Source regions and timescales for the delivery of water to the Earth

— In the primordial solar system, the most plausible sources of the water accreted by the Earth were in the outer asteroid belt, in the giant planet regions, and in the Kuiper Belt. We investigate the implications on the origin of Earth's water of dynamical models of primordial evolution of sol...

Full description

Saved in:
Bibliographic Details
Published in:Meteoritics & planetary science Vol. 35; no. 6; pp. 1309 - 1320
Main Authors: Morbidelli, A., Chambers, J., Lunine, J. I., Petit, J. M., Robert, F., Valsecchi, G. B., Cyr, K. E.
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Publishing Ltd 01-11-2000
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract — In the primordial solar system, the most plausible sources of the water accreted by the Earth were in the outer asteroid belt, in the giant planet regions, and in the Kuiper Belt. We investigate the implications on the origin of Earth's water of dynamical models of primordial evolution of solar system bodies and check them with respect to chemical constraints. We find that it is plausible that the Earth accreted water all along its formation, from the early phases when the solar nebula was still present to the late stages of gas‐free sweepup of scattered planetesimals. Asteroids and the comets from the Jupiter‐Saturn region were the first water deliverers, when the Earth was less than half its present mass. The bulk of the water presently on Earth was carried by a few planetary embryos, originally formed in the outer asteroid belt and accreted by the Earth at the final stage of its formation. Finally, a late veneer, accounting for at most 10% of the present water mass, occurred due to comets from the Uranus‐Neptune region and from the Kuiper Belt. The net result of accretion from these several reservoirs is that the water on Earth had essentially the D/H ratio typical of the water condensed in the outer asteroid belt. This is in agreement with the observation that the D/H ratio in the oceans is very close to the mean value of the D/H ratio of the water inclusions in carbonaceous chondrites.
AbstractList — In the primordial solar system, the most plausible sources of the water accreted by the Earth were in the outer asteroid belt, in the giant planet regions, and in the Kuiper Belt. We investigate the implications on the origin of Earth's water of dynamical models of primordial evolution of solar system bodies and check them with respect to chemical constraints. We find that it is plausible that the Earth accreted water all along its formation, from the early phases when the solar nebula was still present to the late stages of gas‐free sweepup of scattered planetesimals. Asteroids and the comets from the Jupiter‐Saturn region were the first water deliverers, when the Earth was less than half its present mass. The bulk of the water presently on Earth was carried by a few planetary embryos, originally formed in the outer asteroid belt and accreted by the Earth at the final stage of its formation. Finally, a late veneer, accounting for at most 10% of the present water mass, occurred due to comets from the Uranus‐Neptune region and from the Kuiper Belt. The net result of accretion from these several reservoirs is that the water on Earth had essentially the D/H ratio typical of the water condensed in the outer asteroid belt. This is in agreement with the observation that the D/H ratio in the oceans is very close to the mean value of the D/H ratio of the water inclusions in carbonaceous chondrites.
Abstract— In the primordial solar system, the most plausible sources of the water accreted by the Earth were in the outer asteroid belt, in the giant planet regions, and in the Kuiper Belt. We investigate the implications on the origin of Earth's water of dynamical models of primordial evolution of solar system bodies and check them with respect to chemical constraints. We find that it is plausible that the Earth accreted water all along its formation, from the early phases when the solar nebula was still present to the late stages of gas‐free sweepup of scattered planetesimals. Asteroids and the comets from the Jupiter‐Saturn region were the first water deliverers, when the Earth was less than half its present mass. The bulk of the water presently on Earth was carried by a few planetary embryos, originally formed in the outer asteroid belt and accreted by the Earth at the final stage of its formation. Finally, a late veneer, accounting for at most 10% of the present water mass, occurred due to comets from the Uranus‐Neptune region and from the Kuiper Belt. The net result of accretion from these several reservoirs is that the water on Earth had essentially the D/H ratio typical of the water condensed in the outer asteroid belt. This is in agreement with the observation that the D/H ratio in the oceans is very close to the mean value of the D/H ratio of the water inclusions in carbonaceous chondrites.
Author Robert, F.
Morbidelli, A.
Chambers, J.
Petit, J. M.
Lunine, J. I.
Cyr, K. E.
Valsecchi, G. B.
Author_xml – sequence: 1
  givenname: A.
  surname: Morbidelli
  fullname: Morbidelli, A.
  email: morby@obs-nice.fr
  organization: Observatoire de la Côte d'Azur, Nice, France
– sequence: 2
  givenname: J.
  surname: Chambers
  fullname: Chambers, J.
  organization: Armagh Observatory, College Hill, Armagh, BT61 9DG, U.K
– sequence: 3
  givenname: J. I.
  surname: Lunine
  fullname: Lunine, J. I.
  organization: Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721, USA
– sequence: 4
  givenname: J. M.
  surname: Petit
  fullname: Petit, J. M.
  organization: Observatoire de la Côte d'Azur, Nice, France
– sequence: 5
  givenname: F.
  surname: Robert
  fullname: Robert, F.
  organization: Muséum d' Histoire Naturelle, Paris, France
– sequence: 6
  givenname: G. B.
  surname: Valsecchi
  fullname: Valsecchi, G. B.
  organization: Istituto di Astrofisica Spaziale, Rome, Italy
– sequence: 7
  givenname: K. E.
  surname: Cyr
  fullname: Cyr, K. E.
  organization: Planetary Science Branch, NASA Johnson Space Center, Houston, Texas 77058, USA
BookMark eNqVUMtOwzAQtFCRKIV_iLgn2HH8CCeq0geiBaSCerSceE1T0gbZgbZ_T0Kr3tnD7mhHM9LMJepsqg0gdENwRJq5XUUkTVjICMZRjJtVZ5gwIqPdGeqeqE6DseRhSkV6gS69X2FMGaFJFz3Mq2-XQ-Dgo6g2PtAbE9TFGnyuS_CBrVxQLyEwUBY_4PZBZYOtrqH5Vn_EULt6eYXOrS49XB9vD72Phm-DSTh9GT8O-tNQJ6mQIY9TRpklzFhspJBSak4ZNyBtKpngIA3kicltGmdJZjJLcw6MGmNjTIXQtIfuDr65q7x3YNWXK9ba7RXBqu1DrVQbWrWhVduHOvahdo34_iDeFiXs_6FUs_7rvIWNRXiwKHwNu5OFdp-KCyqYWjyP1ROdjfhkIdSM_gJkOHmM
CitedBy_id crossref_primary_10_1016_j_gca_2017_08_041
crossref_primary_10_1086_505596
crossref_primary_10_1016_j_actaastro_2014_06_041
crossref_primary_10_1109_JMW_2021_3060622
crossref_primary_10_1016_j_icarus_2021_114497
crossref_primary_10_1016_j_pss_2018_08_003
crossref_primary_10_1146_annurev_earth_30_091201_140243
crossref_primary_10_3847_1538_3881_aa7202
crossref_primary_10_1016_S0273_1177_01_00494_X
crossref_primary_10_1051_0004_6361_201630040
crossref_primary_10_1016_j_icarus_2006_09_011
crossref_primary_10_3847_2041_8205_828_1_L2
crossref_primary_10_1016_j_epsl_2016_02_031
crossref_primary_10_1016_j_epsl_2016_10_026
crossref_primary_10_1073_pnas_1013480108
crossref_primary_10_1086_520501
crossref_primary_10_3847_2041_8213_ac511c
crossref_primary_10_1093_pasj_60_3_557
crossref_primary_10_1038_433814b
crossref_primary_10_1089_ast_2019_2187
crossref_primary_10_1016_j_gca_2013_08_034
crossref_primary_10_1016_j_chemgeo_2024_122104
crossref_primary_10_1093_mnras_staa097
crossref_primary_10_1093_mnras_stac158
crossref_primary_10_1016_j_icarus_2017_10_031
crossref_primary_10_1093_mnras_stv1835
crossref_primary_10_1016_j_icarus_2009_07_011
crossref_primary_10_1016_j_icarus_2009_07_015
crossref_primary_10_1073_pnas_1820719116
crossref_primary_10_1016_j_pss_2011_03_020
crossref_primary_10_1017_S1473550410000261
crossref_primary_10_1089_ast_2014_1231
crossref_primary_10_1098_rsta_2008_0111
