: 10.1038/332691a0 – ident: e_1_2_1_57_1 doi: 10.1006/icar.1999.6166 – ident: e_1_2_1_16_1 doi: 10.1016/S0032-0633(98)00093-2 – ident: e_1_2_1_48_1 doi: 10.1126/science.279.5352.842 – ident: e_1_2_1_26_1 doi: 10.1023/A:1005039822524 – ident: e_1_2_1_33_1 doi: 10.1016/0019-1035(88)90030-9 – volume: 276 start-page: 1670 year: 1997 ident: e_1_2_1_20_1 article-title: Scattered comet disk and the origin of Jupiter family comets publication-title: Science doi: 10.1126/science.276.5319.1670 contributor: fullname: Duncan M. J. – ident: e_1_2_1_23_1 doi: 10.1016/0019-1035(92)90060-K – ident: e_1_2_1_41_1 doi: 10.1006/icar.1999.6313 – ident: e_1_2_1_53_1 doi: 10.1006/icar.1995.1122 – ident: e_1_2_1_66_1 doi: 10.1086/304912 – ident: e_1_2_1_15_1 doi: 10.1016/S0016-7037(98)00232-4 – ident: e_1_2_1_45_1 doi: 10.1016/0012-821X(89)90082-4 – ident: e_1_2_1_68_1 – ident: e_1_2_1_44_1 doi: 10.1038/377326a0 – ident: e_1_2_1_21_1 doi: 10.1086/114571 – ident: e_1_2_1_50_1 doi: 10.1086/162697 – start-page: 367 volume-title: Noble Gas Geochemistry. year: 1983 ident: e_1_2_1_54_1 contributor: fullname: ÖZima M. – ident: e_1_2_1_5_1 doi: 10.1126/science.255.5050.1391 – volume: 193 start-page: 147 year: 1988 ident: e_1_2_1_7_1 article-title: Deuterated water in comet C/1996 B2 (Hyakutake) and its implications for the origin of comets publication-title: Icarus contributor: fullname: Bockelée‐Morvan D. – ident: e_1_2_1_25_1 doi: 10.1111/j.1945-5100.2000.tb01778.x – ident: e_1_2_1_24_1 doi: 10.1016/0016-7037(93)90297-A – ident: e_1_2_1_55_1 doi: 10.1029/1999JE001120 – ident: e_1_2_1_43_1 doi: 10.1023/A:1005091806594 – volume-title: Disks, Planetesimals and Planets year: 2000 ident: e_1_2_1_29_1 contributor: fullname: Guillot T. – ident: e_1_2_1_65_1 doi: 10.1086/118091 – start-page: 155 volume-title: Interplanetary Encounters: Close Range Gravitational Interactions. year: 1976 ident: e_1_2_1_52_1 contributor: fullname: ÖPik E. J. – year: 2000 ident: e_1_2_1_12_1 article-title: The late asteroidal and cometary bombardement of Earth as recorded in water deuterium to protium ratio publication-title: Icarus contributor: fullname: Dauphas N. – ident: e_1_2_1_35_1 doi: 10.1016/0016-7037(85)90141-3 – start-page: 1055 volume-title: Protostars and Planets IV year: 2000 ident: e_1_2_1_42_1 contributor: fullname: Lunine J. I. – ident: e_1_2_1_13_1 doi: 10.1016/0032-0633(94)90035-3 – volume: 147 start-page: 147 year: 1997 ident: e_1_2_1_8_1 article-title: Subduction‐related diamonds?—The evidence for a mantle‐derived origin from coupled δ13C‐δ15N determinations publication-title: Chem. Geol. doi: 10.1016/S0009-2541(97)00178-2 contributor: fullname: Cartigny P. – ident: e_1_2_1_11_1 doi: 10.1006/icar.1998.5959 – ident: e_1_2_1_40_1 doi: 10.1006/icar.1994.1039 – ident: e_1_2_1_63_1 doi: 10.1016/0012-821X(88)90152-5 – ident: e_1_2_1_73_1 doi: 10.1016/0019-1035(92)90103-E – ident: e_1_2_1_70_1 doi: 10.1007/BF00642464 |
SSID | ssj0035134 |
Score | 2.262379 |
Snippet | — In the primordial solar system, the most plausible sources of the water accreted by the Earth were in the outer asteroid belt, in the giant planet regions,... Abstract— In the primordial solar system, the most plausible sources of the water accreted by the Earth were in the outer asteroid belt, in the giant planet... |
SourceID | crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 1309 |
Title | Source regions and timescales for the delivery of water to the Earth |
URI | https://api.istex.fr/ark:/67375/WNG-K3MF6HW7-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1945-5100.2000.tb01518.x |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa23QsXRHmoSwH5UPVSZeXGcR7HiKYshVSIbVU4RUnsqAi6qTa7ovz7ztjOYw9FrRCXKHJiR5n5Mp6ZzIOQfZa7kpesdHIpIscTAGPcdxwZgHKqFPeYh_nOs3lw9i08TrxkNGpruPZj_5XTMAa8xszZR3C7WxQG4Bx4DkfgOhwfxPe59sYfYsMFjILRAZKY5gG8UE0XVCjVLwzI0L_Xf-dYKNHqoAkseTXUWFPQqmvdD6HRMLnB6NgVxtrZzbNjWb0ssGaWybeOp4PAAWw6YvDSjX5eL34YZ-rp9PDjtJfQ8FQ7mk43XBLM5ubd43o0rrQ-SAnFLBhSDihGRlgqMxZ5wgEJwYay2ZQysRgcClrYeqPBpo2J4H_fENrVdW4S-sNB1QnbUNFhFe5ulnj4PK0PpPGXOV7cImMXpB4I3XGcXHz_2ioGXNggh_blbQ1cG1h2z4M29KUxfvq3m3aUVoTOn5Gn1oKhsYHeDhmpxXOyGzf4T6W-_kMPqD43LrPmBTk2iKQWkRQQSXtEUkAkBeDRFpG0rqhGJF3V-oJG5EtycZKcv585tneHk2PPQsd3I8FFdSRkxWSIfpYcKyFKFVZRCDauCqUqPVlWkVt4hSwqXvpKcCkrl_EgyPkrsr2oF2qXUB9Mdl6xsPBV5fkwnR0puJFHMiqKwvcnhLcUym5MiZZsYNoCXTOkKzZcZZmla3Y7IQeamN2UfPkTgxwDkV2efcg-8fTEn10GWTohkab2I9bOWii8_oe5e-RJ_229Idur5Vq9JVuNXL-zwLoDLJyjlQ |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Source+regions+and+timescales+for+the+delivery+of+water+to+the+Earth&rft.jtitle=Meteoritics+%26+planetary+science&rft.au=Morbidelli%2C+A.&rft.au=Chambers%2C+J.&rft.au=Lunine%2C+J.+I.&rft.au=Petit%2C+J.+M.&rft.date=2000-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1086-9379&rft.eissn=1945-5100&rft.volume=35&rft.issue=6&rft.spage=1309&rft.epage=1320&rft_id=info:doi/10.1111%2Fj.1945-5100.2000.tb01518.x&rft.externalDBID=10.1111%252Fj.1945-5100.2000.tb01518.x&rft.externalDocID=MAPS1518 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1086-9379&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1086-9379&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1086-9379&client=summon |