crossref_primary_10_1111_j_1749_6632_2011_06276_x
crossref_primary_10_1016_j_icarus_2023_115805
crossref_primary_10_1007_s11084_012_9264_7
crossref_primary_10_1016_j_epsl_2018_05_024
crossref_primary_10_1016_j_icarus_2018_12_033
crossref_primary_10_1038_ngeo1066
crossref_primary_10_1093_nsr_nwz033
crossref_primary_10_1017_S1743921310008161
crossref_primary_10_1051_0004_6361_201425461
crossref_primary_10_1093_mnras_stz049
crossref_primary_10_1016_j_gca_2014_03_034
crossref_primary_10_1126_sciadv_aay7604
crossref_primary_10_1093_pasj_psac041
crossref_primary_10_1051_0004_6361_202038047
crossref_primary_10_1021_acsearthspacechem_6b00016
crossref_primary_10_3847_0004_637X_830_2_157
crossref_primary_10_1093_mnras_stad148
crossref_primary_10_1038_s41598_019_41880_0
crossref_primary_10_1098_rsta_2016_0209
crossref_primary_10_2138_rmg_2024_90_03
crossref_primary_10_1016_j_gca_2004_05_036
crossref_primary_10_1093_mnras_sty1475
crossref_primary_10_1126_science_1064051
crossref_primary_10_1126_science_1235142
crossref_primary_10_2747_0020_6814_44_2_137
crossref_primary_10_1051_lhb_2010028
crossref_primary_10_1038_35082174
crossref_primary_10_1017_S1743921310001420
crossref_primary_10_1051_0004_6361_201629376
crossref_primary_10_1089_ast_2015_1387
crossref_primary_10_1016_j_icarus_2010_12_009
crossref_primary_10_1029_2019JE006276
crossref_primary_10_1007_s11214_012_9943_8
crossref_primary_10_1016_j_icarus_2013_02_009
crossref_primary_10_3847_PSJ_ac8ced
crossref_primary_10_1088_0004_637X_786_1_33
crossref_primary_10_1038_nature17434
crossref_primary_10_1007_s11214_007_9225_z
crossref_primary_10_1093_nsr_nwae201
crossref_primary_10_1126_science_1212145
crossref_primary_10_1130_B30764_1
crossref_primary_10_1029_2008JE003134
crossref_primary_10_1016_j_chemer_2007_05_002
crossref_primary_10_3847_1538_3881_aace01
crossref_primary_10_3847_2041_8213_acfcbc
crossref_primary_10_1016_j_icarus_2003_11_019
crossref_primary_10_1016_j_chemer_2019_125546
crossref_primary_10_1016_j_epsl_2012_11_049
crossref_primary_10_1142_S0218127405012545
crossref_primary_10_1360_SSTe_2021_0235
crossref_primary_10_1051_eas_1041039
crossref_primary_10_1016_j_gca_2016_07_029
crossref_primary_10_1073_pnas_98_3_809
crossref_primary_10_1016_j_icarus_2014_10_015
crossref_primary_10_1007_s11214_006_8315_7
crossref_primary_10_1016_j_pss_2021_105335
crossref_primary_10_1016_j_gca_2004_12_021
crossref_primary_10_1088_1538_3873_aaca8b
crossref_primary_10_1093_mnras_stac2933
crossref_primary_10_3847_1538_4357_ac4969
crossref_primary_10_1016_S1387_6473_02_00272_5
crossref_primary_10_1016_j_gca_2020_01_051
crossref_primary_10_1051_0004_6361_202244499
crossref_primary_10_1007_s12064_022_00377_7
crossref_primary_10_1007_s11214_008_9413_5
crossref_primary_10_1016_j_epsl_2011_10_040
crossref_primary_10_1029_2018JE005698
crossref_primary_10_3847_1538_4357_aaaa72
crossref_primary_10_1111_maps_12295
crossref_primary_10_1007_s11214_007_9192_4
crossref_primary_10_1016_j_chemgeo_2009_04_017
crossref_primary_10_1051_0004_6361_201323313
crossref_primary_10_1126_science_aba1948
crossref_primary_10_3847_2041_8213_ac1db1
crossref_primary_10_1098_rstb_2006_1898
crossref_primary_10_1016_j_gca_2021_01_004
crossref_primary_10_1146_annurev_astro_091918_104409
crossref_primary_10_1016_j_pss_2023_105701
crossref_primary_10_3367_UFNr_2021_08_039044
crossref_primary_10_1111_maps_14224
crossref_primary_10_1086_518121
crossref_primary_10_1089_ast_2008_0316
crossref_primary_10_1111_j_1945_5100_2003_tb00321_x
crossref_primary_10_1196_annals_1311_004
crossref_primary_10_1089_ast_2006_0124
crossref_primary_10_1051_bioconf_20140201003
crossref_primary_10_1088_2041_8205_796_2_L22
crossref_primary_10_1089_ast_2006_0125
crossref_primary_10_1088_0004_637X_807_1_9
crossref_primary_10_1111_j_1945_5100_2001_tb01847_x
crossref_primary_10_1016_j_icarus_2024_116032
crossref_primary_10_1088_0004_637X_795_1_25
crossref_primary_10_1093_mnras_stad3249
crossref_primary_10_1007_s10686_008_9115_8
crossref_primary_10_1007_s11430_021_9864_8
crossref_primary_10_1080_00107514_2011_598370
crossref_primary_10_1016_j_plantsci_2008_08_007
crossref_primary_10_1126_science_1256717
crossref_primary_10_1016_j_gca_2017_10_019
crossref_primary_10_1038_s41561_019_0414_7
crossref_primary_10_3847_0004_6256_152_6_167
crossref_primary_10_1126_sciadv_aav8106
crossref_primary_10_1088_0004_637X_767_1_54
crossref_primary_10_1093_mnras_stw1935
crossref_primary_10_1016_j_epsl_2015_09_022
crossref_primary_10_3847_1538_3881_aac81c
crossref_primary_10_1051_0004_6361_201322400
crossref_primary_10_1088_0004_6256_140_5_1129
crossref_primary_10_1007_s11214_023_00954_2
crossref_primary_10_1038_ncomms15455
crossref_primary_10_1093_mnras_stz3408
crossref_primary_10_1016_j_gca_2020_05_007
crossref_primary_10_1111_j_1365_3121_2008_00843_x
crossref_primary_10_3390_life11050429
crossref_primary_10_1089_ast_2006_6_735
crossref_primary_10_1002_2016EA000198
crossref_primary_10_1016_j_icarus_2007_09_007
crossref_primary_10_3847_1538_3881_aaad01
crossref_primary_10_1007_s11214_017_0433_x
crossref_primary_10_1007_s11084_005_5010_8
crossref_primary_10_1016_j_pss_2014_03_003
crossref_primary_10_1088_0004_637X_756_2_178
crossref_primary_10_1146_annurev_earth_063016_020239
crossref_primary_10_1126_science_abc8116
crossref_primary_10_1051_0004_6361_201424447
crossref_primary_10_1098_rsta_2013_0072
crossref_primary_10_1051_0004_6361_20066171
crossref_primary_10_1039_c0cc02312d
crossref_primary_10_1017_S174392131000147X
crossref_primary_10_1051_0004_6361_201118147
crossref_primary_10_1016_j_newast_2016_03_001
crossref_primary_10_1111_maps_12498
crossref_primary_10_1088_0004_637X_794_1_11
crossref_primary_10_1016_j_icarus_2015_11_027
crossref_primary_10_1111_maps_13348
crossref_primary_10_1111_j_1945_5100_2002_tb00808_x
crossref_primary_10_1089_ast_2016_1533
crossref_primary_10_1093_mnras_sty2614
crossref_primary_10_1086_527314
crossref_primary_10_1093_mnras_stt1051
crossref_primary_10_1021_acs_jpcc_6b11689
crossref_primary_10_3847_1538_4357_836_1_118
crossref_primary_10_1016_j_earscirev_2019_02_008
crossref_primary_10_1016_j_icarus_2014_10_031
crossref_primary_10_1088_0004_637X_802_1_21
crossref_primary_10_1016_j_pss_2009_06_006
crossref_primary_10_1038_nature11908
crossref_primary_10_1111_j_1945_5100_2001_tb01913_x
crossref_primary_10_1016_j_icarus_2023_115754
crossref_primary_10_1016_S0273_1177_03_00451_4
crossref_primary_10_1007_s10686_011_9253_2
crossref_primary_10_1016_j_icarus_2012_09_016
crossref_primary_10_1086_519921
crossref_primary_10_1007_s11214_006_7018_4
crossref_primary_10_3847_1538_4357_aa6544
crossref_primary_10_1098_rsta_2013_0174
crossref_primary_10_3847_PSJ_ac8669
crossref_primary_10_1146_annurev_earth_31_100901_145451
crossref_primary_10_1016_j_ppnp_2018_05_002
crossref_primary_10_1016_S0019_1035_03_00198_2
crossref_primary_10_1051_0004_6361_201936366
crossref_primary_10_1051_0004_6361_201528035
crossref_primary_10_1111_maps_13888
crossref_primary_10_1126_science_aal4765
crossref_primary_10_1051_0004_6361_201731747
crossref_primary_10_1016_S0016_7037_02_00985_7
crossref_primary_10_1016_j_gsf_2012_11_001
crossref_primary_10_1038_nature10519
crossref_primary_10_1051_0004_6361_200912079
crossref_primary_10_1111_j_1365_2966_2007_12712_x
crossref_primary_10_1146_annurev_astro_41_071601_170049
crossref_primary_10_1051_0004_6361_201936014
crossref_primary_10_3847_2041_8213_ab0bb4
crossref_primary_10_1038_ngeo193
crossref_primary_10_1016_j_chemgeo_2005_09_015
crossref_primary_10_1051_0004_6361_201322845
crossref_primary_10_1029_2020JE006643
crossref_primary_10_1103_PhysRevC_84_065808
crossref_primary_10_1016_j_epsl_2004_07_026
crossref_primary_10_1029_2018JE005600
crossref_primary_10_1002_2017GC007388
crossref_primary_10_1038_s41550_021_01487_w
crossref_primary_10_1126_science_1125150
crossref_primary_10_1016_j_icarus_2024_116098
crossref_primary_10_3847_2041_8213_836_1_L7
crossref_primary_10_1016_j_icarus_2016_12_001
crossref_primary_10_1017_njg_2015_2
crossref_primary_10_1017_S1743921308016773
crossref_primary_10_1093_mnras_stz1412
crossref_primary_10_1016_j_asr_2017_10_020
crossref_primary_10_1111_j_1945_5100_2001_tb01880_x
crossref_primary_10_1016_j_icarus_2012_08_042
crossref_primary_10_1088_0004_637X_778_2_109
crossref_primary_10_1016_j_epsl_2023_118225
crossref_primary_10_1088_0004_637X_690_2_L110
crossref_primary_10_1111_j_1745_3933_2012_01290_x
crossref_primary_10_1038_s41550_022_01824_7
crossref_primary_10_1016_j_gca_2020_07_034
crossref_primary_10_1098_rsta_2015_0394
crossref_primary_10_1146_annurev_earth_042711_105531
crossref_primary_10_3847_1538_4357_ad0e0e
crossref_primary_10_1089_ast_2009_0372
crossref_primary_10_1017_S1743921308016645
crossref_primary_10_1016_j_epsl_2009_07_016
crossref_primary_10_1088_2041_8205_783_2_L28
crossref_primary_10_1017_S007418090019343X
crossref_primary_10_1016_j_epsl_2013_11_040
crossref_primary_10_1007_s11430_015_5241_0
crossref_primary_10_3847_1538_3881_aab608
crossref_primary_10_3847_1538_4357_ab0ae9
crossref_primary_10_1016_j_chemer_2008_05_001
crossref_primary_10_3847_PSJ_acb64b
crossref_primary_10_1016_j_epsl_2018_10_029
crossref_primary_10_3847_0004_637X_821_1_2
crossref_primary_10_3847_1538_4357_acac8f
crossref_primary_10_1051_0004_6361_202142143
crossref_primary_10_1016_j_asoc_2012_01_014
crossref_primary_10_1016_j_earscirev_2017_07_013
crossref_primary_10_1111_j_1945_5100_2001_tb01881_x
crossref_primary_10_1088_0004_637X_782_1_31
crossref_primary_10_1089_ast_2009_0368
crossref_primary_10_1093_mnras_stw2182
crossref_primary_10_1007_s00159_012_0056_x
crossref_primary_10_3847_2041_8213_ad2463
crossref_primary_10_3847_2041_8213_ac9052
crossref_primary_10_1016_j_crte_2007_09_001
crossref_primary_10_1016_j_crte_2007_09_002
crossref_primary_10_1111_j_1365_2966_2009_16162_x
crossref_primary_10_1016_j_crte_2007_09_006
crossref_primary_10_1038_d41586_023_00979_1
crossref_primary_10_1002_2015JA022226
crossref_primary_10_1098_rsta_2011_0592
crossref_primary_10_1038_nature10201
crossref_primary_10_1089_ast_2006_06_0126
crossref_primary_10_1146_annurev_earth_042711_105319
crossref_primary_10_1089_ast_2007_0207
crossref_primary_10_1016_j_epsl_2022_117741
crossref_primary_10_3847_1538_4357_ab05d8
crossref_primary_10_1016_j_gca_2015_07_007
crossref_primary_10_1088_0004_637X_804_1_9
crossref_primary_10_1038_nature08477
crossref_primary_10_1029_2004GC000716
crossref_primary_10_1002_2015GC006210
crossref_primary_10_1051_0004_6361_201935007
crossref_primary_10_1016_j_epsl_2010_10_019
crossref_primary_10_1038_ngeo1616
crossref_primary_10_1016_j_epsl_2004_12_022
crossref_primary_10_1016_S0019_1035_03_00172_6
crossref_primary_10_1088_0004_637X_772_1_17
crossref_primary_10_3847_1538_4357_ab3b0a
crossref_primary_10_1086_426902
crossref_primary_10_1093_mnrasl_sls003
crossref_primary_10_1007_s11038_009_9310_2
crossref_primary_10_1002_2017JB014723
crossref_primary_10_1016_j_asr_2018_02_032
crossref_primary_10_1016_j_epsl_2014_02_011
crossref_primary_10_1016_j_pss_2006_04_021
crossref_primary_10_1088_0004_637X_793_1_3
crossref_primary_10_1088_0004_637X_770_2_97
crossref_primary_10_1088_0004_6256_142_4_125
crossref_primary_10_1016_j_epsl_2004_04_031
crossref_primary_10_1007_s11214_023_00995_7
crossref_primary_10_1007_s11038_009_9333_8
crossref_primary_10_1038_nature11506
crossref_primary_10_3847_PSJ_abaa3e
crossref_primary_10_1144_0016_76492006_054
crossref_primary_10_1126_science_1052872
crossref_primary_10_1016_S0009_2541_01_00374_6
crossref_primary_10_1016_S0301_9268_03_00106_2
crossref_primary_10_1146_annurev_earth_042711_105340
crossref_primary_10_3847_1538_4357_abd2b9
crossref_primary_10_1007_s10569_017_9795_3
crossref_primary_10_1051_0004_6361_201834556
crossref_primary_10_1038_s41598_023_30382_9
crossref_primary_10_1086_523103
crossref_primary_10_3390_life11111142
crossref_primary_10_1098_rstb_2006_1900
crossref_primary_10_1093_mnrasl_slab062
crossref_primary_10_1051_0004_6361_20010517
crossref_primary_10_1088_2041_8205_758_2_L36
crossref_primary_10_1016_j_epsl_2009_05_023
crossref_primary_10_1051_0004_6361_200810833
crossref_primary_10_1111_maps_12717
crossref_primary_10_1016_j_icarus_2014_01_040
crossref_primary_10_1111_j_1945_5100_2005_tb00960_x
crossref_primary_10_1016_j_gca_2012_11_015
crossref_primary_10_1007_s11214_018_0475_8
crossref_primary_10_1016_j_chemer_2007_09_002
crossref_primary_10_1088_0004_637X_720_2_1073
crossref_primary_10_1088_2041_8205_728_1_L8
crossref_primary_10_1007_s00269_016_0809_6
crossref_primary_10_1038_s41550_021_01520_y
crossref_primary_10_2343_geochemj_2_0398
crossref_primary_10_3390_math10162897
crossref_primary_10_1016_j_icarus_2012_12_016
crossref_primary_10_1144_0016_76492006_028
crossref_primary_10_1007_s00159_019_0117_5
crossref_primary_10_1029_2022GC010661
crossref_primary_10_1016_j_jcrysgro_2006_05_057
crossref_primary_10_1073_pnas_1412072111
crossref_primary_10_3847_1538_4357_aa784f
crossref_primary_10_2138_rmg_2018_84_10
crossref_primary_10_1088_0004_637X_784_1_39
crossref_primary_10_1016_j_epsl_2014_10_053
crossref_primary_10_1029_2001GL014237
crossref_primary_10_1016_j_gca_2023_01_017
crossref_primary_10_1051_0004_6361_202038536
crossref_primary_10_1017_S1473550407003941
crossref_primary_10_1016_j_icarus_2017_06_030
crossref_primary_10_1029_2009GC002552
crossref_primary_10_1007_s10686_020_09681_w
crossref_primary_10_1016_j_icarus_2005_03_008
crossref_primary_10_1086_500287
crossref_primary_10_1126_science_1101812
crossref_primary_10_1089_153110702762470581
crossref_primary_10_1016_j_icarus_2023_115449
crossref_primary_10_1088_0004_637X_792_2_127
crossref_primary_10_1016_j_gca_2010_06_008
crossref_primary_10_3847_1538_3881_aa71b2
crossref_primary_10_1016_j_epsl_2013_07_031
crossref_primary_10_1017_S1743921307003067
crossref_primary_10_1111_maps_12727
crossref_primary_10_1088_2041_8205_770_1_L14
crossref_primary_10_1089_ast_2005_5_622
crossref_primary_10_1016_j_icarus_2024_115973
crossref_primary_10_1126_science_1186239
crossref_primary_10_1017_S1743921316002969
crossref_primary_10_1016_j_gca_2011_08_023
crossref_primary_10_1016_j_pss_2011_01_014
crossref_primary_10_1021_acsearthspacechem_9b00136
crossref_primary_10_1088_0004_637X_720_1_887
crossref_primary_10_1016_j_icarus_2022_115020
crossref_primary_10_1016_j_icarus_2023_115682
crossref_primary_10_1093_mnras_stv278
crossref_primary_10_1093_bulcsj_uoae020
crossref_primary_10_1093_mnras_stx3359
crossref_primary_10_1007_s11214_020_00649_y
crossref_primary_10_1051_0004_6361_201117714
crossref_primary_10_1089_ast_2015_1460
crossref_primary_10_1088_2041_8205_748_1_L15
crossref_primary_10_1016_j_gca_2012_08_036
crossref_primary_10_1016_j_icarus_2016_01_002
crossref_primary_10_1089_ast_2012_0867
crossref_primary_10_1093_mnras_stx2384
crossref_primary_10_1016_j_icarus_2014_05_009
crossref_primary_10_1016_j_precamres_2018_02_021
crossref_primary_10_1051_0004_6361_201629576
crossref_primary_10_3847_0004_637X_827_2_113
crossref_primary_10_1093_mnras_stac3317
crossref_primary_10_1088_0004_637X_751_1_32
crossref_primary_10_1016_j_icarus_2020_113977
crossref_primary_10_1086_591433
crossref_primary_10_1007_s11214_005_8058_x
crossref_primary_10_1051_0004_6361_201732466
crossref_primary_10_1093_mnras_stx278
crossref_primary_10_1038_nature21045
crossref_primary_10_1093_mnras_stv2524
crossref_primary_10_1007_s00159_018_0108_y
crossref_primary_10_1007_s00159_017_0104_7
crossref_primary_10_1134_S0016702921110070
crossref_primary_10_1007_s12133_007_0019_2
crossref_primary_10_1016_j_gca_2016_04_007
crossref_primary_10_1109_TTHZ_2020_3039459
crossref_primary_10_1051_0004_6361_201526430
crossref_primary_10_1093_mnras_stab251
crossref_primary_10_1007_s11214_020_00700_y
crossref_primary_10_1007_s11783_009_0001_z
crossref_primary_10_1088_2041_8205_710_1_L21
crossref_primary_10_1111_j_1945_5100_2005_tb00161_x
crossref_primary_10_1016_j_chemgeo_2009_02_008
crossref_primary_10_3390_life4010004
crossref_primary_10_1016_j_chemgeo_2016_11_018
crossref_primary_10_1017_S1743921313012866
crossref_primary_10_1016_j_pss_2011_04_007
crossref_primary_10_1088_2041_8205_770_2_L20
crossref_primary_10_1016_j_icarus_2008_07_017
crossref_primary_10_1038_nature09029
crossref_primary_10_1134_S0016702920060063
crossref_primary_10_1016_j_icarus_2007_05_002
crossref_primary_10_1051_0004_6361_201117627
crossref_primary_10_1088_0004_637X_699_1_824
crossref_primary_10_1016_j_epsl_2009_04_037
crossref_primary_10_1029_2008JE003316
crossref_primary_10_1086_341808
crossref_primary_10_1017_S1473550414000159
crossref_primary_10_3847_PSJ_ac19b2
crossref_primary_10_1134_S0016702916130073
crossref_primary_10_1093_mnras_stab3611
crossref_primary_10_1038_ncomms11684
crossref_primary_10_1088_2041_8205_758_1_L3
crossref_primary_10_1093_mnras_stab2408
crossref_primary_10_1073_pnas_1500954112
crossref_primary_10_1038_nature03676
crossref_primary_10_3847_1538_3881_aae528
crossref_primary_10_1016_j_epsl_2010_11_030
crossref_primary_10_1016_j_epsl_2013_08_015
crossref_primary_10_1111_j_1945_5100_2001_tb01876_x
crossref_primary_10_1016_j_icarus_2012_10_008
crossref_primary_10_1016_j_icarus_2014_08_033
crossref_primary_10_1016_j_icarus_2019_113473
crossref_primary_10_3390_molecules27238584
crossref_primary_10_1051_0004_6361_201014760
crossref_primary_10_1086_379320
crossref_primary_10_1029_2021JE006827
crossref_primary_10_1126_science_1179518
crossref_primary_10_1016_j_epsl_2012_06_015
crossref_primary_10_1088_0004_637X_806_2_216
crossref_primary_10_1002_2016GL068848
crossref_primary_10_1002_asna_202013765
crossref_primary_10_1089_ast_2021_0129
crossref_primary_10_1134_S0038094618050052
crossref_primary_10_3847_PSJ_ad4885
crossref_primary_10_1088_0004_637X_690_1_L5
crossref_primary_10_1016_j_icarus_2006_03_011
crossref_primary_10_1089_ast_2021_0127
crossref_primary_10_3847_1538_3881_aaa5a2
crossref_primary_10_1086_668293
crossref_primary_10_1021_cr400128p
crossref_primary_10_1038_s43017_022_00370_0
crossref_primary_10_1093_mnras_stab1534
crossref_primary_10_1086_521587
crossref_primary_10_3367_UFNe_2021_08_039044
crossref_primary_10_1016_j_gca_2014_01_014
crossref_primary_10_1038_s41467_022_32516_5
crossref_primary_10_1086_512759
crossref_primary_10_1088_0004_637X_709_2_950
crossref_primary_10_1029_2001JE001617
crossref_primary_10_1029_2020AV000323
crossref_primary_10_1002_2017JE005286
crossref_primary_10_1038_447535a
crossref_primary_10_1016_j_icarus_2018_11_029
crossref_primary_10_1038_416039a
crossref_primary_10_1017_S1743921317007797
crossref_primary_10_1098_rsta_2008_0209
crossref_primary_10_1086_340809
crossref_primary_10_1017_S1743921319009608
crossref_primary_10_3847_2041_8213_aaeb1c
crossref_primary_10_1088_0004_6256_143_3_66
crossref_primary_10_1017_S1743921315008546
crossref_primary_10_1038_4641286a
crossref_primary_10_1016_j_icarus_2012_10_026
crossref_primary_10_1016_j_epsl_2016_05_022
crossref_primary_10_1089_ast_2005_5_100
crossref_primary_10_1051_0004_6361_202141600
crossref_primary_10_1016_j_actaastro_2023_07_035
crossref_primary_10_1016_j_icarus_2018_04_008
crossref_primary_10_1007_s11038_006_9088_4
crossref_primary_10_1016_j_epsl_2008_01_031
crossref_primary_10_1007_s11214_020_00778_4
crossref_primary_10_1016_j_asr_2005_12_012
crossref_primary_10_1098_rsta_2016_0259
crossref_primary_10_1021_acsearthspacechem_9b00096
crossref_primary_10_1098_rsta_2011_0582
crossref_primary_10_1088_2041_8205_725_2_L172
crossref_primary_10_4236_ajac_2015_64033
Cites_doi 10.1007/BF00048587
10.1016/0019-1035(90)90050-J
10.1016/S0012-821X(97)00153-2
10.1016/S0009-2541(97)00146-0
10.1006/icar.1998.6007
10.1016/S0009-2541(97)00170-8
10.1111/j.1945-5100.1998.tb01707.x
10.1086/300891
10.1016/S0032-0633(99)00043-4
10.1126/science.280.5368.1421
10.1086/118483
10.1007/978-1-4612-6167-4
10.1086/116574
10.1029/94JA02936
10.1006/icar.1996.0190
10.1016/0019-1035(76)90117-2
10.1016/0016-7037(82)90293-9
10.1016/0016-7037(54)90001-0
10.1006/icar.1999.6220
10.1016/S0012-821X(99)00156-9
10.1016/0012-821X(91)90191-J
10.1016/0016-7037(84)90392-2
10.1016/0016-7037(70)90031-1
10.1007/978-94-010-2873-8_56
10.1016/0019-1035(88)90031-0
10.1006/icar.1999.6201
10.1086/300728
10.1006/icar.1999.6137
10.1006/icar.1997.5782
10.1016/0019-1035(91)90036-S
10.1038/332691a0
10.1006/icar.1999.6166
10.1016/S0032-0633(98)00093-2
10.1126/science.279.5352.842
10.1023/A:1005039822524
10.1016/0019-1035(88)90030-9
10.1126/science.276.5319.1670
10.1016/0019-1035(92)90060-K
10.1006/icar.1999.6313
10.1006/icar.1995.1122
10.1086/304912
10.1016/S0016-7037(98)00232-4
10.1016/0012-821X(89)90082-4
10.1038/377326a0
10.1086/114571
10.1086/162697
10.1126/science.255.5050.1391
10.1111/j.1945-5100.2000.tb01778.x
10.1016/0016-7037(93)90297-A
10.1029/1999JE001120
10.1023/A:1005091806594
10.1086/118091
10.1016/0016-7037(85)90141-3
10.1016/0032-0633(94)90035-3
10.1016/S0009-2541(97)00178-2
10.1006/icar.1998.5959
10.1006/icar.1994.1039
10.1016/0012-821X(88)90152-5
10.1016/0019-1035(92)90103-E
10.1007/BF00642464
ContentType Journal Article
Copyright 2000 The Meteoritical Society
Copyright_xml – notice: 2000 The Meteoritical Society
DBID BSCLL
AAYXX
CITATION
DOI 10.1111/j.1945-5100.2000.tb01518.x
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1945-5100
EndPage 1320
ExternalDocumentID 10_1111_j_1945_5100_2000_tb01518_x
MAPS1518
ark_67375_WNG_K3MF6HW7_M
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
24P
2WC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FRP
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
LATKE
LC2
LC3
LDC
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
RNP
ROL
RX1
SAMSI
SUPJJ
UB1
V8K
VOH
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WUPDE
WXSBR
WYISQ
XG1
ZZTAW
~02
~IA
~WT
AETEA
AAMNL
AAYXX
CITATION
ID FETCH-LOGICAL-a4978-629535f15df0d87888a6356de8f98576e8dec4dcf92b4bdbf3c6e53ddf20377a3
ISSN 1086-9379
IngestDate Thu Nov 21 21:23:03 EST 2024
Sat Aug 24 00:53:20 EDT 2024
Wed Oct 30 09:57:07 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a4978-629535f15df0d87888a6356de8f98576e8dec4dcf92b4bdbf3c6e53ddf20377a3
Notes ArticleID:MAPS1518
istex:E23F3F02378A312E3199A3CE1DA02BBC6D7F992F
ark:/67375/WNG-K3MF6HW7-M
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1945-5100.2000.tb01518.x
PageCount 12
ParticipantIDs crossref_primary_10_1111_j_1945_5100_2000_tb01518_x
wiley_primary_10_1111_j_1945_5100_2000_tb01518_x_MAPS1518
istex_primary_ark_67375_WNG_K3MF6HW7_M
PublicationCentury 2000
PublicationDate November 2000
PublicationDateYYYYMMDD 2000-11-01
PublicationDate_xml – month: 11
  year: 2000
  text: November 2000
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
PublicationTitle Meteoritics & planetary science
PublicationYear 2000
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Stern S. A. and Colwell J. E. (1997) Collisional erosion in the primordial Edgeworth-Kuiper Belt and the generation of the 30-50 AU Kuiper gap. Astrophys. J. 490, 879-885.
Morfill G. E. and Volk H. J. (1984) Transport of dust and vapor and chemical fractionation in the early protosolar cloud. Astrophys. J. 287, 371-395.
Ward W. R., Colombo G. and Franklin F. A. (1976) Secular resonance, solar spin down, and the orbit of Mercury. Icarus 28, 441-452.
Righter K. and Drake M. (1999) Effect of water on metal-silicate partitioning of siderophile elements: A high pressure and temperature terrestrial magnam ocean and core formation. Earth Planet. Sci. Lett. 171, 383-399.
Boato G. (1954) The isotopic composition of hydrogen and carbon in the carbonaceous chondrites. Geochim. Cosmochim. Acta. 6, 209-220.
Owen T. and Bar-Nun A. (1995) Comets, impacts and atmospheres. Icarus 116, 215-216.
Duncan M. J., Quinn T. R. and Tremaine S. (1987) The formation and extent of the solar system comet cloud. Astron. J. 94, 1330-1338.
Stepinskyi T. F. and Valageas P. (1997) Global evolution of solid matter in turbulent protoplanetary disks. II. Development of icy planetesimals. Astron. Astrophys. 319, 1007-1019.
Agnor C. B., Canup R. M. and Levison H. F. (1999) On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus 142, 219-237.
Marty B. (1989) Neon and xenon isotopes in MORB: Implications for the Earth-atmosphere evolution. Earth Planet. Sci. Lett. 94, 45-56.
Duncan M. J. and Levison H. F. (1997) Scattered comet disk and the origin of Jupiter family comets. Science 276, 1670-1672.
Marty B. and Humbert F. (1997) Nitrogen and argon isotopes in oceanic basalts. Earth Planet. Sci. Lett. 152, 101-112.
Deloule E., Albaréde F. and Sheppard S. M. F. (1991) Hydrogen isotope heterogeneities in the mantle from ion probe analysis of amphiboles from ultramafic rocks. Earth Planet. Sci. Lett. 105, 543-553.
Bell D. R. and Rossman G. R. (1992) Water in Earth's mantle: The role of nominally anhydrous minerals. Science 255, 1391-1397.
Stern S. A. (1996) On the collisional environment, accretion time scales, and architecture of the massive, primordial Kuiper Belt. Astron. J. 112, 1203-1210.
Lécuyer C., Gillet Ph. and Robert F. (1998) The hydrogen isotope composition of sea water and the global water cycle. Chem Geol. 145, 249-261.
Franchi I. A., Wright I. P. and Pillinger C. T. (1993) Constraints on the formation conditions of iron meteorites based on concentrations and isotopic compositions of nitrogen. Geochim. Cosmochim. Acta. 57, 3105-3121.
Lecar M. and Franklin F. (1997) The solar nebula, secular resonances, gas drag, and the asteroid belt. Icarus 129, 134-146.
Weidenschilling S. J. (1977) The distribution of mass in the planetary system and solar nebula. Astroph. Space Sci. 51, 153-158.
ÖPik E. J. (1976) Interplanetary Encounters: Close Range Gravitational Interactions. Elsevier, New York, New York, USA. 155 pp.
Gomes R. S. (1997) Dynamical effects of planetary migration on the primordial asteroid belt. Astron. J. 114, 396-401.
Drouart A., Dubrulle B., Gautier D. and Robert F. (1999) Structure and transport in the solar nebula from constraints on deuterium enrichment and giant planets formation. Icarus 140, 129-155.
Balsiger H., Altwegg K. and Geiss J. (1995) D/H and 18O/16O ratio in hydronium ion and in neutral water from in situ ion measurements in Comet P/Halley. J. Geophys. Res. 100, 5834-5840.
Franklin F. and Lecar M. (2000) On the transport of bodies within and from the asteroid belt. Meteorit. Planet. Sci. 35, 331-340.
Tolstikin I. N. and Marty B. (1998). The evolution of terrestrial volatiles: A view from helium, neon and nitrogen isotope modelling. Chem. Geol. 147, 27-52.
Hahn J. M. and Malhotra R. (1999) Orbital evolution of planets embedded in a planetesimal disk. Astron. J. 117, 3041-3053.
Pepin R. O. (1991) On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2-79.
Guillot T. (1999) A comparison of the interiors of Jupiter and Saturn. Planet. Space Sci. 47, 10-11.
Levison H. F., Duncan M. J., Zahnle K., Holman M. and Dones L. (2000) Note: Planetary impact rates from ecliptic comets. Icarus 143, 415-420.
Zahnle K. J., Kasting J. F. and Pollack J. B. (1988) Evolution of a steam atmosphere during Earth's accretion. Icarus 74, 62-97.
Marty B. (1995) Nitrogen content of the mantle inferred from N2-Ar correlation in oceanic basalts. Nature 377, 326-329.
Meier R., Owen T. C., Matthews H. E., Jewitt D. C., Bockelée-Morvan D., Biver N., Crovisier J. and Gautier D. (1998) A determination of the DHO/H2O ratio in Comet C/1995 OI*** (Hale-Bopp). Science 279, 842-844.
Ip W. H. and Fernández J. A. (1988) Exchange of condensed matter among the outer and terrestrial protoplanets and the effect on surface impact and atmospheric accretion. Icarus 74, 47-61.
Dones L. (1996) Simulations of the discovery of Centaurs and Kuiper Belt objects. A AS Bulletin 28, 1081.
Wetherill G. W. (1992) An alternative model for the formation of the asteroids. Icarus 100, 307-325.
Morbidelli A. and Gladman B. (1998) Orbital and temporal distribution of meteorites originating in the asteroid belt. Meteorit. Planet. Sci. 33, 999-1016.
Nagasawa M., Tanaka M. and Ida S. (2000) Orbital evolution of asteroids due to sweeping secular resonances. Astron. J. 119, 1480-1497.
Mazor E., Heymann D. and Anders E. (1970) Noble gases in carbonaceous chondrites. Geochim. Cosmochim. Acta. 34, 781-824.
Eberhardt P., Reber M., Krankowski D. and Hodges R. R. (1995) The D/H and 18O/16O ratios in water from Comet P/Halley. Astron. Astrophys. 302, 301-316.
Geiss J. and Gloecker G. (1998) Abundances of deuterium and helium in the protosolar cloud. Space Sci. Rev. 84, 239-250.
Jessberger E. K., Christoforidis A. and Kissel J. (1988) Aspects of the major element composition of Halley's dust. Nature 332, 691-695.
Lemaitre A. and Dubru P. (1991) Secular resonances in the primitive solar nebula. Celest. Mech. Dyn. Astron. 52, 57-78.
Mahaffy P. R. Donahue T. M., Atreya S. K., Owen T. C. and Niemann H. B. (1998) Galileo probe measurements of D/H in 3He/4He in Jupiter's atmosphere. Space Sci. Rev. 84, 251-263.
Delsemme A. H. (1999) The deuterium enrichment observed in recent comets is consistent with the cometary origin of seawater. Planet. Space Sci. 47, 125-131.
Kyser T. K. and O'Neil J. R. (1984) Hydrogen isotope systematics of submarine basalts. Geochim. Cosmochim. Acta. 48, 2123-2133.
Chambers J. E. and Wetherill G. W. (1998) Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136, 304-327.
Pollack J. B., Hubickyj O., Bodenheimer P., Lissauer J. J., Podolak M. and Greenzweig Y. (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62-85.
Sarda P., Staudacher T. and Allégre C. J. (1988) Neon isotopes in submarine basalts. Earth Planet. Sci. Lett. 91, 73-88.
Bockelée-Morvan D. et al. (1988) Deuterated water in comet C/1996 B2 (Hyakutake) and its implications for the origin of comets. Icarus 193, 147-162.
Ringwood A. E. (1979) Origin of the Earth and Moon. Springer-Verlag, New York, New York, USA. 295 pp.
Davis D. R., Ryan E. v. and Farinella P. (1994) Asteroid collisional evolution: Results from current scaling algorithms. Planet. Space Sci. 42, 599-610.
Pavlov A. A., Pavlov A. K. and Kasting J. K. (1999) Irradiated interplanetary dust particles as a possible solution for the deuterium/hydrogen paradox of Earth's oceans. J. Geophys. Res. 104, 30 725-30 728.
Robert F. and Epstein S. (1982) The concentration of isotopic compositions of hydrogen carbon and nitrogen in carbonaceous chondrites. Geochim. Cosmochim. Acta. 16, 81-95.
Farinella P. and Davis D. R. (1992) Collision rates and impact velocities in the main asteroid belt. Icarus 97, 111-123.
Cartigny P., Harris J. W. and Javoy M. (1998) Eclogitic diamond formation at Jwaneng: No room for a recycled component. Science 280, 1421-1424.
Dauphas N., Robert F. and Marty B. (2000) The late asteroidal and cometary bombardement of Earth as recorded in water deuterium to protium ratio. Icarus (in press).
Cartigny P., Harris J. W., Phillips D., Girard M. and Javoy M. (1997) Subduction-related diamonds?-The evidence for a mantle-derived origin from coupled δ13C-δ15N determinations. Chem. Geol. 147, 147-159.
Levison H. F. and Duncan M. J. (1994) The long-term dynamical behavior of short-period comets. Icarus 108, 18-36.
Holman M. J. and Wisdom J. (1993) Dynamical stability in the outer solar system and the delivery of short period comets. Astron. J. 105, 1987-1999.
ÖZima M. and Podosek F. A. (1983) Noble Gas Geochemistry. Cambridge Univ. Press, New York, New York, USA. 367 pp.
Dones L., Gladman B., Melosh H. J., Tonks W. B., Levison H. F. and Duncan M. (1999) Dynamical lifetimes and final fates of small bodies: Orbit integrations vs. Öpik's calculations. Icarus 142, 509-524.
Cyr K. E., Sears W. D. and Lunine J. I. (1998) Distribution and evolution of water ice in the solar nebula: Implications for Solar System body formation. Icarus 135, 537-548.
Deloule E., Doukhan J. C. and Robert F. (1998) Interstellar hydroxyle in meteorite chondrules: Implications for the origin of water in the inner solar system. Geochim. Cosmochim. Acta. 62, 3367-3378.
Kerridge J. F. (1985) Carbon, hydrogen and nitrogen in carbonaceous chondrites: Abundances and isotopic compositions in bulk samples. Geochim. Cosmochim. Acta. 49, 1707-1714.
Hilton J. L. (1999) US naval observatory ephemerides of the largest asteroids. Astron. J. 117, 1077-1086.
Zahnle K. J., Kasting J. F. and Pollack J. B. (1990) Mass fractionation of noble gases in diffusion-limited hydrodynamic hydrogen escape. Icarus 84, 502-527.
Petit J. M., Morbidelli A. and Valsecchi G. B. (1999) Large scattered planetesimals and the excitation of the small body belts. Icarus 141, 367-387.
1997; 114
1998; 280
1982; 16
1988; 193
1997; 152
1984; 287
1991; 52
1999; 171
1997; 276
1999; 47
1970; 34
1976
1972
1995; 377
1998; 279
1988; 74
1992; 97
1997; 319
1998; 84
1976; 28
1979
1990; 84
1997; 147
1996; 28
2000
1991; 92
1954; 6
1988; 332
1983
1981
1991; 105
1994; 108
1989
1997; 490
1987; 94
1984; 48
1992; 100
2000; 119
1999; 142
1997
1999; 140
1995; 116
1999; 141
1998; 136
1998; 62
1988; 91
1998; 135
1993; 105
1999; 104
1996; 124
1985; 49
1994; 42
1993; 57
1989; 94
1997; 129
2000; 35
1992; 255
1977; 51
1995; 302
2000; 143
1998; 147
1995; 100
1999; 117
1998; 145
1996; 112
1998; 33
Tolstikin I. N. (e_1_2_1_67_1) 1998; 147
e_1_2_1_41_1
e_1_2_1_66_1
e_1_2_1_68_1
e_1_2_1_24_1
e_1_2_1_45_1
e_1_2_1_43_1
e_1_2_1_49_1
Duncan M. J. (e_1_2_1_20_1) 1997; 276
e_1_2_1_26_1
e_1_2_1_47_1
Nagasawa M. (e_1_2_1_51_1) 2000; 119
Guillot T. (e_1_2_1_28_1) 1999; 47
Lunine J. I. (e_1_2_1_42_1) 2000
ÖZima M. (e_1_2_1_54_1) 1983
Safronov V. S. (e_1_2_1_62_1) 1972
Cartigny P. (e_1_2_1_8_1) 1997; 147
Guillot T. (e_1_2_1_29_1) 2000
Weissman P. R. (e_1_2_1_71_1) 1997
e_1_2_1_31_1
e_1_2_1_56_1
e_1_2_1_6_1
e_1_2_1_35_1
e_1_2_1_50_1
e_1_2_1_73_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_75_1
ÖPik E. J. (e_1_2_1_52_1) 1976
e_1_2_1_16_1
e_1_2_1_14_1
e_1_2_1_58_1
e_1_2_1_18_1
Eberhardt P. (e_1_2_1_22_1) 1995; 302
e_1_2_1_65_1
e_1_2_1_40_1
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_61_1
Balsiger H. (e_1_2_1_4_1) 1995; 100
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_63_1
e_1_2_1_27_1
e_1_2_1_25_1
e_1_2_1_48_1
Wetherill G. W. (e_1_2_1_72_1) 1989
e_1_2_1_69_1
Ringwood A. E. (e_1_2_1_60_1) 1979
Lemaitre A. (e_1_2_1_39_1) 1991; 52
Dauphas N. (e_1_2_1_12_1) 2000
Bockelée‐Morvan D. (e_1_2_1_7_1) 1988; 193
e_1_2_1_70_1
Abe Y. (e_1_2_1_2_1) 2000
e_1_2_1_30_1
e_1_2_1_55_1
e_1_2_1_5_1
Lecar M. (e_1_2_1_37_1) 1997; 129
e_1_2_1_57_1
e_1_2_1_3_1
Dones L. (e_1_2_1_17_1) 1996; 28
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_53_1
e_1_2_1_74_1
e_1_2_1_38_1
e_1_2_1_15_1
e_1_2_1_36_1
Stepinskyi T. F. (e_1_2_1_64_1) 1997; 319
e_1_2_1_59_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – volume: 100
  start-page: 5834
  year: 1995
  end-page: 5840
  article-title: D/H and O/ O ratio in hydronium ion and in neutral water from ion measurements in Comet P/Halley
  publication-title: J. Geophys. Res.
– volume: 97
  start-page: 111
  year: 1992
  end-page: 123
  article-title: Collision rates and impact velocities in the main asteroid belt
  publication-title: Icarus
– volume: 52
  start-page: 57
  year: 1991
  end-page: 78
  article-title: Secular resonances in the primitive solar nebula
  publication-title: Celest. Mech. Dyn. Astron.
– start-page: 1055
  year: 2000
  end-page: 1080
– volume: 119
  start-page: 1480
  year: 2000
  end-page: 1497
  article-title: Orbital evolution of asteroids due to sweeping secular resonances
  publication-title: Astron. J.
– volume: 117
  start-page: 1077
  year: 1999
  end-page: 1086
  article-title: US naval observatory ephemerides of the largest asteroids
  publication-title: Astron. J.
– volume: 143
  start-page: 415
  year: 2000
  end-page: 420
  article-title: Note: Planetary impact rates from ecliptic comets
  publication-title: Icarus
– volume: 94
  start-page: 45
  year: 1989
  end-page: 56
  article-title: Neon and xenon isotopes in MORB: Implications for the Earth‐atmosphere evolution
  publication-title: Earth Planet. Sci. Lett.
– volume: 108
  start-page: 18
  year: 1994
  end-page: 36
  article-title: The long‐term dynamical behavior of short‐period comets
  publication-title: Icarus
– volume: 92
  start-page: 2
  year: 1991
  end-page: 79
  article-title: On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles
  publication-title: Icarus
– volume: 94
  start-page: 1330
  year: 1987
  end-page: 1338
  article-title: The formation and extent of the solar system comet cloud
  publication-title: Astron. J.
– volume: 28
  start-page: 1081
  year: 1996
  article-title: Simulations of the discovery of Centaurs and Kuiper Belt objects
  publication-title: A AS Bulletin
– volume: 91
  start-page: 73
  year: 1988
  end-page: 88
  article-title: Neon isotopes in submarine basalts
  publication-title: Earth Planet. Sci. Lett.
– volume: 114
  start-page: 396
  year: 1997
  end-page: 401
  article-title: Dynamical effects of planetary migration on the primordial asteroid belt
  publication-title: Astron. J.
– volume: 84
  start-page: 251
  year: 1998
  end-page: 263
  article-title: Galileo probe measurements of D/H in He/ He in Jupiter's atmosphere
  publication-title: Space Sci. Rev.
– volume: 112
  start-page: 1203
  year: 1996
  end-page: 1210
  article-title: On the collisional environment, accretion time scales, and architecture of the massive, primordial Kuiper Belt
  publication-title: Astron. J.
– volume: 33
  start-page: 999
  year: 1998
  end-page: 1016
  article-title: Orbital and temporal distribution of meteorites originating in the asteroid belt
  publication-title: Meteorit. Planet. Sci.
– year: 2000
  article-title: The late asteroidal and cometary bombardement of Earth as recorded in water deuterium to protium ratio
  publication-title: Icarus
– volume: 319
  start-page: 1007
  year: 1997
  end-page: 1019
  article-title: Global evolution of solid matter in turbulent protoplanetary disks. II. Development of icy planetesimals
  publication-title: Astron. Astrophys.
– volume: 124
  start-page: 62
  year: 1996
  end-page: 85
  article-title: Formation of the giant planets by concurrent accretion of solids and gas
  publication-title: Icarus
– volume: 193
  start-page: 147
  year: 1988
  end-page: 162
  article-title: Deuterated water in comet C/1996 B2 (Hyakutake) and its implications for the origin of comets
  publication-title: Icarus
– volume: 142
  start-page: 509
  year: 1999
  end-page: 524
  article-title: Dynamical lifetimes and final fates of small bodies: Orbit integrations . Öpik's calculations
  publication-title: Icarus
– volume: 51
  start-page: 153
  year: 1977
  end-page: 158
  article-title: The distribution of mass in the planetary system and solar nebula
  publication-title: Astroph. Space Sci.
– volume: 117
  start-page: 3041
  year: 1999
  end-page: 3053
  article-title: Orbital evolution of planets embedded in a planetesimal disk
  publication-title: Astron. J.
– volume: 332
  start-page: 691
  year: 1988
  end-page: 695
  article-title: Aspects of the major element composition of Halley's dust
  publication-title: Nature
– volume: 142
  start-page: 219
  year: 1999
  end-page: 237
  article-title: On the character and consequences of large impacts in the late stage of terrestrial planet formation
  publication-title: Icarus
– volume: 48
  start-page: 2123
  year: 1984
  end-page: 2133
  article-title: Hydrogen isotope systematics of submarine basalts
  publication-title: Geochim. Cosmochim. Acta.
– volume: 136
  start-page: 304
  year: 1998
  end-page: 327
  article-title: Making the terrestrial planets: N‐body integrations of planetary embryos in three dimensions
  publication-title: Icarus
– volume: 255
  start-page: 1391
  year: 1992
  end-page: 1397
  article-title: Water in Earth's mantle: The role of nominally anhydrous minerals
  publication-title: Science
– volume: 280
  start-page: 1421
  year: 1998
  end-page: 1424
  article-title: Eclogitic diamond formation at Jwaneng: No room for a recycled component
  publication-title: Science
– volume: 34
  start-page: 781
  year: 1970
  end-page: 824
  article-title: Noble gases in carbonaceous chondrites
  publication-title: Geochim. Cosmochim. Acta.
– volume: 287
  start-page: 371
  year: 1984
  end-page: 395
  article-title: Transport of dust and vapor and chemical fractionation in the early protosolar cloud
  publication-title: Astrophys. J.
– volume: 105
  start-page: 543
  year: 1991
  end-page: 553
  article-title: Hydrogen isotope heterogeneities in the mantle from ion probe analysis of amphiboles from ultramafic rocks
  publication-title: Earth Planet. Sci. Lett.
– volume: 105
  start-page: 1987
  year: 1993
  end-page: 1999
  article-title: Dynamical stability in the outer solar system and the delivery of short period comets
  publication-title: Astron. J.
– volume: 135
  start-page: 537
  year: 1998
  end-page: 548
  article-title: Distribution and evolution of water ice in the solar nebula: Implications for Solar System body formation
  publication-title: Icarus
– volume: 100
  start-page: 307
  year: 1992
  end-page: 325
  article-title: An alternative model for the formation of the asteroids
  publication-title: Icarus
– volume: 84
  start-page: 239
  year: 1998
  end-page: 250
  article-title: Abundances of deuterium and helium in the protosolar cloud
  publication-title: Space Sci. Rev.
– volume: 490
  start-page: 879
  year: 1997
  end-page: 885
  article-title: Collisional erosion in the primordial Edgeworth‐Kuiper Belt and the generation of the 30–50 AU Kuiper gap
  publication-title: Astrophys. J.
– start-page: 661
  year: 1989
  end-page: 680
– volume: 147
  start-page: 27
  year: 1998
  end-page: 52
  article-title: The evolution of terrestrial volatiles: A view from helium, neon and nitrogen isotope modelling
  publication-title: Chem. Geol.
– volume: 35
  start-page: 331
  year: 2000
  end-page: 340
  article-title: On the transport of bodies within and from the asteroid belt
  publication-title: Meteorit. Planet. Sci.
– volume: 49
  start-page: 1707
  year: 1985
  end-page: 1714
  article-title: Carbon, hydrogen and nitrogen in carbonaceous chondrites: Abundances and isotopic compositions in bulk samples
  publication-title: Geochim. Cosmochim. Acta.
– year: 2000
– volume: 276
  start-page: 1670
  year: 1997
  end-page: 1672
  article-title: Scattered comet disk and the origin of Jupiter family comets
  publication-title: Science
– volume: 47
  start-page: 10
  year: 1999
  end-page: 11
  article-title: A comparison of the interiors of Jupiter and Saturn
  publication-title: Planet. Space Sci.
– start-page: 367
  year: 1983
– volume: 171
  start-page: 383
  year: 1999
  end-page: 399
  article-title: Effect of water on metal‐silicate partitioning of siderophile elements: A high pressure and temperature terrestrial magnam ocean and core formation
  publication-title: Earth Planet. Sci. Lett.
– volume: 140
  start-page: 129
  year: 1999
  end-page: 155
  article-title: Structure and transport in the solar nebula from constraints on deuterium enrichment and giant planets formation
  publication-title: Icarus
– volume: 279
  start-page: 842
  year: 1998
  end-page: 844
  article-title: A determination of the DHO/H O ratio in Comet C/1995 OI*** (Hale‐Bopp)
  publication-title: Science
– start-page: 295
  year: 1979
– start-page: 559
  year: 1997
  end-page: 604
– volume: 104
  start-page: 30 725
  year: 1999
  end-page: 30 728
  article-title: Irradiated interplanetary dust particles as a possible solution for the deuterium/hydrogen paradox of Earth's oceans
  publication-title: J. Geophys. Res.
– volume: 28
  start-page: 441
  year: 1976
  end-page: 452
  article-title: Secular resonance, solar spin down, and the orbit of Mercury
  publication-title: Icarus
– volume: 145
  start-page: 249
  year: 1998
  end-page: 261
  article-title: The hydrogen isotope composition of sea water and the global water cycle
  publication-title: Chem Geol.
– volume: 42
  start-page: 599
  year: 1994
  end-page: 610
  article-title: Asteroid collisional evolution: Results from current scaling algorithms
  publication-title: Planet. Space Sci.
– volume: 152
  start-page: 101
  year: 1997
  end-page: 112
  article-title: Nitrogen and argon isotopes in oceanic basalts
  publication-title: Earth Planet. Sci. Lett.
– volume: 84
  start-page: 502
  year: 1990
  end-page: 527
  article-title: Mass fractionation of noble gases in diffusion‐limited hydrodynamic hydrogen escape
  publication-title: Icarus
– volume: 147
  start-page: 147
  year: 1997
  end-page: 159
  article-title: Subduction‐related diamonds?—The evidence for a mantle‐derived origin from coupled δ C‐δ N determinations
  publication-title: Chem. Geol.
– volume: 302
  start-page: 301
  year: 1995
  end-page: 316
  article-title: The D/H and O/ O ratios in water from Comet P/Halley
  publication-title: Astron. Astrophys.
– volume: 74
  start-page: 47
  year: 1988
  end-page: 61
  article-title: Exchange of condensed matter among the outer and terrestrial protoplanets and the effect on surface impact and atmospheric accretion
  publication-title: Icarus
– start-page: 155
  year: 1976
– volume: 377
  start-page: 326
  year: 1995
  end-page: 329
  article-title: Nitrogen content of the mantle inferred from N2‐Ar correlation in oceanic basalts
  publication-title: Nature
– volume: 57
  start-page: 3105
  year: 1993
  end-page: 3121
  article-title: Constraints on the formation conditions of iron meteorites based on concentrations and isotopic compositions of nitrogen
  publication-title: Geochim. Cosmochim. Acta.
– volume: 116
  start-page: 215
  year: 1995
  end-page: 216
  article-title: Comets, impacts and atmospheres
  publication-title: Icarus
– volume: 6
  start-page: 209
  year: 1954
  end-page: 220
  article-title: The isotopic composition of hydrogen and carbon in the carbonaceous chondrites
  publication-title: Geochim. Cosmochim. Acta.
– volume: 141
  start-page: 367
  year: 1999
  end-page: 387
  article-title: Large scattered planetesimals and the excitation of the small body belts
  publication-title: Icarus
– volume: 16
  start-page: 81
  year: 1982
  end-page: 95
  article-title: The concentration of isotopic compositions of hydrogen carbon and nitrogen in carbonaceous chondrites
  publication-title: Geochim. Cosmochim. Acta.
– start-page: 141
  year: 1981
  end-page: 150
– volume: 129
  start-page: 134
  year: 1997
  end-page: 146
  article-title: The solar nebula, secular resonances, gas drag, and the asteroid belt
  publication-title: Icarus
– volume: 74
  start-page: 62
  year: 1988
  end-page: 97
  article-title: Evolution of a steam atmosphere during Earth's accretion
  publication-title: Icarus
– volume: 47
  start-page: 125
  year: 1999
  end-page: 131
  article-title: The deuterium enrichment observed in recent comets is consistent with the cometary origin of seawater
  publication-title: Planet. Space Sci.
– start-page: 329
  year: 1972
  end-page: 334
– volume: 62
  start-page: 3367
  year: 1998
  end-page: 3378
  article-title: Interstellar hydroxyle in meteorite chondrules: Implications for the origin of water in the inner solar system
  publication-title: Geochim. Cosmochim. Acta.
– volume-title: Origin of the Earth and the Moon
  year: 2000
  ident: e_1_2_1_2_1
  contributor:
    fullname: Abe Y.
– volume: 52
  start-page: 57
  year: 1991
  ident: e_1_2_1_39_1
  article-title: Secular resonances in the primitive solar nebula
  publication-title: Celest. Mech. Dyn. Astron.
  doi: 10.1007/BF00048587
  contributor:
    fullname: Lemaitre A.
– start-page: 559
  volume-title: Pluto
  year: 1997
  ident: e_1_2_1_71_1
  contributor:
    fullname: Weissman P. R.
– ident: e_1_2_1_75_1
  doi: 10.1016/0019-1035(90)90050-J
– ident: e_1_2_1_46_1
  doi: 10.1016/S0012-821X(97)00153-2
– ident: e_1_2_1_38_1
  doi: 10.1016/S0009-2541(97)00146-0
– start-page: 661
  volume-title: Asteroids II
  year: 1989
  ident: e_1_2_1_72_1
  contributor:
    fullname: Wetherill G. W.
– ident: e_1_2_1_10_1
  doi: 10.1006/icar.1998.6007
– volume: 147
  start-page: 27
  year: 1998
  ident: e_1_2_1_67_1
  article-title: The evolution of terrestrial volatiles: A view from helium, neon and nitrogen isotope modelling
  publication-title: Chem. Geol.
  doi: 10.1016/S0009-2541(97)00170-8
  contributor:
    fullname: Tolstikin I. N.
– ident: e_1_2_1_49_1
  doi: 10.1111/j.1945-5100.1998.tb01707.x
– ident: e_1_2_1_30_1
  doi: 10.1086/300891
– volume: 47
  start-page: 10
  year: 1999
  ident: e_1_2_1_28_1
  article-title: A comparison of the interiors of Jupiter and Saturn
  publication-title: Planet. Space Sci.
  doi: 10.1016/S0032-0633(99)00043-4
  contributor:
    fullname: Guillot T.
– ident: e_1_2_1_9_1
  doi: 10.1126/science.280.5368.1421
– ident: e_1_2_1_27_1
  doi: 10.1086/118483
– start-page: 295
  volume-title: Origin of the Earth and Moon.
  year: 1979
  ident: e_1_2_1_60_1
  doi: 10.1007/978-1-4612-6167-4
  contributor:
    fullname: Ringwood A. E.
– ident: e_1_2_1_32_1
  doi: 10.1086/116574
– volume: 100
  start-page: 5834
  year: 1995
  ident: e_1_2_1_4_1
  article-title: D/H and 18O/16O ratio in hydronium ion and in neutral water from in situ ion measurements in Comet P/Halley
  publication-title: J. Geophys. Res.
  doi: 10.1029/94JA02936
  contributor:
    fullname: Balsiger H.
– volume: 28
  start-page: 1081
  year: 1996
  ident: e_1_2_1_17_1
  article-title: Simulations of the discovery of Centaurs and Kuiper Belt objects
  publication-title: A AS Bulletin
  contributor:
    fullname: Dones L.
– ident: e_1_2_1_58_1
  doi: 10.1006/icar.1996.0190
– ident: e_1_2_1_69_1
  doi: 10.1016/0019-1035(76)90117-2
– ident: e_1_2_1_61_1
  doi: 10.1016/0016-7037(82)90293-9
– volume: 319
  start-page: 1007
  year: 1997
  ident: e_1_2_1_64_1
  article-title: Global evolution of solid matter in turbulent protoplanetary disks. II. Development of icy planetesimals
  publication-title: Astron. Astrophys.
  contributor:
    fullname: Stepinskyi T. F.
– volume: 119
  start-page: 1480
  year: 2000
  ident: e_1_2_1_51_1
  article-title: Orbital evolution of asteroids due to sweeping secular resonances
  publication-title: Astron. J.
  contributor:
    fullname: Nagasawa M.
– ident: e_1_2_1_6_1
  doi: 10.1016/0016-7037(54)90001-0
– ident: e_1_2_1_18_1
  doi: 10.1006/icar.1999.6220
– ident: e_1_2_1_59_1
  doi: 10.1016/S0012-821X(99)00156-9
– ident: e_1_2_1_14_1
  doi: 10.1016/0012-821X(91)90191-J
– ident: e_1_2_1_36_1
  doi: 10.1016/0016-7037(84)90392-2
– ident: e_1_2_1_47_1
  doi: 10.1016/0016-7037(70)90031-1
– start-page: 329
  volume-title: The Motion, Evolution of Orbits, and Origin of Comets
  year: 1972
  ident: e_1_2_1_62_1
  doi: 10.1007/978-94-010-2873-8_56
  contributor:
    fullname: Safronov V. S.
– ident: e_1_2_1_74_1
  doi: 10.1016/0019-1035(88)90031-0
– ident: e_1_2_1_3_1
  doi: 10.1006/icar.1999.6201
– ident: e_1_2_1_31_1
  doi: 10.1086/300728
– volume: 302
  start-page: 301
  year: 1995
  ident: e_1_2_1_22_1
  article-title: The D/H and 18O/16O ratios in water from Comet P/Halley
  publication-title: Astron. Astrophys.
  contributor:
    fullname: Eberhardt P.
– ident: e_1_2_1_19_1
  doi: 10.1006/icar.1999.6137
– volume: 129
  start-page: 134
  year: 1997
  ident: e_1_2_1_37_1
  article-title: The solar nebula, secular resonances, gas drag, and the asteroid belt
  publication-title: Icarus
  doi: 10.1006/icar.1997.5782
  contributor:
    fullname: Lecar M.
– ident: e_1_2_1_56_1
  doi: 10.1016/0019-1035(91)90036-S
– ident: e_1_2_1_34_1
  doi: 10.1038/332691a0
– ident: e_1_2_1_57_1
  doi: 10.1006/icar.1999.6166
– ident: e_1_2_1_16_1
  doi: 10.1016/S0032-0633(98)00093-2
– ident: e_1_2_1_48_1
  doi: 10.1126/science.279.5352.842
– ident: e_1_2_1_26_1
  doi: 10.1023/A:1005039822524
– ident: e_1_2_1_33_1
  doi: 10.1016/0019-1035(88)90030-9
– volume: 276
  start-page: 1670
  year: 1997
  ident: e_1_2_1_20_1
  article-title: Scattered comet disk and the origin of Jupiter family comets
  publication-title: Science
  doi: 10.1126/science.276.5319.1670
  contributor:
    fullname: Duncan M. J.
– ident: e_1_2_1_23_1
  doi: 10.1016/0019-1035(92)90060-K
– ident: e_1_2_1_41_1
  doi: 10.1006/icar.1999.6313
– ident: e_1_2_1_53_1
  doi: 10.1006/icar.1995.1122
– ident: e_1_2_1_66_1
  doi: 10.1086/304912
– ident: e_1_2_1_15_1
  doi: 10.1016/S0016-7037(98)00232-4
– ident: e_1_2_1_45_1
  doi: 10.1016/0012-821X(89)90082-4
– ident: e_1_2_1_68_1
– ident: e_1_2_1_44_1
  doi: 10.1038/377326a0
– ident: e_1_2_1_21_1
  doi: 10.1086/114571
– ident: e_1_2_1_50_1
  doi: 10.1086/162697
– start-page: 367
  volume-title: Noble Gas Geochemistry.
  year: 1983
  ident: e_1_2_1_54_1
  contributor:
    fullname: ÖZima M.
– ident: e_1_2_1_5_1
  doi: 10.1126/science.255.5050.1391
– volume: 193
  start-page: 147
  year: 1988
  ident: e_1_2_1_7_1
  article-title: Deuterated water in comet C/1996 B2 (Hyakutake) and its implications for the origin of comets
  publication-title: Icarus
  contributor:
    fullname: Bockelée‐Morvan D.
– ident: e_1_2_1_25_1
  doi: 10.1111/j.1945-5100.2000.tb01778.x
– ident: e_1_2_1_24_1
  doi: 10.1016/0016-7037(93)90297-A
– ident: e_1_2_1_55_1
  doi: 10.1029/1999JE001120
– ident: e_1_2_1_43_1
  doi: 10.1023/A:1005091806594
– volume-title: Disks, Planetesimals and Planets
  year: 2000
  ident: e_1_2_1_29_1
  contributor:
    fullname: Guillot T.
– ident: e_1_2_1_65_1
  doi: 10.1086/118091
– start-page: 155
  volume-title: Interplanetary Encounters: Close Range Gravitational Interactions.
  year: 1976
  ident: e_1_2_1_52_1
  contributor:
    fullname: ÖPik E. J.
– year: 2000
  ident: e_1_2_1_12_1
  article-title: The late asteroidal and cometary bombardement of Earth as recorded in water deuterium to protium ratio
  publication-title: Icarus
  contributor:
    fullname: Dauphas N.
– ident: e_1_2_1_35_1
  doi: 10.1016/0016-7037(85)90141-3
– start-page: 1055
  volume-title: Protostars and Planets IV
  year: 2000
  ident: e_1_2_1_42_1
  contributor:
    fullname: Lunine J. I.
– ident: e_1_2_1_13_1
  doi: 10.1016/0032-0633(94)90035-3
– volume: 147
  start-page: 147
  year: 1997
  ident: e_1_2_1_8_1
  article-title: Subduction‐related diamonds?—The evidence for a mantle‐derived origin from coupled δ13C‐δ15N determinations
  publication-title: Chem. Geol.
  doi: 10.1016/S0009-2541(97)00178-2
  contributor:
    fullname: Cartigny P.
– ident: e_1_2_1_11_1
  doi: 10.1006/icar.1998.5959
– ident: e_1_2_1_40_1
  doi: 10.1006/icar.1994.1039
– ident: e_1_2_1_63_1
  doi: 10.1016/0012-821X(88)90152-5
– ident: e_1_2_1_73_1
  doi: 10.1016/0019-1035(92)90103-E
– ident: e_1_2_1_70_1
  doi: 10.1007/BF00642464
SSID ssj0035134
Score 2.262379
Snippet — In the primordial solar system, the most plausible sources of the water accreted by the Earth were in the outer asteroid belt, in the giant planet regions,...
Abstract— In the primordial solar system, the most plausible sources of the water accreted by the Earth were in the outer asteroid belt, in the giant planet...
SourceID crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 1309
Title Source regions and timescales for the delivery of water to the Earth
URI https://api.istex.fr/ark:/67375/WNG-K3MF6HW7-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1945-5100.2000.tb01518.x
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa23QsXRHmoSwH5UPVSZeXGcR7HiKYshVSIbVU4RUnsqAi6qTa7ovz7ztjOYw9FrRCXKHJiR5n5Mp6ZzIOQfZa7kpesdHIpIscTAGPcdxwZgHKqFPeYh_nOs3lw9i08TrxkNGpruPZj_5XTMAa8xszZR3C7WxQG4Bx4DkfgOhwfxPe59sYfYsMFjILRAZKY5gG8UE0XVCjVLwzI0L_Xf-dYKNHqoAkseTXUWFPQqmvdD6HRMLnB6NgVxtrZzbNjWb0ssGaWybeOp4PAAWw6YvDSjX5eL34YZ-rp9PDjtJfQ8FQ7mk43XBLM5ubd43o0rrQ-SAnFLBhSDihGRlgqMxZ5wgEJwYay2ZQysRgcClrYeqPBpo2J4H_fENrVdW4S-sNB1QnbUNFhFe5ulnj4PK0PpPGXOV7cImMXpB4I3XGcXHz_2ioGXNggh_blbQ1cG1h2z4M29KUxfvq3m3aUVoTOn5Gn1oKhsYHeDhmpxXOyGzf4T6W-_kMPqD43LrPmBTk2iKQWkRQQSXtEUkAkBeDRFpG0rqhGJF3V-oJG5EtycZKcv585tneHk2PPQsd3I8FFdSRkxWSIfpYcKyFKFVZRCDauCqUqPVlWkVt4hSwqXvpKcCkrl_EgyPkrsr2oF2qXUB9Mdl6xsPBV5fkwnR0puJFHMiqKwvcnhLcUym5MiZZsYNoCXTOkKzZcZZmla3Y7IQeamN2UfPkTgxwDkV2efcg-8fTEn10GWTohkab2I9bOWii8_oe5e-RJ_229Idur5Vq9JVuNXL-zwLoDLJyjlQ
link.rule.ids 315,782,786,27933,27934
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Source+regions+and+timescales+for+the+delivery+of+water+to+the+Earth&rft.jtitle=Meteoritics+%26+planetary+science&rft.au=Morbidelli%2C+A.&rft.au=Chambers%2C+J.&rft.au=Lunine%2C+J.+I.&rft.au=Petit%2C+J.+M.&rft.date=2000-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1086-9379&rft.eissn=1945-5100&rft.volume=35&rft.issue=6&rft.spage=1309&rft.epage=1320&rft_id=info:doi/10.1111%2Fj.1945-5100.2000.tb01518.x&rft.externalDBID=10.1111%252Fj.1945-5100.2000.tb01518.x&rft.externalDocID=MAPS1518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1086-9379&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1086-9379&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1086-9379&client=summon